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Abstract

To solve the low spatial and/or temporal resolution prob-

lem which the conventional hypelrspectral cameras often

suffer from, coded snapshot hyperspectral imaging systems

have attracted more attention recently. Recovering a hy-

perspectral image (HSI) from its corresponding coded im-

age is an ill-posed inverse problem, and learning accurate

prior of HSI is essential to solve this inverse problem. In

this paper, we present an effective convolutional neural net-

work (CNN) based method for coded HSI reconstruction,

which learns the deep prior from the external dataset as

well as the internal information of input coded image with

spatial-spectral constraint. Our method can effectively ex-

ploit spatial-spectral correlation and sufficiently represent

the variety nature of HSIs. Experimental results show our

method outperforms the state-of-the-art methods under both

comprehensive quantitative metrics and perceptive quality.

1. Introduction

Hyperspectral imaging systems capture the spectral sig-

nature of each spatial location in a scene with much more

than three bands. The rich spectral details in HSI can

show deterministic information about the lighting and ma-

terial, which is beneficial to various fields, including remote

sensing [5, 28], computer vision [7] and medical diagnosis

[4, 27].

To obtain a full 3D HSI, the conventional hyperspec-

tral imagers needs multiple exposures to scan the scene

[2, 30, 31], which is time-consuming and cannot capture

dynamic scenes. To improve the temporal resolution, var-

ious snapshot hyperspectral imaging systems [6, 10, 29]

have been proposed by multiplexing the 3D HSI into a

2D spatial sensor, which, however, sacrifice the spatial res-

olution. Recently, by leveraging the compressive sens-

ing (CS) theory, coding-based hyperspectral imaging tech-

niques [16, 22, 25, 26, 35, 37] have attracted increasing at-

tention due to the potential to overcome the trade-off be-

tween temporal and spatial resolution.
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Figure 1. Overview of our CNN-based coded HSI reconstruction

method. The reconstruction network is first learned from an exter-

nal dataset, and then customized with spatial-spectral constraint in

term of the internal information of the input coded image for each

target scene.

With elaborate optical design, these coding-based tech-

niques encode the 3D HSI into a 2D compressive measure-

ment. Now the bottleneck lies in how to faithfully recon-

struct the desirable HSI. Since the reconstruction problem

is under-determined, prior knowledge of the unknown HSI

is required to regularize the reconstruction. To this end, the

well-known model-based methods employ various hand-

crafted priors, such as the total variation [22, 37], sparsity

[35, 38, 39] and low-rankness [13]. However, these hand-

crafted priors are insufficient to represent the variety of the

real-world spectral data.

Different from the model-based methods that rely on

carefully designed priors, the learning-based methods [9,

40, 43] can implicitly learn the prior by leveraging the ex-

ternal dataset. However, the learning-based methods [40]

often attempt to fit a brute-force mapping between the com-

pressive image and the desirable image, which ignores the

internal imaging model. Thus, the learned mapping func-

tion would be ineffective even if the observation model de-

viates very slightly from that one used to synthesize the

training data. Recently, an autoencoder-based method [9]

is proposed by pre-training an autoencoder to exploit the
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image prior and integrating it to the model-based recon-

struction framework. However, the autoencoder cannot be

jointly optimized with the other parameters of the optimiza-

tion algorithm, leaving a headache of parameters tuning.

Moreover, all the learning-based methods rely on an as-

sumption of strong prior similarity between the training and

testing data. In fact, different kinds of hyperspectral im-

ager would produce heterogeneous HSIs with totally dif-

ferent centric wavelength and spectral response. So the

learning-based methods usually suffer from the problem of

over-fitting and lacking generalization ability.

In this paper, we present a CNN-based coded HSI re-

construction method by jointly exploiting deep external and

internal learning (Figure 1). First, we develop a CNN-based

channel attention reconstruction network to effectively ex-

ploit the spatial-spectral correlation of the HSI. Then, we

train the reconstruction network by leveraging an arbitrary

external dataset to exploit the general spatial-spectral cor-

relation. Finally, we customize the network by internal

learning with spatial-spectral constraint by the coded im-

age, which makes use of the internal imaging model to learn

specific prior for current desirable image. Our method are

verified on two representative snapshot hyperspectral imag-

ing systems, i.e., CASSI [35] and DCD[37].

In summary, our main contributions are that we

1. present a CNN-based method for coded HSI recon-

struction, which can effectively combine deep external

and internal learning;

2. exploit the spatial-spectral correlation of the HSI by

external learning;

3. guarantee generalization ability and adapt itself to vari-

ant scenes by internal learning.

2. Related Work

In this section, we review the most relevant studies on

hyperspectral imaging system and coded HSI reconstruc-

tion methods.

2.1. Hyperspectral Imaging Systems

Conventional hyperspectral cameras usually make trade-

off between temporal/spatial and spectral resolution.

Scanning-based acquisition systems [2, 30, 31, 44] captured

the full scene pointwisely/linewisely in spatial domain or

bandwisely in spectral domain. All these systems sacrifice

the temporal resolution. To capture dynamic scene, several

snapshot spectral imagers have been proposed, which mul-

tiple the 3D HSI into a 2D spatial sensor but trade the spatial

resolution for spectral resolution [6, 11, 14, 15].

Recently, to overcome the trade-off between temporal

and spatial resolution, several coding-based systems have

been prevalent by relying on CS theory. CASSI utilized two

dispersers [16] or one disperser [35] with a coded aperture

to optically encode the spectral signal along spatial dimen-

sion. To improve the performance of CASSI, multiple shots

with varying coded apertures [22] and DCD with an aligned

panchromatic camera [37] have been proposed. Besides, a

dual-coded compressive spectral imager [26] was proposed

as an advancement of CASSI, which separately encoded

spatial and spectral dimensions using a digital micromirror

device and a liquid crystal on silicon, respectively. Later,

[26] was upgraded to spatial-spectral encoded compressive

spectral imager [25], which jointly considers the spatial-

spectral coding mechanism but only employs one coded

aperture. In this paper, we mainly vertify the effectiveness

of our method on CASSI [35] and DCD[37]

2.2. Coded HSI Reconstruction Methods

Model-based methods often formulate coded HSI recon-

struction as a Maximum a Posterior problem. Various hand-

crafted priors are served as regularizers in these methods

and the HSI is reconstructed by solving an optimization

problem. Kittle et al. [22] and Wang et al. [37] employed

two-step iterative shrinkage/thresholding algorithm [3] with

the total variation prior. The total variation prior [22, 37]

can effectively model the piecewise smooth spatial struc-

ture, but the recovered HSI trend to be over-smooth and lack

details. The sparsity prior [33, 35, 38, 39] has shown bet-

ter results than the total variation prior. Wagadarikar et al.

[35] employed the gradient projection for sparse reconstruc-

tion algorithm. Tan et al. [33] utilized approximate mes-

sage passing by integrating Winner filter as a denoiser in

each iteration. Wang et al. [38] utilized an adaptive dictio-

nary based algorithm to reconstruct 4D hyperspectral video

and the sparse basis is learned from panchromatic image of

DCD. Wang et al. [39] further integrated non-local similar-

ity with sparse representation to improve performance. Be-

sides, the low-rankness prior [13] is also used for coded HSI

reconstruction. Fu et al. [13] exploited the spectral-spatial

correlation with low-rank approximation and non-local sim-

ilarity for this reconstruction task.

Recently, by leveraging the power of deep learning,

learning-based approaches have been presented for coded

HSI reconstruction [9, 40, 43]. Xiong et al. [43] first ini-

tially reconstructed the HSI via an existing model-based

method [22], and then employed a CNN-based method to

enhance the initialized result with prior trained on the train-

ing set. Choi et al. [9] trained the autoencoder to learn

nonlinear spectral representation as a deep prior, and then

combined it with the total variation prior in the optimiza-

tion as regularizers to reconstruct HSI. Wang et al. [40]

employed an end-to-end CNN-based method for coded HSI

reconstruction, considering the spatial correlation between

neighboring spatial locations and spectral correlation be-

tween neighboring bands.

The hand-crafted priors only model the linear character-
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Figure 2. Illustration of two representative imaging systems.

istic in HSI, therefore, are insufficient to exploit the non-

linearity in HSI. The deep prior only learned from external

dataset lacks similarity with which the test image desire,

thus often fails to work for unknown data. In this work,

we present an efficient CNN-based method for coded HSI

reconstruction to learn the deep prior from external dataset

and internal input image, combining deep external and in-

ternal learning. Neither delicate hand-crafted priors are re-

quired nor strong prior similarity is relied on in our method.

3. Coded HSI Reconstruction

In this section, we first formulate the problem for coded

HSI reconstruction. Then, we introduce our CNN-based

method for the coded HSI reconstruction, which can effec-

tively learn spatial-spectral correlation in the HSI for each

target scene by using external and internal learning.

3.1. Observation Model

Here, we mainly show the observation model for two

representative snapshot hyperspectral imaging systems, i.e.,

CASSI [35] and DCD [37].

In the CASSI system, as shown in Figure 2, the inci-

dent light is first projected into the coded aperture through

the objective lens, which plays a spatial modulation. Then,

the modulated incident light goes through the relay lens and

is spectrally dispersed by the prism. Finally, the spectral

dispersed information is captured by a panchromatic cam-

era. Let X(m,n, λ) indicate the intensity of incident light

where 1 ≤ m ≤ M and 1 ≤ n ≤ N index the spatial co-

ordinates and 1 ≤ λ ≤ Λ indexes the spectral coordinate.

The (m,n)-th pixel of the compressive measurement can be

represented as

yc(m,n) =
∑Λ

λ=1
ϕ(m−ψ(λ), n)x(m−ψ(λ), n, λ)ω(λ),

(1)

where ϕ(m,n) denotes the transmission function of the

coded aperture, ψ(λ) denotes the wavelength-dependent

dispersion function for the prism, x is the spectral distri-

bution of the (m,n, λ)-th pixel of the HSI, ω(λ) represents

the response function of the detector. The CASSI observa-

tion model can be rewritten in matrix form as

Y
c = Φ

c
X, (2)

where Φ
c denotes the projection matrix of CASSI and

jointly determined by ϕ(m,n), ψ(λ) and ω(λ), Y
c de-

notes the vectorized representation of the compressive im-

age yc(m,n), X is the underlying HSI.

In the DCD system, as shown in Figure 2, the incident

light is first divided into two direction by the beam splitter.

The light in one direction is captured by CASSI, while the

light in another direction is captured by the same kind of

panchromatic detector. The (m,n)-th pixel of the panchro-

matic measurement can be represented as

yp(m,n) =
∑Λ

λ=1
x(m,n, λ)ω(λ). (3)

Similar with the CASSI formulation in Equation (2),

Equation (3) can also be rewritten in matrix form as

Y
p = Φ

p
X, (4)

where Φ
p denotes the projection matrix of panchromatic

camera and determined by ω(λ), Yp is the vectorized rep-

resentation of the panchromatic image.

The DCD sensing process can be generally expressed as

Y
d = Φ

d
X, (5)

where Y
d = [Yc;Yp] and Φ

d = [Φc;Φp].
The aim is to reconstruct high quality HSI X from coded

image Y
c for CASSI and Y

d for DCD.

3.2. Coded HSI Reconstruction Network

Previous works have shown that effectively exploiting

the latent intrinsic properties of the HSI — spatial corre-

lation [40] and spectral correlation [9] — can reconstruct

high quality HSI from coded image. To better explore the

spatial-spectral correlation in the HSI, we conduct a deep

CNN to model the spatial-spectral correlation trough mul-

tiple layers of nonlinear transformations with dense con-

nection and channel attention. As shown in Figure 3, the

CASSI reconstruction network consists of L Dense Blocks

[12, 32] between two convolutional layers. Let Cc
in denotes

the first convolutional layer and Cc
out denotes the last con-

volutional layer in the reconstruction network. For the l-th

Dense Block, the inputs are Bc
0 to Bc

l−1
and the output can

be expressed as

Bc
l = Dc

l (B
c
0, · · · , B

c
l−1), (6)

where Bc
0 = Cc

in(Y
c) and Dc

l denotes the l-th Dense Block

function in CASSI reconstruction network, respectively.

In each Dense Block, there are K residual channel at-

tention (RCA) Modules. The k-th RCA Module can be ex-

pressed as

Hc
l,k = Ac

l,k(R
c
l,k(H

c
l,k−1)) +Hc

l,k−1, (7)
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Figure 3. The architecture of coded HSI reconstruction network.

where Hc
l,0 = Bc

l−1
, Rc

l,k and Ac
l,k denote the residual

component [18] function and channel attention component

[19, 46] function in k-th RCA Module of l-th Dense Block.

Residual component is adaptively rescaled by the channel

attention component, which is beneficial to exploit the spec-

tral correlation.

The final output can be expressed as

X̂
c = Cc

out(B
c
L + Cc

in(Y
c)) = f c(Yc,Θc), (8)

where Bc
L denotes the output of L-th Dense Block in the

CASSI reconstruction network, f c is the mapping function

of CASSI reconstruction network and Θ
c represents param-

eters in the CASSI reconstruction network, respectively.

For coded HSI reconstruction from DCD, to further fuse

the CASSI reconstructed result X̂c and panchromatic image

Y
p, we append an identical layout with CASSI reconstruc-

tion network, as shown in Figure 3. The final output can be

expressed as

X̂
d = C

p
out(B

p
L + C

p
in(stack(X̂

c,Yp)))

= fd(Yc,Yp,Θd),
(9)

whereB
p
L denotes the output of 2L-th Dense Block in DCD

reconstruction network and fd is the mapping function of

DCD reconstruction network and Θ
d represents parameters

in the DCD reconstruction network, respectively.

In our coded HSI reconstruction network, we empirically

set L, K and feature maps to be 4, 4, 64, respectively. For

kernel size, the last convolutional layers in Dense Blocks

are set to be 1× 1 and the others are set to be 3× 3.

3.3. External Learning

To explore latent intrinsic characteristics of the HSI, the

deep prior is first learned from external dataset. We uni-

formly extract from each HSI with size of 256×256 and its

corresponding coded image under projection matrix Φ
c or

Φ
d to constitute the patch pairs in the dataset.

For CASSI reconstruction, the model is optimized by

minimizing the loss

Lc
ex(Θ

c
ex) =

1

T

∑T

t=1
‖f c(Yc

ex,t,Θ
c
ex)−Xex,t‖

2, (10)

where Y
c
ex,t denotes the t-th external compressive image,

Xex,t represents the t-th corresponding ground truth from

external dataset, and Θ
c
ex is the parameters of the external

trained CASSI reconstruction network, T is the number of

training samples in the external dataset, respectively.

For DCD reconstruction, to improve the final reconstruc-

tion accuracy, we further add constraint for CASSI recon-

struction and the loss can be expressed as

Ld
ex(Θ

d
ex) =

1

T

∑T

t=1
(‖fd(Yc

ex,t,Y
p
ex,t,Θ

d
ex)−Xex,t‖

2

+ η‖f c(Yc
ex,t,Θ

c
ex)−Xex,t‖

2),

(11)

where Y
p
ex,t denotes the t-th panchromatic image from ex-

ternal training dataset, Θd
ex represents the parameters of the

external trained DCD reconstruction network, and η is a

predefined parameter which we empirically set to be 0.5.

These losses are minimized with the adaptive moment

estimation method [21]. We set the mini-batch size, mo-

mentum parameter and weight decay to be 1, 0.9 and 10−4,

respectively. The learning rate is initially set to be 0.0001,

which will be divided by 10 every 30 epochs. All learnable

layer’s weights are initialized by the method in [17]. The

networks are trained with the deep learning tool Caffe [20]

on NVIDIA Titan X Pascal GPU.

3.4. Internal Learning

Existing HSI datasets are still kind of small and the dis-

tribution variation between training and testing data cannot
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be avoided. These may make the external learned deep prior

lack similarity with the prior desired by the testing image

and less practical for unknown data. Inspired by [34], we

further learn the deep prior on a single image using internal

learning with spatial-spectral constraint.

For CASSI reconstruction, given the relationship be-

tween coded image and corresponding HSI in Equation (2),

the latent HSI in Equation (8) should be consistent with the

input coded image after the linear mapping Φ
c. To reduce

the effect of distribution variation, the reconstruction net-

work can be updated with spatial-spectral constraint from

the input coded image for each scene, which can be repre-

sented as

Lc
in(Θ

c
in) = ‖Φcf c(Yc

in,Θ
c
in)−Y

c
in‖

2, (12)

where Y
c
in denotes the input coded image, and Θ

c
in is the

parameters of CASSI reconstruction network in internal

learning and is initialized by Θ
c
ex.

For DCD reconstruction, given the relationship between

the capture image and corresponding HSI in Equation (5),

the latent HSI in Equation (9) should be consistent with

the input image after the linear mapping Φ
d. We add the

spatial-spectral constraint in Equation (11) for DCD recon-

struction and the internal learning loss can be expressed as

Ld
in(Θ

d
in) = ‖Φdfd(Yc

in,Y
p
in,Θ

d
in)−Y

d
in‖

2

+η‖Φdf c(Yc
in,Θ

c
in)−Y

d
in‖

2,
(13)

where Y
p
in denotes the internal panchromatic image, and

Θ
d
in is the parameters of internal trained DCD reconstruc-

tion network and is initialized by Θ
d
ex.

In internal learning, the underlying characteristics of the

latent HSI in Equation (12) and Equation (13) is mod-

eled in deep prior instead of hand-crafted priors compared

with model-based methods and learned on the input image

compared with learning-based methods. Our method ef-

fectively combines internal and external information in the

deep learning architecture.

The internal learning details are similar with external

learning, except we fix the learning rate to be 0.0001 and

all learnable layer’s weights are initialized by the external

learned model.

4. Experimental Results

In this section, we first introduce the datasets and metrics

for quantitative evaluation in our experiments. Then, our

method is compared with several state-of-the-art methods

on synthetic data. In addition, the generalization ability of

our method is discussed. Finally, we implement our coded

HSI reconstruction method on the real images.

4.1. Datasets and Metrics

Our method is evaluated on three public HSI datasets,

including the the CAVE dataset [45], the Harvard dataset

[8], and ICVL dataset [1]. The CAVE dataset consists of 32

HSIs and the spatial resolution is 512 × 512. The Harvard

dataset consists of 50 outdoor images captured under day-

light illumination, whose spatial resolution is 1024× 1392.

Due to large-area high-light pixels, we remove 6 deteri-

orated HSIs. The ICVL dataset consists of 201 images,

which is by far the most comprehensive natural HSI dataset.

The spatial resolution of HSIs is 1300× 1392. The spectral

range of CAVE and ICVL datasets are from 400 nm to 700

nm, the spectral range of Harvard dataset is from 420 nm

to 720 nm, and the spectral range of all three HSI datasets

are divided into 31 spectral bands with 10 nm interval. We

random select 10 images in CAVE dataset, 9 images in Har-

vard dataset and 50 images in ICVL dataset for testing and

the rest for training, respectively.

Three quantitative image quality metrics are utilized to

evaluate the performance of all methods, including peak

signal-to-noise ratio (PSNR), structural similarity (SSIM)

[41], spectral angle mapping (SAM) [23] and relative

dimensionless global error in synthesis (ERGAS) [36].

Larger values of PSNR and SSIM suggest better perfor-

mance, while a smaller value of SAM and ERGAS implies

a better reconstruction.

4.2. Evaluation on Synthetic Data

We compare our method with six state-of-the-art HSI

reconstruction methods on synthetic data, including three

model-based methods i.e., total variation based method

(TV) [3], sparse representation based method (NSR) [39],

and low-rank matrix approximation based method (LRMA)

[13] and three learning-based methods, i.e., the HSCNN

method[43], the Autoencoder method [9] and the Hyper-

ReconNet method [40]. We make great effort to reproduce

the best results for competitive methods with the codes that

are released publicly or provided privately by the authors.

Table 1 and Table 2 provide the averaged reconstructed

results for CASSI and DCD over all test images on three

datasets, to quantitatively compare our method with TV,

NSR, LRMA, HSCNN, Autoencoder and HyperReconNet.

Note that HyperReconNet is specially designed for CASSI

reconstruction and difficultly extended for DCD reconstruc-

tion, so we only compare with it on CASSI reconstruc-

tion. The best results are in bold on each dataset. It can

be seen that DCD always has much better performance than

CASSI, which demonstrates the advantage of DCD. Com-

paring the results with different methods in the same sys-

tem, our method outperforms the existing methods in most

case according to the metrics in spatial and spectral do-

mains. This reveals the advantages of deeply exploiting the

intrinsic properties of HSIs and verifies the effectiveness of

our deep external and internal learning method.

To visualize the experimental results, three representa-

tive restored results on three datasets are shown in Figures
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Table 1. Evaluation CASSI reconstructed results of different methods on three HSI datasets.

Methods
CAVE Harvard ICVL

PSNR SSIM SAM ERGAS PSNR SSIM SAM ERGAS PSNR SSIM SAM ERGAS

TV 24.099 0.8917 8.928 41.132 27.163 0.9242 6.800 37.141 26.155 0.9358 3.020 15.971

NSR 26.644 0.9247 7.440 32.085 28.508 0.9400 7.572 32.722 27.949 0.9576 2.939 12.468

LRMA 25.871 0.9198 8.473 34.545 30.113 0.9572 5.086 26.506 29.975 0.9720 1.819 9.921

HSCNN 25.017 0.9151 11.911 38.836 28.548 0.9442 6.759 30.758 29.475 0.9733 2.469 10.034

Autoencoder 25.741 0.9186 8.506 35.542 30.300 0.9520 5.615 26.441 30.440 0.9700 2.063 10.485

HyperReconNet 24.444 0.9043 12.996 40.913 30.341 0.9644 6.609 25.358 32.363 0.9861 2.121 7.295

Ours 29.055 0.9570 8.260 24.786 33.585 0.9824 5.362 17.138 35.884 0.9937 1.462 4.847

Table 2. Evaluation DCD reconstructed results of different methods on three HSI datasets.

Methods
CAVE Harvard ICVL

PSNR SSIM SAM ERGAS PSNR SSIM SAM ERGAS PSNR SSIM SAM ERGAS

TV 34.090 0.9849 5.817 14.445 36.294 0.9892 5.114 15.937 36.902 0.9914 1.807 5.612

NSR 35.890 0.9864 5.105 13.087 38.564 0.9934 4.553 12.801 39.915 0.9960 1.404 3.774

LRMA 38.370 0.9933 5.019 9.188 40.429 0.9959 4.110 9.737 41.124 0.9972 1.322 3.090

HSCNN 33.834 0.9852 7.880 14.899 37.492 0.9924 4.845 12.652 38.797 0.9966 1.516 3.551

Autoencoder 33.863 0.9874 7.294 14.816 39.052 0.9952 4.679 10.096 41.499 0.9983 1.225 2.624

Ours 38.458 0.9954 4.179 8.454 41.825 0.9975 3.972 7.360 44.355 0.9991 0.981 1.847

Table 3. Evaluation generalization ability of distribution variation between training and testing data and all models are externally trained

on ICVL dataset.

Methods
CAVE Harvard ICVL

PSNR SSIM SAM ERGAS PSNR SSIM SAM ERGAS PSNR SSIM SAM ERGAS

CASSI

HSCNN 22.219 0.8824 17.945 54.624 26.973 0.9197 10.715 42.144 29.475 0.9733 2.469 10.034

Autoencoder 22.200 0.8348 18.142 56.088 25.234 0.8785 16.258 58.358 30.441 0.9702 2.063 10.485

HyperReconNet 21.171 0.7866 23.320 69.475 24.765 0.8636 14.510 71.778 32.363 0.9861 2.121 7.295

Ours-external 19.974 0.7201 24.825 77.604 24.807 0.8873 17.745 68.265 32.012 0.9862 2.629 7.768

Ours 26.888 0.9320 10.882 32.614 32.767 0.9792 6.054 19.186 35.884 0.9937 1.462 4.847

DCD

HSCNN 28.965 0.9320 11.615 30.666 34.625 0.9744 7.439 27.728 38.797 0.9966 1.516 3.551

Autoencoder 26.849 0.9309 18.747 38.914 29.148 0.9402 17.480 45.519 41.499 0.9983 1.225 2.624

Ours-external 22.199 0.9757 24.751 68.439 27.138 0.9162 24.153 62.007 37.282 0.9954 2.006 4.477

Ours 38.377 0.9952 4.283 8.840 41.465 0.9972 4.044 7.770 44.355 0.9991 0.981 1.847

4 and 5. The error maps are the average absolution errors

between ground truth and restored results across spectra. To

show the scenes, we convert the original HSIs to RGBs via

the CIE color mapping function, as shown in the last column

of Figure 5. The recovered results from our method are con-

sistently more accurate for all scenes, which demonstrates

our method can provide higher spatial accuracy. The ab-

solute error between ground truth and reconstructed results

of scenes in Figures 4 and 5 along spectra for all methods

are shown in Figure 6. It can be seen that the results of our

method are much closer to the ground truth, which verifies

that our method obtain higher spectral fidelity.

4.3. Ablation Study

Due to the space limitation, we only show the results of

the model externally trained on ICVL dataset.

To evaluate the generalization ability on distribution

variation between training and testing data, we compare our

method with other learning-based methods on different test-

ing set, and all reconstruction networks are trained on ICVL

dataset. Our method with only external learning on ICVL

dataset is denoted as ‘Ours-external’. According to the Ta-

ble 3, we can seen that the performance of learning-based

methods and our external learned model decrease dramati-

cally on CAVE and Harvard testing sets, while our method

combining external and internal learning can obviously im-

prove the spatial accuracy and spectral fidelity. It verifies

our method has better generalization ability on data distri-

bution variation.

4.4. Evaluation on Real Data

We further evaluate the effectiveness of our method on

the real data. A cartoon cover under the laboratory am-

bient light condition with complex texture is captured by

CASSI and DCD imaging systems. The compressive im-

age of CASSI is shown in Figure 7(a) and the panchro-
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TV NSR LRMA HSCNN Autoencoder HyperReconNet Ours

Figure 4. Visual quality comparison on three typical scenes in HSI datasets for CASSI. The error maps for

TV/NSR/LRMA/HSCNN/Autoencoder/HyperReconNet/our CASSI recovered results are shown from left to right and the corresponding

scenes are shown in Figure 5.

TV NSR LRMA HSCNN Autoencoder Ours Scene

Figure 5. Visual quality comparison on three typical scenes in HSI datasets for DCD. The error maps for

TV/NSR/LRMA/HSCNN/Autoencoder/our DCD recovered results and the scenes are shown from left to right.

(a) CASSI (b) DCD
Figure 6. The absolute error between ground truth and recovered results of scenes in Figure 4 and Figure 5 along spectra for all methods.
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CASSI

(a) Compressive (b) TV (c) NSR (d) LRMA (e) Autoencoder (f) Ours

DCD

(g) Panchromatic (h) TV (i) NSR (j) LRMA (k) Autoencoder (l) Ours

Figure 7. Reconstruction results of the spectral band in 607 nm. (a) Compressive image. (g) Panchromatic image. (b)-(f)

TV/NSR/LRMA/Autoencoder/our CASSI reconstruction results. (h)-(l) TV/NSR/LRMA/Autoencoder/our DCD reconstruction results.

matic image of DCD is shown in Figure 7(g), respectively.

We show the reconstruction results at 607 nm for all meth-

ods. By comparing the CASSI reconstruction results in Fig-

ure 7(b,c,d,e,f) and DCD reconstruction results in Figure

7(h,i,j,k,l), we can see that the DCD outperforms CASSI

with better vision quality. It suggests that the panchromatic

image can obviously assist the HSI reconstruction. Accord-

ing to the reconstruction results of all methods, our method

outperforms other methods in both systems. We can see

that TV, NSR, LRMA and Autoencoder suffer from over-

smoothing or lack structure information, and our method

produces better results with more details and less artifacts

compared with other methods.

5. Conclusion

In this paper, we propose a novel CNN-based coded

HSI reconstruction method via combining deep external

and internal learning, which learns the deep prior from

both the external dataset and internal information of input

coded image. The proposed method can effectively ex-

ploit the spectral-spatial correlation and adapt itself to vari-

ant scenes. Experimental results show that the proposed

method outperforms current state-of-the-art methods both

on synthetic data and real data and has better generalization

ability compared with the learning-based methods.

Our method is mainly evaluated on CASSI and DCD,

which could be directly implemented on other coded HSI

reconstruction, e.g., spatial-spectral encoded imaging sys-

tem [25], multiple snapshot imaging system [22, 42] and

so on. Besides, it is worth investigating the effect from the

combination of deep external and internal learning for na-

ture image/video compressive sensing reconstruction [24],

image restoration [32], and so on.
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