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Abstract

We address semantic segmentation on omnidirectional

images, to leverage a holistic understanding of the sur-

rounding scene for applications like autonomous driving

systems. For the spherical domain, several methods recently

adopt an icosahedron mesh, but systems are typically rota-

tion invariant or require significant memory and parame-

ters, thus enabling execution only at very low resolutions.

In our work, we propose an orientation-aware CNN frame-

work for the icosahedron mesh. Our representation allows

for fast network operations, as our design simplifies to stan-

dard network operations of classical CNNs, but under con-

sideration of north-aligned kernel convolutions for features

on the sphere. We implement our representation and demon-

strate its memory efficiency up-to a level-8 resolution mesh

(equivalent to 640×1024 equirectangular images). Finally,

since our kernels operate on the tangent of the sphere, stan-

dard feature weights, pretrained on perspective data, can

be directly transferred with only small need for weight re-

finement. In our evaluation our orientation-aware CNN be-

comes a new state of the art for the recent 2D3DS dataset,

and our Omni-SYNTHIA version of SYNTHIA. Rotation in-

variant classification and segmentation tasks are addition-

ally presented for comparison to prior art.

1. Introduction

We address the problem of spherical semantic segmen-

tation on omnidirectional images. Accurate semantic seg-

mentation is useful for many applications including scene

understanding, robotics, and medical image processing. It

is also a key component for autonomous driving technology.

Deep convolutional neural networks (CNNs) have pushed

the performance on a wide array of high-level tasks, includ-

ing image classification, object detection and semantic seg-

mentation. In particular, most research on CNNs for seman-
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Figure 1. Given spherical input, we convert it to an unfolded icosa-

hedron mesh. Hexagonal filters are then applied under considera-

tion of north alignment, as we efficiently interpolate vertices. Our

approach is suited to most classical CNN architectures, e.g. U-Net

[22]. Since we work with spherical data, final segmentation results

provide a holistic labeling of the environment.

tic segmentation [18, 22, 30, 4] thus far has focused on per-

spective images. In our work, we focus on omnidirectional

images, as such data provides a holistic understanding of

the surrounding scene with a large field of view. The com-

plete receptive field is especially important for autonomous

driving systems. Furthermore, recent popularity in omni-

directional capturing devices and the increasing number of

datasets with omnidirectional signals make omnidirectional

processing very relevant for modern technology.

While spherical input could be represented as planar

equirectangular images where standard CNNs are directly

applied, such choice is inferior due to latitude dependent

distortions and boundaries. In [25] a perspective network is

distilled to work on equirectangular input. The main draw-

back is that weight sharing is only enabled on longitudes.

Therefore, the model requires more parameters than a per-
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spective one. SphereNet [9] projects equirectangular input

onto a latitude-longitude grid. A constant grid kernel is con-

volved with each vertex on the sphere by sampling on the

tangent plane. However, it is not straightforward to imple-

ment pooling and up-sampling for dense prediction tasks.

In 3D shape analysis, one of the challenges in applying

CNNs is how to define a natural convolution operator on

non-euclidean surfaces. Several works [3, 20, 2] have fo-

cused on networks for manifolds or graphs. Unlike general

3D shapes, omnidirectional images are orientable with the

existence of north and south poles. Therefore, the lack for

shift-invariance on surfaces or graphs could be overcome

with an orientation-aware representation.

Most recently, several works propose to use an icosa-

hedron mesh as the underlying spherical data representa-

tion. The base icosahedron is the most regular polyhedron,

consisting of 12 vertices and 20 faces. It also provides a

simple way of resolution increase via subdivision. In [14],

UGSCNN is proposed to use the linear combinations of dif-

ferential operators weighted by learnable parameters. Since

the operators are precomputed, the number of parameters is

reduced to 4 per kernel. The main issue of this approach, as

observed in our experiments, is that it requires a lot of mem-

ory for their mesh convolution if the resolution is raised for

better input/output quality. Similar to our method in the

use of icosahedron, [7] proposes a gauge equivariant CNN.

Here, filter weights are shared across multiple orientations.

While rotation covariance and invariance is essential in ap-

plications such as 3D shape classification and climate pat-

tern prediction, it might be undesired for semantic segmen-

tation which we consider here. On the contrary, we argue

that the orientation information of cameras attached to vehi-

cles or drones is an important cue and should be exploited.

Therefore, we propose and investigate a novel frame-

work for the application of CNNs to omnidirectional in-

put, targeting semantic segmentation. We take advantage

of both, the icosahedron representation for efficiency and

orientation information to improve accuracy in orientation-

aware tasks (Fig. 1). Our hypothesis is that aligning all

learnable filters to the north pole is essential for omnidirec-

tional semantic segmentation. We also argue that high res-

olution meshes (i.e. a level-8 icosahedron mesh) are needed

for detailed segmentation. Due to memory restrictions,

CNN operations need to be implemented efficiently to reach

such high resolution.

In our work, we first map the spherical data to an icosa-

hedron mesh, which we unfold along the equator, similarly

to cube maps [19, 5] and [17, 7]. In the icosahedron, ver-

tices have at most 6 neighbors. Therefore, we propose to

use a hexagonal filter that is applied to each vertex’s neigh-

borhood. After simple manipulation of the unfolded mesh,

standard planar CNN operations compute our hexagonal

convolutions, pooling and up-sampling layers. Finally we

emphasize, since our filters are similar to standard 3 × 3
kernels applied to the tangent of the sphere, weight transfer

from pretrained perspective CNNs is possible.

To validate our approach we use the omnidirectional

2D3DS dataset [1] and additionally prepare our Omni-

SYNTHIA dataset, which is produced from SYNTHIA data

[23]. Qualitative as well as quantitative results demon-

strate that our method outperforms previous state-of-the-

art approaches in both scenarios. Performance on spherical

MNIST classification [6] and climate pattern segmentation

[21] is also shown in comparison with previous methods in

literature. In summary, our contributions are:

1. We propose and implement a memory efficient

icosahedron-based CNN framework for spherical data.

2. We introduce fast interpolation for orientation-aware

filter convolutions on the sphere.

3. We present weight transfer from kernels learned

through classical CNNs, applied to perspective data.

4. We evaluate our method on both non-orientation-aware

and orientation-aware, publicly available datasets.

2. Related Work

CNNs on Equirectangular Images Although classical

CNNs are not designed for omnidirectional data, they could

still be used for spherical input if the data are converted to

equirectangular form. Conversion from spherical coordi-

nates to equirectangular images is a linear one-to-one map-

ping, but spherical inputs are distorted drastically especially

in polar regions. Another artifact is that north and south

poles are stretched to lines. Lai et al. [15] apply this method

in the application of converting panoramic video to normal

perspective. Another method along this line is to project

spherical data onto multiple faces of convex polygons, such

as a cube. In [19], omnidirectional images are mapped to 6

faces of a cube, and then trained with normal CNNs. How-

ever, distortions still exist and discontinuities between faces

have to be carefully handled.

Spherical CNNs In order to generalize convolution from

planar images to spherical signals, the most natural idea is

to replace shifts of the plane by rotations of the sphere. Co-

hen et al. [6] propose a spherical CNN which is invariant in

the SO(3) group. Esteves et al. [11] use spherical harmonic

basis to achieve similar results. Zhou et al. [31] propose to

extend normal CNNs to extract rotation-dependent features

by including an additional orientation channel.

CNNs with Deformable Kernels Some works [10, 13]

consider adapting the sampling locations of convolutional

kernels. Dai et al. [10] propose to learn the deformable con-

volution which samples the input features through learned
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offsets. An Active Convolutional Unit is introduced in [13]

to provide more freedom to a conventional convolution by

using position parameters. These methods requires addi-

tional model parameters and training steps to learn the sam-

pling locations. In our work, we adapt the kernel shape to

fit icosahedron geometry. Unlike deformable methods, our

sampling locations can be precomputed and reused without

the need of training.

CNNs with Grid Kernels Another line of works aim to

adapt the regular grid kernel to work on omnidirectional im-

ages. Su and Grauman [25] propose to process equirectan-

gular images as perspective ones by adapting the weights

according to the elevation angles. Weight sharing is only

enabled along longitudes. To reduce the computational cost

and degradation in accuracy, a Kernel Transformer Network

[26] is applied to transfer convolution kernels from per-

spective images to equirectangular inputs. Coors et al. [9]

present SphereNet to minimize the distortions introduced

by applying grid kernels on equirectangular images. Here, a

kernel of fixed shape is used to sample on the tangent plane

according to the location on the sphere. Wrapping the ker-

nel around the sphere avoids cuts and discontinuities.

CNNs with Reparameterized Kernels For the efficiency

of CNNs, several works are proposed to use parameterized

convolution kernels. Boscani et al. [2] introduce oriented

anisotropic diffusion kernels to estimate dense shape corre-

spondence. Cohen and Welling [8] employ a linear combi-

nation of filters to achieve equivariant convolution filters. In

[28], 3D steerable CNNs using linear combination of filter

banks are developed. Recently, Jiang et al. [14] utilized pa-

rameterized differential operators as spherical convolution

for unstructured grid data. Here, a convolution operation

is a linear combination of four differential operators with

learnable weights. However, these methods are limited to

the chosen kernel types and are not maximally flexible.

CNNs on Icosahedron Related to our approach in dis-

crete representation, several works utilize an icosahedron

for spherical image representation. As the most uniform

and accurate discretization of the sphere, the icosahedron

is the regular convex polyhedron with the most faces. A

spherical mesh can be generated by progressively subdi-

viding each face into four equal triangles and reprojecting

each node to unit length. Lee et al. [16] is one of the first

to suggest the use of icosahedrons for CNNs on omnidi-

rectional images. Here, convolution filters are defined in

terms of triangle faces. In [14], UGSCNN is proposed to

efficiently train a convolutional network with spherical data

mapped to an icosahedron mesh. Liu et al. [17] uses the

icosahedron based spherical grid as the discrete representa-

tion of the spherical images and proposes an azimuth-zenith

(a) Input sphere (b) Icosahedron (c) Unfolded representation

(d) Image-grid-aligned representation of spherical data

Figure 2. Spherical input data (a) is represented by an icosahedron-

based geodesic grid (b). Similar to cubes [19, 5], we unfold our

mesh (c) and align its 5 components to the standard image grid (d)

for efficient computation of convolution, pooling and up-sampling.

anisotropic CNN for 3D shape analysis. Cohen et al. [7]

employ an icosahedron mesh to present a gauge equivari-

ant CNN. Equivariance is ensured by enforcing filter weight

sharing across multiple orientations.

3. Proposed Spherical Representation

We represent the spherical input through vertices on an

icosahedron mesh (Fig. 2). The mapping is based on the

vertices’ azimuth and zenith angles – e.g. the input color

is obtained from an equirectangular input through interpo-

lation. Similar to cube maps [19, 5], the icosahedron sim-

plifies the sphere into a set of planar regions. While the

cube represents the sphere only with 6 planar regions, the

icosahedral representation is the convex geodesic grid with

the largest number of regular faces. In total, our grid con-

sists of 20 faces and 12 vertices at the lowest resolution, and

fr = 20∗4r faces and nr = 2+10∗4r vertices at resolution

level r ≥ 0. Note, a resolution increase is achieved by sub-

division of the triangular faces at r = 0 into 4r equal regu-

lar triangular parts. In the following, we present an efficient

orientation-aware implementation of convolutions in §3.1,

and our down- and up-sampling techniques in §3.2. Finally,

weight transfer from trained kernels of standard perspective

CNNs is discussed in §3.3.

3.1. Orientation­aware Convolutions

If a camera is attached to a vehicle, the orientation and

location of objects such as sky, buildings, sidewalks or roads

are likely similar across the dataset. Therefore, we believe

an orientation-aware system can be beneficial, while tasks

with arbitrary rotations may benefit from rotation invariance

[6] or weight sharing across rotated filters [29, 7].
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Figure 3. Convolution with our hexagonal filters (a) and up-

sampling (b) reduce to standard CNN operations after padding the

sphere component with features from neighboring sphere parts.

Pooling is computed with a standard 2x2 kernel with stride 2.
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(b) Interpolated filters

Figure 4. Given arc-based interpolation of the neighborhood for

north-alignment (a), our convolution is computed with 2 weighted

filters (b). The weights are precomputed for all vertices.

Efficient Convolutions through Padding We first define

the north and south pole as any two vertices that have max-

imum distance on the icosahedron mesh. Similar to [17, 7],

the mesh is then converted to a planar representation by un-

folding it along the equator (Fig. 2). Finally, we split the

surface into five components, and align the vertices with a

regular image grid through a simple affine transformation.

Notice, vertices have a neighborhood of either 5 or 6

points. Hence we employ hexagonal filters in our work, in-

stead of regular 3 × 3 kernels. Let us ignore the vertices

at the poles (e.g. through reasoning of dropout), and ad-

just the neighborhood cardinality to 6 for all vertices with 5

neighbors through simple repetition. Now, our planar repre-

sentation of the icosahedron simplifies the convolution with

hexagonal filters to standard 2D convolution with a masked

kernel, after padding as shown in Fig. 3.

North-alignment through Interpolation In its natural

implementation, our filters are aligned to the icosahedron

mesh. Consequently, the filter orientation is inconsis-

tent, since the surfaces near the north and south poles are

stitched. We reduce the effect of such distortions by align-

ing filters vertically through interpolation (Fig. 4).

The naı̈ve convolution with weights {wj}
7
j=1 at ver-

tex vi and its neighbors {vni
j
}6j=1, is computed as

∑6

j=1
wjvni

j
+w7vi, where nij holds the neighborhood in-

dices of vi. Instead, we north-align the neighborhood with

interpolations using arc-based weights {θij}
6
j=1 as follows:

6
∑

j=2

wj(θ
i
jvni

j
+ (1− θij)vni

j−1

)

+ w1(θ
i
1vni

1

+ (1− θi1)vni
6

) + w7vi. (1)

Since the hexagonal neighborhood is approximately sym-

metric, we further simplify (1) by introducing a unified

weight αi, such that {αi ≈ θij}
6
j=1 holds. Hence we write

αi





6
∑

j=1

wjvni
j
+ w7vi





+ (1− αi)





6
∑

j=2

wjvni
j−1

+ w1vni
6

+ w7vi



 . (2)

Thus, north-aligned filters can be achieved through 2 stan-

dard convolutions, which are then weighted based on the

vertices’ interpolations αi.

The arc-interpolation αi is based on the angle distance

between the direction towards the first and sixth neighbors

(i.e. vni
1

and vni
6

respectively) and the north-south axis

when projected onto the surface of the sphere. In particu-

lar, we first find the projective plane of the north-south axis

a =
[

0 1 0
]T

towards vector vi as the plane with nor-

mal ni = vi×a

|vi×a| . Since the spherical surface is approxi-

mated by the plane of vectors vi − vni
1

and vi − vni
6

, we

only require the angles between these vectors and the plane

given by ni, to find interpolation αi =
φi

φi+ψi
with

ψi = arccos
(vi − vni

1

)T(I− nin
T

i )(vi − vni
1

)
∣

∣

∣
(vi − vni

1

)
∣

∣

∣

∣

∣

∣
(I− nin

T

i )(vi − vni
1

)
∣

∣

∣

φi = arccos
(vi − vni

6

)T(I− nin
T

i )(vi − vni
6

)
∣

∣

∣
(vi − vni

6

)
∣

∣

∣

∣

∣

∣
(I− nin

T

i )(vi − vni
6

)
∣

∣

∣

. (3)

3.2. Pooling and Up­sampling

Down-sampling through pooling and bi-linear up-

sampling are important building blocks of CNNs, and are

frequently employed in the encoder-decoder framework of

semantic segmentation (e.g. [22]). Pooling is aimed at sum-

marising the neighborhood of features to introduce robust-

ness towards image translations and omissions. Typically, a

very small and non-overlapping neighborhood of 2× 2 pix-

els is considered in standard images, to balance detail and

redundancy. Bi-linear up-sampling is used in the decoder to

increase sub-sampled feature-maps to larger resolutions.

We note, in our icosahedron mesh the number of ver-

tices increases by a factor of 4 for each resolution (exclud-

ing poles). Therefore during down-sampling from resolu-

tion r to r − 1, we summarize a neighborhood of 4 at r
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Figure 5. The weights of conventional 3 × 3 kernels trained on

perspective data can be transferred to our model via simple inter-

polation as our filters operate on the sphere’s tangent planes.

with 1 vertex at r − 1. A natural choice is to pool over

{vi,vni
1

,vni
2

,vni
3

} for vertices vi that are represented in

both resolutions. Thus, we apply a simple standard 2 × 2
strided pooling with kernel 2× 2 on each icosahedron part.

Analogously, bi-linear up-sampling or transposed convo-

lutions are applied by padding the icosahedron parts at left

and top followed by up-sampling by a factor of 2 in height

and width (Fig. 3). Due to padding, this results in a 1-pixel

border at each size which we simply remove to provide the

expected up-sampling result. Finally we emphasize, meth-

ods like pyramid pooling [?] can be computed by combining

our pooling and up-sampling techniques.

3.3. Weight Transfer from Perspective Networks

Similar to SphereNet [9], our network applies an ori-

ented filter at the local tangent plane of each vertex on the

sphere. Consequently, the transfer of pretrained perspective

network weights is naturally possible in our setup. Since

we apply hexagonal filters with 7 weights, we interpolate

from the standard 3× 3 kernels as shown in Fig. 5. Specifi-

cally, we align north and south of the hexagon with the sec-

ond and eighth weight of the standard convolution kernel

respectively. Bi-linear interpolation provides the remaining

values for our filter. After transfer, weight refinement is nec-

essary, but can be computed on a much smaller dataset (as

done in [9]), or reduced learning iterations. Alternatively,

but left for future work, it should be possible to learn hexag-

onal filter weights directly on perspective datasets [27, 12].

4. Evaluation

The main focus of this paper is omnidirectional semantic

segmentation. Both synthetic urban scene and real indoor

environments are evaluated. For completeness, we also in-

clude our model in comparison with previous state-of-the-

art methods on spherical MNIST classification in §4.1 and a

climate pattern prediction task in §4.2. In §4.3 and §4.4, per-

formance on omnidirectional semantic segmentation tasks

are summarized and analysed.

Method N/N N/R R/R

Spherical CNN [6] 96. 94. 95.

Gauge Net [7] 99.43 69.99 99.31

UGSCNN [14] 99.23 35.60 94.92

HexRUNet-C 99.45 29.84 97.05

Table 1. Spherical MNIST with non-rotated (N) and rotated (R)

training and test data. Orientation-aware HexRUNet-C is compet-

itive only when training and test data match (i.e. N/N and R/R).

Method BG TC AR Mean mAP

Gauge Net[7] 97.4 97.9 97.8 97.7 0.759

UGSCNN[14] 97. 94. 93. 94.7 -

HexRUNet-8 95.71 95.57 95.19 95.49 0.518

HexRUNet-32 97.31 96.31 97.45 97.02 0.555

Table 2. Climate pattern segmentation results. We include mean

class accuracy and mean average precision (mAP) where available.

(The background class is denoted BG.)

4.1. Spherical MNIST

We follow [6] in the preparation of the spherical MNIST

dataset, as we prepare non-rotated training and testing

(N/N), non-rotated training with rotated testing (N/R) and

rotated training and testing (R/R) tasks. Both non-rotated

and rotated versions are generated using public source code

provided by UGSCNN [14].1 Training set and test set in-

clude 60,000 and 10,000 digits, respectively. Input signals

for this experiment are on a level-4 mesh (i.e. r = 4). The

residual U-Net architecture of [14], including the necessary

modifications to adapt to the classification task, is used in

our experiments. We call this network “HexRUNet-C”.

As shown in Table 1, our method outperforms previous

methods for N/N, achieving 99.45% accuracy. In R/R, our

method performs better than competing Spherical CNN and

UGSCNN. Gauge Net benefits from weight sharing across

differently oriented filters, and achieves best accuracy for

this task amongst all approaches. Similar to [14], our

method is orientation-aware by design and thus not rotation-

invariant. Therefore, it is expected to not generalize well to

randomly rotated test data in the N/R setting, while Spheri-

cal CNN performs best in this case.

4.2. Climate Pattern Segmentation

We further evaluate our method on the task of cli-

mate pattern segmentation. The task is first proposed by

Mudigonda et al. [21], and the goal is to predict extreme

weather events, i.e. Tropical Cyclones (TC) and Atomo-

spheric Rivers (AT), from simulated global climate data.

The training set consists of 43,916 patterns, and 6,274 sam-

ples are used for validation. Evaluation results on the val-

idation set are shown in Table 2 and Fig. 6. Here, we

use the same residual U-Net architecture as UGSCNN [14].

1https://github.com/maxjiang93/ugscnn
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Method mIoU beam board bookcase ceiling chair clutter column door floor sofa table wall window

UNet 35.9 8.5 27.2 30.7 78.6 35.3 28.8 4.9 33.8 89.1 8.2 38.5 58.8 23.9

Gauge Net 39.4 – – – – – – – – – – – – –

UGSCNN 38.3 8.7 32.7 33.4 82.2 42.0 25.6 10.1 41.6 87.0 7.6 41.7 61.7 23.5

HexRUNet 43.3 10.9 39.7 37.2 84.8 50.5 29.2 11.5 45.3 92.9 19.1 49.1 63.8 29.4

Table 3. Mean intersection over union (IoU) comparison on 2D3DS dataset. Per-class IoU is shown when available.

Method mAcc beam board bookcase ceiling chair clutter column door floor sofa table wall window

UNet 50.8 17.8 40.4 59.1 91.8 50.9 46.0 8.7 44.0 94.8 26.2 68.6 77.2 34.8

Gauge Net 55.9 – – – – – – – – – – – – –

UGSCNN 54.7 19.6 48.6 49.6 93.6 63.8 43.1 28.0 63.2 96.4 21.0 70.0 74.6 39.0

HexRUNet 58.6 23.2 56.5 62.1 94.6 66.7 41.5 18.3 64.5 96.2 41.1 79.7 77.2 41.1

Table 4. Mean class accuracy (mAcc) comparison on 2D3DS dataset. Per-class accuracy is shown when available.

TC

AR

BG

Figure 6. Semantic segmentation results of HexRUNet-32 on cli-

mate pattern (right) in comparison to ground truth (left).

We include two variants using different numbers of param-

eters: HexRUNet-8 and HexRUNet-32 use 8 and 32 as out-

put channels for the first convolution layer, respectively. As

is shown, both versions outperform UGSCNN in terms of

mean accuracy. With 32 features, HexRUNet-32’s mean ac-

curacy is similar to best performing Gauge Net. However,

our method does not match Gauge Net in terms of mean

average precision (mAP). We attribute this to the fact that

there is no direct orientation information to exploit in this

climate data. In contrast, Gauge Net shows its advantage of

weight sharing across orientations.

4.3. Stanford 2D3DS

For our first omnidirectional semantic segmentation ex-

periment, we evaluate our method on the 2D3DS dataset

[1], which consists of 1413 equirectangular RGB-D im-

ages. The groundtruth attributes each pixel to one of 13

classes. Following [14], we convert the depth data to be

in meter unit and clip to between 0 and 4 meters. RGB

data is converted to be in the range of [0, 1] by dividing

255. Finally, all data is mean subtracted and standard devi-

ation normalized. The preprocessed signals are sampled on

a level-5 mesh (r = 5) using bi-linear interpolation for im-

ages and nearest-neighbors for labels. Class-wise weighted

cross-entropy loss is used to balance the class examples.

Using our proposed network operators, we employ

the residual U-Net architecture of [14], which we call

HexRUNet (see Sup. Mat. for details). We evaluate our

method following the 3-fold splits, and show both qualita-

tive and quantitative results in Fig. 7 and Table 3 and 4.

Our method outperforms orientation-aware UGSCNN [14],

rotation-equivariant Gauge Net [7] and the U-Net base-

R
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T
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G
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C
N

N
H

ex
R

U
N

et

beam board bookcase ceiling chair

clutter column door floor sofa

table wall window unknown

Figure 7. Qualitative segmentation results on 2D3DS dataset.

line [22] on equirectangular images that have been sub-

sampled to mach level-5 mesh resolution. As for per-class

evaluations, our method achieves best performance in most

classes. This demonstrates that semantic segmentation in-

deed benefits from orientation-aware network with more ex-

pressive filters than [14].

4.4. Omni­SYNTHIA

To further validate our method on omnidirectional se-

mantic segmentation, we create an omnidirectional version

from a subset of the SYNTHIA datset [23]. The SYN-

THIA dataset consists of multi-viewpoint photo-realistic

frames rendered from a virtual city and comes with pixel-

level semantic annotations for 13 classes. We refer the

readers to [23] for details. We select the “Summer” se-

quences of all five places (2×New York-like, 2×Highway

and 1×European-like) to create our own omnidirectional

dataset. We split the dataset into a training set of 1818 im-
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Method mIoU building car cyclist fence marking misc pedestrian pole road sidewalk sign sky vegetation

UNet 38.8 80.8 59.4 0.0 0.3 54.3 12.1 4.8 16.4 74.3 58.2 0.2 90.4 49.6

UGSCNN 36.9 63.3 33.3 0.0 0.1 73.7 1.2 2.3 10.0 79.9 69.3 1.0 89.1 56.3

HexUNet-T 36.7 71.9 53.1 0.0 1.1 69.0 4.9 0.4 11.1 72.2 52.9 0.0 92.3 48.4

HexUNet-nI 42.4 77.1 64.8 0.0 2.4 74.3 10.4 2.0 23.6 84.7 68.6 1.0 93.1 48.7

HexUNet 43.6 81.0 66.9 0.0 2.9 71.0 13.7 5.6 30.4 83.1 67.0 1.5 93.3 50.2

Table 5. Mean IoU comparison at r = 6 on Omni-SYNTHIA dataset.

Method mAcc building car cyclist fence marking misc pedestrian pole road sidewalk sign sky vegetation

UNet 45.1 91.9 63.6 0.0 4.5 57.1 17.9 5.0 19.7 88.8 73.9 0.2 94.8 69.3

UGSCNN 50.7 93.2 81.4 0.0 5.3 83.2 33.7 2.5 14.9 90.8 82.7 1.3 96.1 74.0

HexUNet-T 44.8 80.0 60.9 0.0 1.6 74.7 26.9 0.4 13.0 80.0 75.2 0.0 96.2 73.4

HexUNet-nI 50.6 83.9 69.6 0.0 2.5 82.9 39.1 2.0 30.7 91.8 83.6 1.1 94.8 76.5

HexUNet 52.2 88.7 72.7 0.0 3.3 85.9 36.6 6.2 42.5 89.6 83.7 1.6 95.6 71.6

Table 6. Per-class accuracy comparison at r = 6 on Omni-SYNTHIA dataset.

ages (from New York-like and Highway sequences) and use

451 images of the European-like sequence for validation.

Only RGB channels are used in our experiments. The icosa-

hedron mesh is populated with data from equirectangular

images using interpolation for RGB data and nearest neigh-

bor for labels. Again, we report mIoU and mAcc. Here we

use the standard U-Net architecture [22] to facilitate weight

transfer from perspective U-Net in one of our experiments.

We call this network “HexUNet”. For an ablation study, we

also evaluate our method without north-alignment described

in §3.1, denoted as “HexUNet-nI”.

Comparison with State-of-the-art We compare our

method to UGSCNN [14] using data sampled at mesh level-

6 (r = 6). We also include planar U-Net [22] using original

perspective images, which have been sub-sampled to match

the icosahedron resolution (see Sup. Mat. for details). Ta-

ble 5 and 6 report mIoU and mAcc respectively, while Fig. 8

shows qualitative results. HexUNet outperforms previous

state-of-the-art with significant margin across most classes.

The performance on small objects, e.g. “pedestrian” and

“sign”, is poor, while all methods fail for “cyclist”. We at-

tribute this to an unbalanced dataset. Note here, class-wise

weighted cross-entropy loss is not used. Finally we empha-

size, HexUNet performs slightly better than HexUNet-nI,

thus verifying the importance of orientation-aware filters in

semantic segmentation.

Evaluation at Different Resolutions Most previous

methods limit their mesh resolution to level r = 5 which

consists of merely 2,562 vertices to represent omnidirec-

tional input. In contrast, an icosahedron mesh at level r = 8
is required to match the pixel number of 640×1024 images,

with 655, 362 ≈ 655, 360. Since we believe high resolu-

tion input/output is beneficial for the semantic segmenta-

tion task, we evaluate our method at different resolutions

(r = {6, 7, 8}), shown in Table 7. Our method achieves

best performance at r = 7, while r = 7 and r = 8 perform
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Figure 8. Segmentation results on Omni-SYNTHIA dataset.

Method
r = 6 r = 7 r = 8

mIoU mAcc mIoU mAcc mIoU mAcc

UNet 38.8 45.1 44.6 52.6 43.8 52.4

UGSCNN 36.9 50.7 37.6 48.9 – –

HexUNet-T 36.7 44.8 38.0 47.2 45.3 52.8

HexUNet-nI 42.4 50.6 45.1 53.4 45.4 53.2

HexUNet 43.6 52.2 48.3 57.1 47.1 55.1

Table 7. Evaluation at different resolution on Omni-SYNTHIA.

(Current implementation of [14] could not fit data with resolution

at r = 8. Note ground-truth at lower resolution is sub-sampled,

thus evaluations of different resolutions are only indicative.)

similar. Since we use a standard U-Net structure consist-

ing of only 4 encoder (and decoder) layers, perception of

context is reduced at r = 8. This is further illustrated by

the bottom-rightmost result in Fig. 9, where a car’s wheel
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Figure 9. Unfolded visualization of semantic segmentation results at different resolutions on Omni-SYNTHIA dataset.

is misclassified as road-markings. Resolution r = 6 and

r = 7 are able to adequately label this. Finally, network

inference times are shown in Table 8.

r = 6 r = 7 r = 8
UGSCNN [14] 458s 2755s –

HexUNet 63s 65s 79s

UNet 34s 36s 40s

Table 8. Average evaluation time per validation (451 images) on

Nvidia 1080Ti GPU with 11Gb memory. Planar UNet at equiva-

lent resolution for front, back and side images (i.e. 1804 images) is

also shown. HexUNet and UNet are implemented in Tensorflow,

while the PyTorch implementation of [14] is used for comparison.

Evaluation of Perspective Weights Transfer As shown

in §3.3, our method utilizes an orientation-aware hexagon

convolution kernel which allows direct weight transfer from

perspective networks. Initialized with the learned filters

(3× 3 kernels) from perspective U-Net, we perform weight

refinement of only 10 epochs (in contrast to up-to 500

epochs otherwise), and report results as “HexUNet-T” in

Table 5, 6 and 7. The proposed filter transfer obtains com-

petitive results, especially at resolution level r = 8.

5. Conclusion

We introduced a novel method to perform CNN opera-

tions on spherical images, represented on an icosahedron

mesh. Our method exploits orientation information, as we

introduce an efficient interpolation of kernel convolutions,

based on north-alignment. The proposed framework is sim-

ple to implement, and memory efficient execution is demon-

strated for input meshes of level r = 8 (equivalent to a

640 × 1024 equirectangular image). In our evaluation on

2D3DS data [1] and our Omni-SYNTHIA version of SYN-

THIA [23], our method becomes the new state of the art for

the omnidirectional semantic segmentation task. Further-

more, weight transfer from pretrained standard perspective

CNNs was illustrated in our work.

One limitation of the proposed approach is the poor seg-

mentation accuracy for small objects (e.g. “pedestrian” and

“cyclist”) which we attribute to unbalanced dataset. Future

work will incorporate better architectures such as [30, 24]

for improved segmentation of small objects. Finally, we

plan to exploit our framework for further orientation-aware

learning tasks, such as localization and mapping.
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