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Figure 1: Autoregressive prediction of human 3D motion from video. We present Predicting Human Dynamics (PHD), a neural auto-

regressive framework that takes past video frames as input to predict the motion of a 3D human body model. As shown, PHD takes in a

video sequence of a person and predicts the future 3D human motion. We show the predictions from two different viewpoints.

Abstract
Given a video of a person in action, we can easily guess

the 3D future motion of the person. In this work, we present

perhaps the first approach for predicting a future 3D mesh

model sequence of a person from past video input. We do

this for periodic motions such as walking and also actions

like bowling and squatting seen in sports or workout videos.

While there has been a surge of future prediction problems

in computer vision, most approaches predict 3D future from

3D past or 2D future from 2D past inputs. In this work, we

focus on the problem of predicting 3D future motion from

past image sequences, which has a plethora of practical ap-

plications in autonomous systems that must operate safely

around people from visual inputs. Inspired by the success of

autoregressive models in language modeling tasks, we learn

an intermediate latent space on which we predict the future.

This effectively facilitates autoregressive predictions when

the input differs from the output domain. Our approach can

be trained on video sequences obtained in-the-wild without

3D ground truth labels. The project website with videos can

be found at https://jasonyzhang.com/phd.

1. Introduction

Consider the video sequences in Figure 1. Given the past

frames of action, we can easily imagine the future motion

of the athletes, whether hitting a tennis serve or pitching a

baseball. In this paper, we consider this problem of pre-

dicting the motion of the person as a 3D mesh given some

past image sequences. We propose a learning-based frame-

work that given past frames can successively predict the fu-

ture 3D mesh of the person in an autoregressive manner.

Our model is trained on videos obtained in-the-wild with-

out ground truth 3D annotations.

Learning generative models of sequences has a long tra-

dition, particularly in language [5, 20] and speech gener-

ation [38]. Our approach is the first counterpart to these

approaches for 3D mesh motion generation from video.

While there has been much interest in future prediction

from video, most approaches focus on predicting 2D com-

ponents from video such as 2D keypoints [54, 59], flow

[51], or pixels [13, 16]. On the other hand, the several works

that predict 3D human motion all take past 3D skeleton se-

quences as input obtained from motion capture data. To

our knowledge, no previous approach explores the problem

of 3D human motion prediction from video. 3D is a natural

space of motion prediction with many practical applications

such as human-robot interaction, where autonomous sys-

tems such as self-driving cars or drones must operate safely

around people from visual inputs in-the-wild. Our approach

is trainable on videos without 3D annotations, providing a

more abundant and natural source of information than 3D
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Figure 2: Overview of Predicting Human Dynamics (PHD). From a video sequence of a person, we predict the future 3D human mesh.

We first extract per-image features φt. We then train a causal temporal encoder fmovie that learns a “movie strip,” a latent representation

of 3D human dynamics Φt that captures the historical context leading up to time t. We also train a 3D regressor f3D that can read out the

3D mesh from the movie strip. In this latent space, we train an autoregressive fAR which takes the past movie strips to predict the future

movie strips, thereby capturing the human dynamics. We include a 3D loss when 3D annotations are available. Otherwise, we train in a

weakly-supervised manner on in-the-wild videos that lack 3D annotations using 2D re-projection error and an adversarial prior. At test

time, conditioned on half a second of video, PHD produces plausible human motion seconds into the future.

motion sequences obtained from a motion capture studio.

We introduce an autoregressive architecture for this task

following recent successes in convolutional autoregressive

sequence modeling approaches [4, 38]. A challenge intro-

duced by the problem of 3D motion prediction from video

is that the space of input (image frames) and that of out-

put (3D meshes) are different. Following the advances in

the language-modeling literature, we remedy this issue by

learning a shared latent representation in which we can ap-

ply the future prediction model in an autoregressive manner.

We build on our previous work that learns a latent rep-

resentation for 3D human dynamics Φi from the temporal

context of image frames [27]. We modify the approach so

that the convolutional model has a causal structure, where

only past temporal context is utilized. Once we learn a

causal latent representation for 3D human motion from

video, we train an autoregressive prediction model in this

latent space. While our previous work has demonstrated

one-step future prediction, it can only take a single image

as an input and requires a separate future hallucinator for

every time step. In contrast, in this paper, we learn an au-

toregressive model which can recurrently predict a longer

range future (arbitrarily many frames versus 1 frame) that

is more stable by taking advantage of a sequence of past

image frames. To our knowledge, our work is the first study

on predicting 3D human motion from image sequences. We

demonstrate our approach on the Human3.6M dataset [23]

and the in-the-wild Penn Action dataset [61].

2. Related Work

Generative Modeling of Sequences. There has long been

an interest in generative models of sequences in language

and speech. Modern deep learning-based approaches be-

gan with recurrent neural networks based models [20, 43].

Feed-forward models with convolutional layers are also

used for sequence modeling tasks, such as image genera-

tion [46] and audio waveform generation [38]. Recent stud-

ies suggest that these feed-forward models can outperform

recurrent networks [4] or do equivalently [37], while be-

ing parallelizable and easier to train with stable gradients.

In this work, we also use feed-forward convolutional layers

for our autoregressive future prediction model.

Visual Prediction. There are a number of methods that

predict the future from video or images. Ryoo [42] pre-

dicts future human activity classes from a video input. Ki-

tani et al. [28] predict possible trajectories of a person in

the image from surveillance footage. [29] predict paths of

pedestrians from a stereo camera on a car. [30] anticipate

action trajectories in a human-robot interaction from RGB-
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D videos. More recent deep learning-based approaches

explore predicting denser 2D outputs such as raw pixels

[46, 16, 14, 13], 2D flow fields [51], or more structured out-

puts like 2D human pose [54, 59].

There are also approaches that from a single image pre-

dict future in the form of object dynamics [17], object tra-

jectories [52], flow [41, 53, 31, 19], a difference image [58],

action categories [50], or image representations [49]. All

approaches predict future in 2D domains or categories from

input video. In this work, we propose a framework that pre-

dicts 3D motions from video inputs.

3D Pose from Video. There has been much progress in re-

covering 3D human pose from RGB video. Common pose

representations include 3D skeletons [34, 12, 36, 35, 39]

and meshes [3, 15, 27, 44]. We build on our previous

weakly-supervised, mesh-based method that can take ad-

vantage of large-scale Internet videos without ground truth

annotations [27]. While mesh-based methods do not nec-

essarily have the lowest error on Human3.6M, recent work

suggests that performance on Human3.6M does not corre-

late very well with performance on challenging in-the-wild

video datasets such as 3DPW [48, 27].

3D to 3D Human Motion Prediction. Modeling the dy-

namics of humans has long-standing interest [8]. Earlier

works model the synthesis of human motion using tech-

niques such as Hidden Markov Models [7], linear dynami-

cal systems [40], bilinear spatiotemporal basis models [2],

and Gaussian process latent variable models [45, 56] and

other variants [22, 55]. More recently, there are deep

learning-based approaches that use recurrent neural net-

works (RNNs) to predict 3D future human motion from

past 3D human skeletons [18, 24, 9, 32, 47]. All of these

approaches operate in the domain where the inputs are 3D

past motion capture sequences. In contrast, our work pre-

dicts future 3D human motion from past 2D video inputs.

3D Future Prediction from Single Image. More related

to our setting is that of Chao et al. [11], who from a sin-

gle image, predict 2D future pose sequences from which

the 3D pose can be estimated. While this approach does

produce 3D skeletal human motion sequences from a sin-

gle image, the prediction happens in the 2D to 2D domain.

More recently, our previous [27] presents an approach that

can predict a single future 3D human mesh from a single

image by predicting the latent representation which can be

used to get the future 3D human mesh. While this approach

requires learning a separate future predictor for every time

step, we propose a single autoregressive model that can be

reused to successively predict the future 3D meshes.

3. Approach

Our goal is to predict the future 3D mesh sequence

of a human given past image sequences. Specifically,

our input is a set of past image frames of a video V =

{It, It−1, ...It−N}, and our output is a future sequence of

3D human meshes Θ = {Θt+1,Θt+2, . . . ,Θt+T }. We rep-

resent the future 3D mesh as Θ = [θ, β] consisting of pose

parameters θ and shape parameters β.

We propose Predicting Human Dynamics (PHD), a neu-

ral autoregressive network for predicting human 3D mesh

sequences from video. Our network is divided into two

components: one that learns a latent representation of 3D

human motion from video, and another that learns an au-

toregressive model of the latent representation from which

the 3D human prediction may be recovered. Figure 2 shows

an overview of the model. For the first part, we build upon

our recent work [27] which learns a latent representation

of 3D human motion from video. However, this approach

is not causal since the receptive field is conditioned on past

and future frames. Future prediction requires a causal struc-

ture to ensure that predictions do not depend on information

from the future.

In this section, we first present an overview of the out-

put 3D mesh representation. Then, we discuss the encoder

model that learns a causal latent representation of human

motion and an autoregressive model for future prediction in

this latent space. Lastly, we explain our training procedures.

3.1. 3D Mesh Representation

We represent the 3D mesh with 82 parameters Θ = [θ, β]
consisting of pose and shape. We employ the SMPL 3D

mesh body model [33], which is a differentiable function

M(β, θ) ∈ R
6890×3 that outputs a triangular mesh with

6890 vertices given pose θ and shape β. The pose param-

eters θ ∈ R
72 contain the global rotation of the body and

relative rotations of 23 joints in axis-angle representation.

The shape parameters β ∈ R
10 are the linear coefficients of

a PCA shape space. The SMPL function shapes a template

mesh conditioned on θ and β, applies forward kinematics to

articulate the mesh according to θ, and deforms the surface

via linear blend skinning. More details can be found in [33].

We use a weak-perspective camera model Π = [s, tx, ty]
that represents scale and translation. From the mesh, we

can extract the 3D coordinates of j joints X ∈ R
j×3 =

WM(β, θ) using a pre-trained linear regressor W . From

the 3D joints and camera parameters, we can compute

the 2D projection which we denote as x ∈ R
j×2 =

Π(X(β, θ)).
In this work, we use the SMPL mesh as a design de-

cision, but many of the core concepts proposed could be

extended to a skeletal model.

3.2. Causal Model of Human Motion

In this work, we train a neural autoregressive prediction

model on the latent representation of 3D human motion en-

coded from the video. This allows seamless transition be-

tween conditioning on the past images frames and condi-
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H36M Penn Action

MPJPE ↓ Reconst. ↓ PCK ↑

Causal model 83.9 56.7 80.6

Kanazawa et al. [27] 83.7 56.9 79.6

Table 1: Comparison of our causal temporal encoder with a

non-causal model. Although conditioned only on past context,

our causal model performs comparably with a non-causal model

that can see the past and the future. Both models have a receptive

field of 13 frames, but our model uses edge padding for the convo-

lutions while [27] use zero padding. MPJPE and Reconstruction

error are measured in mm. PCK [60] is a percentage.

tioning on previously generated future predictions.

In order to learn the latent representation, we follow-up

on our previous work [27], which learns a latent encoding

of 3D human motion from the temporal context of image

sequences. That work uses a series of 1D convolutional

layers over the time dimension of per-frame image features

to learn an encoding of an image context, whose context

length is equal to the size of the receptive field of the con-

volutions. However, because the goal was to simply ob-

tain a smooth, temporally consistent representation of hu-

mans, that convolution kernel was centered, incorporating

both past and future context. Since the goal in this work is

to perform future prediction, we require our encoders to be

causal, where the encoding of past temporal context at time

t is convolved only with elements from time t and earlier in

the previous layers [4]. Here we discuss our causal encoder

for human motion from video.

Our input is a video sequence of a person V = {It}
t−N
i=t

where each frame is cropped and centered around the sub-

ject. Each video sequence is paired with 3D pose and

shape parameters or 2D keypoint annotations. We use a

pre-trained per-frame feature extractor to encode each im-

age frame It into a feature vector φt. To encode 3D hu-

man dynamics, we train a causal temporal encoder fmovie :
{φt−r, . . . , φt−1, φt} 7→ Φt. Intuitively, Φt represents a

“movie strip” that captures the temporal context of 3D hu-

man motion leading up to time t. This differs from the

temporal encoder in [27] since the encoder there captures

the context centered at t. Now that we have a represen-

tation capturing the motion up to time t, we train a 3D

regressor f3D : Φt 7→ Θt that predicts the 3D human

mesh at t as well as the camera parameters Πt. The tem-

poral encoder and the 3D regressors are trained with 3D

losses on videos that have ground truth 3D annotations:

L3D = ‖Xt − X̂t‖
2
2 + ‖θt − θ̂t‖

2
2 + ‖β − β̂‖22.

However, datasets with 3D annotations are generally

limited. 3D supervision is costly to obtain, requiring expen-

sive instrumentation that often confines the videos captured

to controlled environments that do not accurately reflect the

complexity of human appearances in the real world. To

make use of in-the-wild datasets that only have 2D ground

truth or pseudo-ground truth pose annotations, we train our

models with 2D re-projection loss [57] on visible 2D key-

points: L2D = ‖vt ⊙ (xt − x̂t)‖
2
2, where vt ∈ R

j×2 is the

visibility indicator over ground truth keypoints. We also

use the factorized adversarial prior loss Ladv prior proposed

in [26, 27] to constrain the predicted poses to lie in the man-

ifold of possible human poses. We regularize our shape us-

ing the shape prior Lbeta loss [6]. Thus, for each frame t, the

total loss is Lt = L3D+L2D+Ladv prior+Lbeta loss. As in [27],

we include a loss to encourage the model to predict a con-

sistent shape: Lconst =
∑T−1

t=1
‖βt − βt+1‖

2
2 and predict the

mesh of nearby frames, encouraging the model to pay more

attention to the temporal information in the movie strip at

hand. With a receptive field of 13, [27] uses neighboring

frames ∆t ∈ {−5,+5} whereas we use ∆t ∈ {−10,−5}
since our model is causal. Altogether, the objective function

per sequence for the causal temporal encoder is

Lmovie =
∑

t

Lt + Lconst +
∑

∆t

Lt+∆t (1)

Comparison of our causal temporal encoder with [27] is

in Table 1. Our causal model performs comparably despite

not having access to future frames.

3.3. Autoregressive prediction

Now that we have a latent representation Φt of the mo-

tion leading up to a moment in time t, we wish to learn a

prediction model that generates the future 3D human mesh

model given the latent movie-strip representation of the in-

put video Φ = {Φi,Φi−1, ...Φi−r}. We treat this problem

as a sequence modeling task, where we model the joint dis-

tribution of the future latent representation as:

p(Φ) = p(Φ1,Φ2, . . . ,ΦT ). (2)

One way of modeling the future distribution of 3D hu-

man motion Φ is as a product of conditional probabilities of

its past:

p(Φ) =

T
∏

t=1

p(Φt|Φ1, . . . ,Φt−1). (3)

In particular, following the recent success of temporal con-

volutional networks [4, 38], we also formulate this with 1D

causal convolutional layers:

Φ̃t = fAR(Φ1, . . . ,Φt−1) (4)

In practice, we condition on the r+1 past image features,

where r + 1 is the receptive field size of the causal convo-

lution. Since the future is available, this can be trained in

a self-supervised manner via a distillation loss that encour-

ages the predicted movie strips to be close to the real movie

strips:

Lmovie strip = ‖Φt − Φ̃t‖, (5)
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where Φt is the ground truth movie strip produced by the

temporal encoder fmovie. Moreover, since this latent repre-

sentation should accurately capture the future state of the

person, we use f3D to read out the predicted meshes from

the predicted movie strips. Without seeing the actual im-

ages, fAR and f3D are unable to predict any meaningful

camera predictions. To compute the re-projection loss with-

out a predicted camera, we solve for the optimal camera pa-

rameters that best align the orthographically projected joints

with the visible ground truth 2D joints xgt:

Π∗ = argmin
s,tx,ty

∥

∥

(

sxorth +
[

tx
ty

])

− xgt

∥

∥

2

2
, (6)

where xorth is the orthographically projected 3D joints (X

with the depth dimension dropped).

Now, we can apply all the losses from Section 3.2 to fu-

ture prediction. In summary the total loss is:

LAR =
∑

t

Lt + Lconst +
∑

t

Lmovie strip (7)

To better compare with methods that perform 3D predic-

tion from 3D input, we also study a variant of our approach

that makes autoregressive predictions directly in the pose

space Θ:

Θ̃t = fΘ
AR(Θ1, . . . ,Θt−1). (8)

3.4. Training Procedures

We employed a two-step training strategy. We first

trained the temporal encoder fmovie and the 3D regressor

f3D, and then trained the autoregressive predictor fAR. We

froze the weights of the pre-trained ResNet from [26] and

trained the temporal encoder fmovie and the 3D regressor f3D

jointly on the task of estimating 3D human meshes from

video. After training converged, we froze f3D and trained

fmovie and the autoregressive predictor fAR jointly.

To train the autoregressive model, we employ a

curriculum-based approach [1]. When training sequence

generation models, it is common to use teacher forcing,

in which the ground truth is fed into the network as input

at each step. However, at test time, the ground truth in-

puts are unavailable, resulting in drifting since the model

wasn’t trained with its own predictions as input. To help

address this, we train consecutive steps with the model’s

own output at previous time steps as inputs, similar to what

is done in [32]. We slowly increase the number of con-

secutive predicted outputs fed as input to the autoregressive

model, starting at 1 step and eventually hitting 25 steps.

While our approach can be conditioned on a larger past

context by using dilated convolutions [4], our setting is bot-

tlenecked by the length of the training videos. Recovering

long human tracks from video is challenging due to occlu-

sion and movement out of frame, and existing datasets of

humans in the wild that we can train on tend to be short.

Penn Action [61] videos, for instance, have a median length

of 56 frames. Since both the temporal encoder and autore-

gressor have a receptive field of 13, 25 was near the upper-

bound of the number of autoregressive predictions we could

make given our data. See the supplemental materials for

further discussion.

4. Evaluation

In this section, we present quantitative and qualitative

results of 3D mesh motion generation from video.

4.1. Experimental Setup

Network Architecture. We use the pre-trained ResNet-50

provided by [26] as our image feature encoder and use the

average pooled feature of the last layer as our φ ∈ R
2048.

The causal temporal encoder fmovie and the autoregressive

predictor fAR both have the same architecture, consisting of

3 residual blocks. Following [21], each block consists of

GroupNorm, ReLU, 1D Convolution, GroupNorm, ReLU,

1D Convolution. Each 1D Convolution uses a kernel size

of 3 and a filter size of 2048. Unlike [27] which use zero

padding, we use edge padding for the 1D convolutions. In

total, the 3 residual blocks induce a receptive field of 13

frames (about 0.5 seconds at 25 fps). To make the encoder

causal, we shift the output indices so that the prediction for

time t corresponds to the output that depends only on in-

puts up to t from previous layers. The movie-strip repre-

sentation Φ also has 2048 dimensions. The autoregressive

variant model that predicts the future in the 3D mesh space

fΘ
AR has the same architecture except it directly outputs the

82D mesh parameters Θ. For the 3D regressor f3D, we use

the architecture in [26].

Datasets. We train on 4 datasets with different levels of

supervision. The only dataset that has ground truth 3D an-

notations is Human3.6M [23], which contains videos of ac-

tors performing various activities in a motion capture stu-

dio. We use Subjects 1, 6, 7, and 8 as the training set,

Subject 5 as the validation set, and Subjects 9 and 11 as

the test set. Penn Action [61] and NBA [27] are datasets

with 2D ground truth keypoint annotations of in-the-wild

sports videos. Penn Action consists of 15 sports activities

such as golfing or bowling, while NBA consists of videos

of professional basketball players attempting 3-points shots.

InstaVariety [27] is a large-scale dataset of internet videos

scraped from Instagram with pseudo-ground truth 2D key-

point annotations from OpenPose [10]. We evaluate on the

Human3.6M and Penn Action datasets which have 3D and

2D ground truth respectively. We train on all of these videos

together in an action- and dataset-agnostic manner.
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Figure 3: Qualitative results of our approach on sequences from Human3.6M, Penn Action, and NBA. In each sequence, the model

takes as input 13 video frames (0.5 seconds) and predicts the 3D motion in an autoregressive manner in the latent space. The model is

trained to predict for 25 time steps, but we show predictions made over 35 time steps from two different viewpoints. Results are sub-

sampled at every 5 steps for space considerations. Please see the Supplementary Material for more results including the entire video

sequences. We are able to capture periodic motions such as walking as well as complex sport motions including batting, pitching, shooting

basketball hoops, performing a clean, and bowling.

4.2. Quantitative Evaluation

Dynamic Time Warping. Predicting the future motion is

a highly challenging task. Even if we predict the correct

type of motion, the actual start time and velocity of the

motion are still ambiguous. Thus, for evaluation we em-

ploy Dynamic Time Warping (DTW), which is often used

to compute the similarity between sequences that have dif-

ferent speeds. In particular, we compute the similarity be-

tween the ground truth and predicted future sequence after

applying the optimal non-linear warping to both sequences.

The optimal match maximizes the similarity of the time-

warped ground truth joints and the time-warped predicted

joints subject to the constraint that each set of ground truth

joints must map to at least one set of predicted joints and

vice-versa. In addition, the indices of the mapping must in-

crease monotonically. For detailed evaluation without DTW

as well as an example alignment after applying DTW, please

see the Supplementary Materials.

Evaluation Procedures and Metrics. For Human3.6M

where ground truth 3D annotations exist, we report the re-
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Human3.6M Reconst. ↓ Penn Action PCK ↑

Method 1 5 10 20 30 1 5 10 20 30

AR on Φ 57.7 59.5 61.1 62.1 65.1 81.2 80.0 79.0 78.2 77.2

No Lmovie strip 56.9 59.2 61.1 61.9 65.3 80.4 78.7 77.6 76.8 75.6

AR on Θ 57.8 61.7 66.7 75.3 82.6 79.9 74.3 68.5 61.4 56.5

Constant 59.7 65.3 72.8 84.3 90.4 78.3 71.7 64.9 56.2 49.7

NN 90.3 95.1 100.6 108.6 114.2 63.2 61.5 60.6 58.7 57.8

Table 2: Comparison of autoregressive predictions and various baselines (with Dynamic Time

Warping). We evaluate our model with autoregressive prediction in the movie strip latent space

Φ (AR on Φ), an ablation in the latent space without the distillation loss (No Lmovie strip), and pre-

dictions in the pose space Θ (AR on Θ). We also compare with the no-motion baseline (Constant)

and Nearest Neighbors (NN).

H3.6M ↓ Penn ↑

AR on Φ 61.2 77.2

AR on Θ 65.9 67.8

[11] - 68.1

[27] 65.3 67.8

Table 3: Comparison with single

frame future prediction. We com-

pare our method with the future pre-

diction from single image proposed

in Chao et al. [11] and Kanazawa et

al. [27]. All methods are evaluated 5

frames into the future without DTW.

t = 1 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35
Input Video

Latent Space 

Prediction

Pose Space 

Prediction

Ground Truth

Reference

…

Figure 4: Comparison between predictions in latent versus pose space. The blue meshes are predictions made in the latent movie strip

space, while the pink meshes are predictions made directly in the pose space. We observe that while the latent space prediction does not

always predict the correct tempo, it generally predicts the correct sequence of poses.

construction error in mm by computing the mean per joint

position error after applying Procrustes Alignment. For

Penn Action which only has 2D ground truth annotations,

we measure the percentage of correct keypoints (PCK) [60]

at α = 0.05. We begin making autoregressive predictions

starting from every 25th frame for Human3.6M and starting

from every frame for Penn Action after conditioning on 15

input frames. Although we train with future prediction up

to 25 frames, we evaluate all metrics for poses through 30

frames into the future.

Baselines. We propose a no-motion baseline (Constant) and

a Nearest Neighbor baseline (NN), which we evaluate in

Table 2. The no-motion baseline freezes the estimated pose

corresponding to the last observed frame. We use the causal

temporal encoder introduced in Section 3.2 for the 3D pose

and 2D keypoint estimations.

The Nearest Neighbor baseline takes a window of input

conditioning frames from the test set and computes the clos-

est sequence in the training set using Euclidean distance of

normalized 3D joints. The subsequent future frames are

used as the prediction. We estimate the normalized 3D

joints (i.e. mean SMPL shape) for each frame using our

temporal encoder. See the Supplementary Materials for ex-

amples of Nearest Neighbors predictions.

Prediction Evaluations. In Table 2, we compare ablations

of our method with both baselines. We evaluate our pre-

dictions in both the latent space and the pose space as pro-

posed in Section 3.3. The results show that predictions in

the latent space significantly outperform the predictions in

the pose space, with the difference becoming increasingly

apparent further into the future. This is unsurprising since

the pose can always be read from the latent space, but the

latent space can also capture additional information such as

image context that may be useful for determining the action

type. Thus, performance in the latent space should be at

least as good as that in the pose space.

We also evaluate the effect of the distillation loss by re-

moving Lmovie strip. The performance diminishes slightly on

Penn Action but is negligibly different on Human3.6M. It

is possible that the latent representation learned by fmovie is

more useful in the absence of 3D ground truth.

Finally, our method in the latent space significantly out-

performs both baselines. The no-motion baseline performs

reasonably at first since it’s initialized from the correct

pose but quickly deteriorates as the frozen pose no longer

matches the motion of the sequence. On the flip side, the

Nearest Neighbors baseline performs poorly at first due to

the difficulty of aligning the global orientation of the root

joint. However, on Penn Action, NN often identifies the cor-

rect action and eventually outperforms the no-motion base-
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(a) Bronze reproduction of
Myron’s Discobolus.
Source: Matthias Kabel

(b) Penn Action frames with largest improvement in accuracy.

Figure 5: Discovered “Statue” moments. Classical sculptures of athletes often depict the transient moment when the action becomes

immediately clear to the viewer (5a). The frame that gives rise to the largest improvement in prediction accuracy exhibits similar qualities

to these statues (5b). Here, we visualize the first frame after the best input conditioning for several sequences.

line and auto-regressive predictions in the pose space.

Comparison with Single Frame future prediction. In Ta-

ble 3, we compare our method with the single frame future

prediction in [11] and [27]. To remain comparable, we re-

trained [11] to forecast the pose 5 frames into the future and

evaluate all methods on the 5th frame past the last observed

frame. Note that our method is conditioned on a sequence

of images in an auto-regressive manner while [27] and [11]

hallucinate the future 3D pose and 2D keypoints respec-

tively from a single image. Our method produces significant

gains on the Penn Action dataset where past context is valu-

able for future prediction on fast-moving sports sequences.

4.3. Qualitative Evaluation

Qualitative Analysis. We show qualitative results of our

proposed method in the latent space on videos from Hu-

man3.6M, Penn Action, and NBA in Figure 3. We observe

that the latent space model does not always regress the cor-

rect tempo but usually predicts the correct type of motion.

On the other hand, the pose space model has significant dif-

ficulty predicting the type of motion itself unless the action

is obvious from the pose (e.g. Situps and Pushups). See

Figure 4 and the supplementary for comparisons between

the latent and pose space models.

Discussion of failure modes can be found in the supple-

mentary. More video results are available on our project

webpage1 and at youtu.be/aBKZ7HMF1SM.

Capturing the “Statue” Moment. Classical sculptures are

often characterized by dynamic poses ready to burst into

action. Myron’s Discobolus (Figure 5a) is a canonical ex-

ample of this, capturing the split-second before the ath-

lete throws the discus [25]. We show that the proposed

framework to predict 3D human motion from video can

be used to discover such Classical “statue” moments from

1Project Webpage: jasonyzhang.com/phd

video, by finding the frame that spikes the prediction accu-

racy. In Figure 5, we visualize frames from Penn Action

when the prediction accuracy increases the most for each

sequence. Specifically, for each conditioning window for

every sequence in Penn Action, we computed the raw aver-

age future prediction accuracy for the following 15 frames.

Then, we computed the per-frame change in accuracy using

a low-pass difference filter and selected the window with the

largest improvement. We find that the frame corresponding

to the timestep when the accuracy improves the most effec-

tively captures the “suggestive” moments in an action.

5. Conclusion

In this paper, we presented a new approach for predicting

3D human mesh motion from a video input of a person. We

train an autoregressive model on the latent representation of

the video, which allows the input conditioning to transition

seamlessly from past video input to previously predicted fu-

tures. In principle, the proposed approach could predict ar-

bitrarily long sequences in an autoregressive manner using

3D or 2D supervision. Our approach can be trained on mo-

tion capture video in addition to in-the-wild video with only

2D annotations.

Much more remains to be done. One of the biggest chal-

lenges is that of handling multimodality since there can be

multiple possible futures. This could deal with inherent un-

certainties such as speed or type of motion. Other chal-

lenges include handling significant occlusions and incorpo-

rating the constraints imposed by the affordances of the 3D

environment.
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