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Abstract

One-shot image segmentation aims to undertake the seg-

mentation task of a novel class with only one training im-

age available. The difficulty lies in that image segmen-

tation has structured data representations, which yields a

many-to-many message passing problem. Previous meth-

ods often simplify it to a one-to-many problem by squeez-

ing support data to a global descriptor. However, a mixed

global representation drops the data structure and informa-

tion of individual elements. In this paper, We propose to

model structured segmentation data with graphs and ap-

ply attentive graph reasoning to propagate label informa-

tion from support data to query data. The graph atten-

tion mechanism could establish the element-to-element cor-

respondence across structured data by learning attention

weights between connected graph nodes. To capture corre-

spondence at different semantic levels, we further propose

a pyramid-like structure that models different sizes of im-

age regions as graph nodes and undertakes graph reason-

ing at different levels. Experiments on PASCAL VOC 2012

dataset demonstrate that our proposed network significantly

outperforms the baseline method and leads to new state-

of-the-art performance on 1-shot and 5-shot segmentation

benchmarks.

1. Introduction

Fully supervised learning has shown great success

in many computer vision tasks, thanks to large-scale

datasets [2, 13] and deep neural networks [11, 8]. However,

standard supervised learning tasks, such as image classifi-

cation and semantic segmentation, have their intrinsic lim-

itations that both training and testing have to be applied on

a specific task, i.e., the categories to be classified. More

recently, meta-learning along with the power of deep neu-

ral networks has received growing interests in the machine
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Figure 1: Illustration of the proposed Pyramid Graph Net-

works for solving one-shot image segmentation. Given only

one training image, our model could perform segmentation

on new test images. The proposed Graph Attention mecha-

nism could find the correspondence between image regions.

learning community. Meta-learning, also called learning

to learn, aims to train a meta learner that is able to pro-

duce good generalization performance on unseen but simi-

lar tasks with scarce training data. The training of a meta-

learner is not performed on a specific task, and instead, on

a distribution of similar tasks.

A well-studied area of meta-learning is one-shot image

classification which aims to classify a test image given only

one training image in each class. One-shot segmentation

further extends this task to pixel levels. With only one pixel-

wise labeled training image, the goal is to predict a binary

mask in the testing images. Unlike one-shot image classifi-

cation tasks where each data point has a label, in segmenta-

tion, the data is represented with a group of structured pix-

els. This yields a many-to-many message passing problem

that we do not know which pixels in two images are related.

To solve the problems mentioned above, previous meth-

ods transform it to a one-to-many problem, using global

pooling operations to squeeze structured support data to

a global descriptor and exploit it to guide dense predic-

tions [18, 3, 15, 26, 27]. In this case, the prediction of each
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pixel location references the same guidance vector. For ex-

ample, in [3, 27, 26], the network structure encourages the

foreground pixels in the query image to have a close dis-

tance to the global descriptor, via cosine distance metric or

a learnable distance metric. However, two grouped pixels

may only show connections in a small fraction of the whole

representations. It is common that a part of the objects

shown in the support set may not appear in the query set.

In this case, the global average descriptor may introduce

noise, as we only want the shared components to provide

guidance information.

In this work, we argue that the query set and the support

set can be modeled with graphs and the process of propa-

gating label information from a structured representation to

another one can be viewed from the graph reasoning stand-

point. We combine the query graph and support graph into

a big bipartite graph that we assume each node in the query

graph is fully connected with the nodes in the support graph.

To reason the underlying correlations between the unlabeled

query nodes and labeled support nodes, we apply graph at-

tention mechanism [23] to weight the connections of each

neighbouring node. With the attention weights, each query

node could selectively aggregate label information from the

support graph and thus help the downstream node classifi-

cation task. This could also provide some interpretability

by inspecting the attention distribution. An illustration of

our attention mechanism is shown in Fig. 1.

The next question is how we should model the images

with graph representations. Given two locations in the

query image and the support image, they may show con-

nections at different levels. For example, the connection

of two human images can be an elementary feature, e.g.,

eyes, which corresponds to a small region, but it can also be

a more abstract feature, e.g., faces, constituted by a group

of elementary features. With the intuition above, we pro-

pose a pyramid-like branched graph reasoning structure to

establish such multi-level connections. The graph nodes in

different branches capture features of sub-regions at differ-

ent scales. At the bottom level, each pixel in the feature

map is modeled as the node in the graph. The rest branches

model different sizes of sub-regions in the image as the

graph nodes via adaptive pooling. Adaptive pooling could

downsample arbitrary sized feature maps to a set of fixed-

sized grids. Each of the branches performs graph reasoning

independently, and their results are projected back to the

original size. Finally, we fuse all branches for the final pre-

diction. The pyramid structure enables graph reasoning at

different scales to help the node classification.

In our experiment, We also explore various model vari-

ants that adopt other techniques for capturing multi-level re-

lations, e.g., dilated convolutions. We empirically demon-

strate that our graph-based method achieves better results

than the baseline methods based solely on global guidance.

Our contributions are summarized as follows:

• We propose Pyramid Graph Networks (PGNet) for

one-shot image segmentation which establishes corre-

spondence between object parts by attention mecha-

nism. Compared with previous work based on global

information, the proposed graphical model allows each

pixel prediction to reference more related area in the

support set.

• We propose a pyramid architecture that constructs

multi-level region-based connections between two im-

ages to effectively propagate label information from

the support set to the query set.

• The proposed attention mechanism also provides in-

terpretability of the relations by visualizing the node

connection weights.

• Experiments on PASCAL VOC 2012 dataset show

that our method significantly outperforms the baseline

model and achieves new state-of-the-art 1-shot and 5-

shot segmentation results.

2. Related Work

Meta Learning. Meta-learning aims to learn a model

which can be quickly adapted to new tasks with a small

amount of training data, which is different from standard

supervised learning that both training and testing are on

a specific task. A representative study is to apply meta-

learning on few-shot image classification. Previously, a line

of few-shot classification literature adopts metric learning

to compute the pair-wise distance between samples which

can be used for classification [20, 25, 10]. In this case, the

meta-learner owns the ability to make comparison between

samples. Other formulations, such as learning good initial

weights for fast adaptation [5, 21], updating parameters by

LSTM [16], adopting temporal convolutions [14], etc. also

yield promising results.

Few-shot Segmentation. Semantic segmentation is a

fundamental computer vision task, which aims to clas-

sify each pixel in the images to a set of classes. Few-

shot segmentation extends few-shot classification to pixel

levels. Previous works follow a two-branch network de-

sign [18, 15, 27, 26, 3, 9]. The support branch extracts in-

formation from labeled support data to guide segmentation

in the query branch. In [18], the query branch is an FCN and

the support branch directly predicts a vector as the param-

eters of a layer in the query branch to guide segmentation.

In [15, 26], the generated global vector from the support

branch is upsampled and concatenated with the query fea-

ture for dense predictions. Zhang et al. [27] re-weight the

query feature map by calculating a similarity score between

the global vector and each query position to segment the

target category.
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The intrinsic spirits behind the above methods are to sim-

plify the many-to-many correspondence problem to a one-

to-many problem. To generate the global descriptor, early

works [18, 15, 3] hide the background in the support RGB

image and perform global average pooling at the end of

the support branch to generate a global descriptor. Works

in [26, 27] improve it by performing average pooling over

the foreground mask regions in intermediate features to ex-

tract the global vector. Our method, on the other hand, es-

tablishes element-to-element correspondence that each lo-

cation in the query image could selectively extract useful

information from the support set.

Attention. Incorporating attention mechanism to effec-

tively handle graph-like data has become popular in recent

years [17, 12, 23, 22, 4]. Attention could allow the task

to focus on the most relevant parts to help make decisions.

Among them, our work is most related to Graph Atten-

tion Networks [23], which adopts attention mechanism to

perform node classification in graph data. In the Graph

Attention Networks, each node representation attends over

all neighbouring nodes and the weights between nodes are

implicitly specified with the attention mechanism. Then,

the node is updated with a weighted sum of neighbouring

nodes. Graph attention mechanisms are also used in other

computer vision tasks, such as few-shot image classifica-

tion [6] and social relationship understanding [24]. The key

difference in our work is that we implicitly model image

regions as the graph nodes and establish cross-image rela-

tionships.

3. Problem Set-up

Before describing our network in detail, we first intro-

duce the notations and the formulation of a typical meta-

learning task. The task of meta-learning aims to train a

model R to undertake an unseen task Ti, with only a few

labeled examples. In the one-shot segmentation setting, a

task Ti denotes binary segmentation of a specific category.

The model is trained by sampling tasks from Ptrain(T ) and

is evaluated on new tasks Ptest(T ). To avoid confusion, at

both training and testing time, the labeled example images

is called the support set and the images for prediction are

called the query set.

The model is trained by episodically sampling tasks from

Ptrain(T ), which is aligned with the evaluation process.

The construction process of a 1-shot learning episode is pro-

vided in Algorithm 1. At training time, the model parame-

ters are updated by optimizing the loss Ltrain.

4. Method

In this section, we present our PGNet with the motiva-

tion of establishing the element-to-element correspondence

between structured data. The network is constructed with a

Algorithm 1 Construction of a 1-shot learning episode. x ∈
R

H×W×3 denotes an RGB image and y ∈ R
H×W denotes

a binary mask. phase ∈ {train, test}

Input: Model R, task distribution Pphase(T ), loss func-

tion L(·)
1: while not done do

2: T ← Sample a task T ∼ Pphase(T )
3: S ← Sample a labeled image (xs, ys(T )) as the sup-

port set

4: {xq, yq(T )} ← Sample the query set.

5: ŷq(T )← R(xq,S), make predictions

6: Lphase ← L(yq(T ), ŷq(T )), compute loss

7: done

8: end while

few primary building blocks, i.e. the Graph Attention Unit.

In what follows, we begin with the illustration of our Graph

Attention Unit. Then we introduce our pyramid graph rea-

soning module that models different sizes of sub-regions as

the graph nodes. The overview of our network is shown in

Fig. 2.

4.1. Graph Attention Unit

Given a query image xq and a labeled support image xs,

we first employ a shared convolutional neural network to

convert them into feature maps where each pixel location

is represented by a vector. A feature map can be modeled

with a graph that each node corresponds to a feature vector

in the original feature maps. Our goal is to establish rela-

tions between two graph domains to propagate label infor-

mation from the support images to unlabeled query images

for classification.

Our Graph Attention Unit (GAU) takes inspiration from

Graph Attention Network [23], where the model learns a

weight coefficient for each neighbour and reconstructs each

node as the weighted sum of neighbouring nodes for the

downstream graph mining tasks. Our Graph Attention Unit

shares the same spirit and combines the query graph and

the support graph into a big bipartite graph that each query

node is fully connected to all support nodes. After that,

we reconstruct each query node by fusing all neighbouring

support nodes with attention mechanism. Then fused nodes,

along with their original node representations, are used for

node classification. The architecture of the Graph Attention

Unit is shown in Fig. 3. We first elaborate the node updating

process with one example query node and such operations

can be applied to all query nodes in parallel.

Assume we have a query node representation ~hq and all

support node representations {~h1s,
~h2s, ...,

~hNs }, where ~h ∈
R

C , N is number of all nodes in the support graph and C is

the feature dimension, the Graph Attention Unit updates the

query node by selectively accumulating information from
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Figure 2: Illustration of our network on 1-shot image segmentation task. Given a sampled image pair, we first use a shared

CNN to extract their features, then we model the query feature maps and the foreground region in support feature maps

with graphs. After that, a set of paralleled adaptive pooling layers are applied to the query features to acquire different sub-

region representations, which are sent to different Graph Attention Units for graph reasoning. Finally, the outputs of different

branches are fused by addition and further processed by the rest convolutions. The GAU branch with equal attention weights

has the same effect with global pooling.
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Figure 3: Illustration of our proposed Graph Attention Unit

with one example node in the query graph.

all support nodes. To that end, we need to find a pairwise

function f(·) that generates a scalar ej as the correlation

score between the query node ~hq and a support node ~hjs

ej = f(θ(~hq), φ(~h
j
s)) (1)

where φ and θ are linear transformation functions, which

project the node features to a new space. Here, we experi-

ment two choices of function f(·) that are commonly used

for vector comparison.

Linear Transformation. The original formulation in

Graph Attention Network [23] for computing the correla-

tion score is to concatenate two vectors and apply linear

transformation with the weight vector ~wf :

f(φ(~hq), θ(~h
j
s)) = ~wT

f (φ(
~hq)||θ(~h

j
s)) (2)

where || denotes the concatenation operation.

Inner product. We also attempt using the dot products of

two vectors to cumpute the scalar:

f(φ(~hq), θ(~h
j
s)) = φ(~hq)

T θ(~hjs) (3)

Once we obtain the correlation factor ej of all neighbouring

support nodes, we normalize them with the softmax func-

tion and generate the weights aj . Based on that, we fuse

all support node representations with the weighted sum. Fi-

nally, the fused node is concatenated with the original input

query node vector, and they are fused with another linear

transformation function:

aj =
exp (ej)∑N

k=1
exp (ek)

, (4)

~vq =

N∑

j=1

ajg(~h
j
s)), (5)

~h′q = ψ(~vq||g(~hq)) (6)

where g(·) and ψ(·) are linear projection functions, fol-

lowed by ReLU.

Parallel Computation. At implement time, all linear

transformation operations, i.e. g(·), ψ(·), θ(·) and φ(·) can

be operated on all nodes concurrently with 1 × 1 convolu-

tions due to its grid arrangement property. For the pair-wise

operation f(·), as we only model the foreground region in

the support image as the support graph, we could apply f(·)
to all positions in the support set in the first place and then

mask the attention values that correspond to the background

with −∞ before softmax normalization. When dot product
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is used in f(·), we could use matrix multiplication to com-

pute attention value in parallel, and when linear transforma-

tion is used, we can apply tensor broadcasting and 1 × 1
convolution in the channel dimension for efficient compu-

tation.

4.2. Pyramid Graph Reasoning

We have presented the GAU by modeling each pixel as

the node vector to perform graph reasoning. However, such

connections built on pixel-wise elementary features may not

be sufficient to discover the ideal relations. For example,

an eye-like feature may falsely establish relations between

humans’ eyes and dogs’ eyes. We may want an abstract

feature, e.g., faces being modeled into the graph for better

reasoning.

We find that a complex object can be decomposed to a

set of basic elements. For instance, faces can roughly be

composed of eyes, noses, and mouths. To acquire an un-

seen high-level representation, we could simply mix the el-

ementary representations. With this intuition, we propose

a multi-level graph reasoning scheme that models different

sizes of sub-regions as the graph nodes to undertake graph

reasoning at different levels. We have demonstrated the

bottom level, where each pixel is modeled as the node in

the graph. The other two branches in the pyramid structure

have similar structures but adopt different sizes of adaptive

pooling to the query feature maps before sending them to

the GAU. Then, the fused graphs of each Graph Attention

Unit are upsampled back to the original feature size with

bilinear interpolation, as shown in Fig. 2. Adaptive pooling

can extract representations of assigned size given an arbi-

trary sized feature map. All pixel locations inside a sub-

region together constitute a feature representation which is

then modeled as a graph node.

We additionally add one GAU that sets equal attention

values ej . In this case, each query node is fused with the av-

erage support nodes, which aims to incorporate the global

statistics from the support set. The output maps of differ-

ent branches are fused by addition and processed by three

residual convolution blocks [8]. Finally, we add the Atrous

Spatial Pyramid Pooling Module (ASPP) [1] at the end to

generate the final results.

5. Experiment

5.1. Implementation details.

Our network structure is modified from DeepLab V3

with ResNet-50 as the backbone. Specifically, we decom-

pose the original DeepLab V3 network to a fully convo-

lutional ResNet part and an Atrous Spatial Pyramid Pool-

ing(ASPP) module as the post-processing part. The Resnet

backbone, pre-trained on ImageNet, is used as the feature

extractor in our network and the ASPP is added at the end.

We remove layers in block-4 and concatenate features of

block-3 and block-2 as the extracted features, which are

sent to different branches. All the convolutional operations

inside the GAU, residual blocks and ASPP generate fea-

tures of 256 channels. The linear projection functions g(·)
in different branches share the same parameter. Finally,

the model outputs two-channel masks as the predicted fore-

ground and background scores of each location.

At training time, we optimize the network parameter by

minimizing the two-class Cross-Entropy loss over all pixel

locations with momentum SGD. The network is trained for

600,000 iterations with the learning rate of 0.0025. We

adopt random crop, random scale and random horizontal

flip on the support images during training for data augmen-

tation.

5.2. Dataset and Evaluation Metric

We evaluate the performance of our algorithm on the

PASCAL VOC 2012 dataset with extended annotations

in [7]. We follow the dataset division in [18] that 20 object

classes in their official resealed order are evenly divided into

4 folds and report cross-validation results. Namely, 15 ob-

ject categories are used as training tasks with the rest as the

testing tasks. At test time, we random sample 1,000 tasks

in each test fold. For more details about the dataset, please

refer to [18].

We align the evaluation metric with previous works.

Given predicted masks from 1000 test episodes, we first cal-

culate a standard foreground Intersection over Union (IoU)

score for each object class, then we average the class-wise

IoU of all 5 classes as the mean IoU for this fold. When

compared with the state-of-the-art results, we report the

mean IoU in each test fold and the mean results over 4 folds.

5.3. Ablation Analysis

We conduct extensive ablation experiments to validate

our network design. Each analysis experiment is performed

twice with fold 0 and fold 1 as the test fold, respectively.

We report the average performance of the two test folds for

all the experiments in this section.

Backbone network. We first evaluate the importance

of the backbone model in our architecture. We experiment

with two backbone models that are used in previous work:

VGG-16 and ResNet-50. We fix the pair-wise function f(·)
with dot product. The results of our network with the two

backbone models are presented in Table.1. As is shown, our

model with ResNet-50 yields slightly better performance

than the VGG version. We adopt ResNet-50 as the back-

bone model in all following experiments.

The Pair-wise Function. Table. 2 compares our model

variants with dot-product and linear transformation as the

pair-wise function f(·), which are denoted with PGNet-Dot

and PGNet-Linear, respectively. As is shown, our model

9591



Q
u

e
ry

 S
e

t
S

u
p

p
o

rt
 S

e
t

P
re

d
ic

ti
o

n
A

tt
e

n
ti

o
n

 M
a

p

Figure 4: Qualitative results of our network. The first row is the query images. The second row is our network predictions

of the query images. The third row is support images with ground-truth annotations. The fourth row is the corresponding

attention maps of selected regions (marked with red rectangles in the query images). The grids in the query image indicate

which branch we extract the attention maps from. The attention values are normalized to [0,1] to highlight the salient region

in the support images.

Model Backbone Mean IoU (%)

PGNet-Dot VGG-16 57.2

PGNet-Dot ResNet-50 59.4

Table 1: Our model with different backbone networks.

PGNet-Dot denotes our model with dot-product as the pair-

wise function f(·). Our network with ResNet-50 backbone

achieves better results.

Model Mean IoU (%)

PGNet-Linear 58.1

PGNet-Dot 59.4

Table 2: Our network with dot-product and lienar transfor-

mation as the pair-wise function f(·). The dot-product ver-

sion achieves higher mean IoU socre.

with dot-product as the function f(·) yields better results.

Adaptive Pooling vs. Dilated Convolution. Dilated

convolution [1] is another common operation to extract in-

formation from larger ranges without introducing extra pa-

rameters. The receptive field of a filter can be explicitly

controlled by varying the dilation rates of convolutional ker-

nels. We experiment a series of model variant by replacing

the adaptive pooling operations with dilated convolutions.

To build a dilated-convolution version of our network, we

make the following modifications to the original structure:

1) We remove the adaptive pooling operations to the in-

put query feature maps such that all GAUs have the same

query input. 2) The query node encoding function θ(·) in

the Graph Attention Unit is replaced with 3×3 dilated con-

volutions to incorporate information from different ranges.

With the aim to capture information from different sized re-

gions, the dilation rates in different Graph Attention Unit

are set with 2, 4 and 8 separately, while remaining other

network components still.

We also experiment adopting these operations on the

support feature maps. Specifically, if adaptive pooling is

employed in our network, the query feature maps to differ-

ent GAUs are kept same and apply adaptive pooling oper-

ations on the support feature maps, and if dilated convo-

lutions are used, we simply move the changes mentioned

above to the support node encoding function φ(·). The com-

parison of adaptive max pooling and adaptive average pool-

ing is also investigated in this part. Our baseline method

in this experiment is a branch-ensemble model that neither

dilated convolution nor adaptive pooling is used, such that

all the branches share the same structure and are all applied

on the original query and support feature maps. The com-

parison of the model variants is shown in Table.3. We could

find from the result that both the dilated convolution and

the adaptive pooling could introduce multi-range informa-

tion and boost the performance over the baseline result. The

optimal result is achieved when adaptive average pooling is

employed on query feature maps.

Compared with Global Guidance. As discussed ear-

lier, previous works transform the many-to-many problem

to a one-to-many problem that a global description vec-

tor from the support set guides the pixel-wise predictions
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Method Operated On Mean IoU (%)

Baseline-Ensemble - 57.5

Dilated Conv Support 58.1

Dilated Conv Query 57.7

Adaptive Max Pool Support 58.6

Adaptive Max Pool Query 57.6

Adaptive Avg Pool Support 57.6

Adaptive Avg Pool Query 59.4

Table 3: Comparison of using dilated convolution or adap-

tive pooling to undertake multi-range graph reasoning. Both

two methods could boost performance over the baseline

model. Adopting adaptive average pooling on the query

feature map yields the best result.

in the query image. Here, we implement several baseline

models that adopt the designs in previous works. Our first

baseline model, PGNet-Mask-RGB, adopts the solutions

in [18, 15, 3] that we mask the background region in the

support images with zero and perform global average pool-

ing over the support features to generate a global vector.

Then, this vector is upsampled to the same spatial size of

the query feature maps and they are fused by concatenation.

The second baseline model, shares the same spirit with mi-

nor differences. In [27, 26] they maintain the original RGB

support image as the input and extract the global vector by

averaging the support features over the foreground mask re-

gion. We denote this baseline method with PGNet-Mask-

Feature. We replace our pyramid graph reasoning module

with the two solutions above while maintaining other net-

work components still to validate our design. The above

methods can be seen as a special case of our GAU when the

attention values are set equal, such that each query node is

fused with an averaging support node.

Moreover, we also experiment branch ensembles of the

baseline methods to investigate whether our network perfor-

mance is driven by introducing more parameters. Similarly,

We also construct 4 parallel branches, all of which have

identical structures with different parameters, and their re-

sults are fused by addition, as done in our pyramid structure.

The results are shown in Table.4. As is shown, although

branch ensembles of baseline methods could slightly boost

the baseline performance, our network still outperforms all

the baseline methods with a large margin. The attentive

graph reasoning method turns out to be more effective in

extracting guidance information from the support set than

methods solely based on the global vector.

Multi-scale Input Test. As is commonly done in the

segmentation literature, we test our network performance

with multi-scale query and support image inputs and aver-

age their predictions. Specifically, the images are rescaled

with the ratio of [0.7, 1, 1.3] and their corresponding pre-

Model Ensemble Mean IoU (%)

PGNet-Mask-RGB 54.7

PGNet-Mask-RGB X 54.8

PGNet-Mask-Feature 56.7

PGNet-Mask-Feature X 57.1

PGNet-Dot 59.4

Table 4: Comparison of our graph-based network with

model variants based on global vector guidance. Our pro-

posed method achieves better results than the baseline meth-

ods and their ensemble versions.

Model Query Support Mean IoU (%)

PGNet-Dot 59.4

PGNet-Dot X 61.2

PGNet-Dot X 59.5

PGNet-Dot X X 61.5

Table 5: Influence of multi-scale input test. All predictions

are rescaled to the original image size and fused by average.

dictions are rescaled back to the original size with bilinear

interpolation. The effect of multi-scale input test is shown

in Table. 5.

5.4. Qualitative Results

Fig.4 shows some qualitative results of our models. We

can see that our network could accurately make predictions

of the query images with only one labeled training image.

Given sub-regions of different sizes in the query images, we

visualize the attention weights with respect to all support

locations. Our graph attention mechanism could find the

most related areas in the support image to help prediction.

5.5. Comparison with the Stateoftheart Results

We compare our final model with the state-of-the-art

methods on PASCAL VOC 2012 dataset. We report our

results under two different experimental set-ups where the

difference is the evaluation metric adopted: The first evalu-

ation metric is the one we have explained at the beginning

of this section. The second evaluation metric is the one pro-

posed in [15]. They ignore the object classes and report

the mean of foreground IoU and background IoU over all

test images in the fold. We denote them with Mean IoU

and IoU, respectively, to differentiate. The 1-shot results

under two evaluation metrics are shown in Table. 6 and Ta-

ble. 7, respectively. We can see from the tables that under

both experiment set-ups, our network outperforms previous

methods and achieves a new state-of-the-art performance.

5-shot Experiments. As the proposed Graph Attention

Unit dynamically generates the weights between the query

nodes and all support nodes, we can extend our model to
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Model fold-0 fold-1 fold-2 fold-3 mean

Reduced-DFCN8s [19] 39.2 48.0 39.3 34.2 40.2

OSLSM [18] 33.6 55.3 40.9 33.5 40.8

co-FCN [15] 36.7 50.6 44.9 32.4 41.1

SG-One [27] 40.2 58.4 48.4 38.4 46.3

CANet [26] 52.5 65.9 51.3 51.9 55.4

Ours 56.0 66.9 50.6 50.4 56.0

Table 6: Comparison with the state-of-the-art 1-shot seg-

mentation performance on PASCAL VOC 2012 dataset.

Model IoU

co-FCN [15] 60.1

Reduced-DFCN8s [19] 60.9

PL [3] 61.2

A-MCG-Conv-LSTM [9] 61.2

OSLSM [18] 61.3

SG-One [27] 63.1

CANet [26] 66.2

Ours 69.9

Table 7: Comparison with the state-of-the-art 1-shot seg-

mentation results on PASCAL VOC 2012 dataset, regarding

the evaluation metric proposed in [15]

solve the k-shot learning task easily by modeling all sup-

port images into the support graph. Specifically, the fore-

ground regions from different support images together con-

stitute the support graph so that the attention distribution

is over all foreground locations in the support set. Thus,

our algorithm is able to handle 1-shot and k-shot cases with

the same model. In comparison, most previous works can

only handle one-shot cases and adopt naive fusion methods

to fuse individual 1-shot results. For example, [15, 27, 3]

average the global descriptors generated by different sup-

port images. Zhang et al. [26] trains an additional branch to

weight the k global descriptors before averaging them. Sha-

ban et al. [18] adopts logic OR operation to fuse individual

predicted binary masks.

We report the 5-shot segmentation results for a fair com-

parison with previous works. The results are shown in Ta-

ble. 8. PGNet-Fusion denotes the baseline method that

we use the one-shot model to make predictions with each

support image and average the 5 predicted masks. PGNet-

Graph denotes the proposed method that models all sup-

port images into the graph. PGNet-Graph-MS denotes our

proposed model with multi-scale input test operated on the

query images. We can see from the results that our graph-

based 5-shot learning method is more effective than naive

fusion solutions and our final 5-shot result significantly out-

performs the state-of-the-art performance under two evalu-

ation metrics.

Model (5-shot) fold-0 fold-1 fold-2 fold-3 mean

co-FCN [15] 37.5 50.0 44.1 33.9 41.4

OSLSM [18] 35.9 58.1 42.7 39.1 43.9

Reduced-DFCN8s [19] 45.3 51.4 44.9 39.5 45.3

SG-One [27] 41.9 58.6 48.6 39.4 47.1

CANet [26] 55.5 67.8 51.9 53.2 57.1

PGNet-Fusion 53.6 65.6 49.9 49.9 54.8

PGNet-Graph 54.9 67.4 51.8 53.0 56.8

PGNet-Graph-MS 57.7 68.7 52.9 54.6 58.5

(a) Evaluation metric of mean class-wise IoU adopted in [18]

Model (5-shot) IoU

co-FCN [15] 60.2

OSLSM [18] 61.5

A-MCG-Conv-LSTM [9] 62.2

PL [3] 62.3

SG-One [27] 65.9

Reduced-DFCN8s [19] 66.0

CANet [26] 69.6

PGNet-Graph-MS 70.5

(b) Evaluation metric of IoU adopted in [15]

Table 8: Comparison with the state-of-the-art 5-shot seg-

mentation performance on PASCAL VOC 2012 dataset.

Our network outperforms previous methods under both

evaluation metrics.

6. Conclusions

We have presented Pyramid Graph Networks for one-

shot image segmentation. Compared with previous meth-

ods solely based on a global supporting vector, our atten-

tive graphical models establish connections between ele-

ments across structure represented data that allow each un-

labeled pixel to selectively aggregate guidance information

from support image regions. Our pyramid structure mod-

els various sizes of regions as the graph nodes to enable

graph reasoning at different scale and semantic levels. Ex-

periments on PASVAL VOC 2012 datasets under two eval-

uation metrics show that our proposed method significantly

outperforms the baseline methods and achieves a new state-

of-the-art performance.
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