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Abstract

Generative Adversarial Networks (GAN) have demon-

strated the potential to recover realistic details for single

image super-resolution (SISR). To further improve the vi-

sual quality of super-resolved results, PIRM2018-SR Chal-

lenge employed perceptual metrics to assess the perceptual

quality, such as PI, NIQE, and Ma. However, existing meth-

ods cannot directly optimize these indifferentiable percep-

tual metrics, which are shown to be highly correlated with

human ratings. To address the problem, we propose Super-

Resolution Generative Adversarial Networks with Ranker

(RankSRGAN) to optimize generator in the direction of per-

ceptual metrics. Specifically, we first train a Ranker which

can learn the behavior of perceptual metrics and then in-

troduce a novel rank-content loss to optimize the percep-

tual quality. The most appealing part is that the proposed

method can combine the strengths of different SR methods

to generate better results. Extensive experiments show that

RankSRGAN achieves visually pleasing results and reaches

state-of-the-art performance in perceptual metrics. Project

page: https://wenlongzhang0724.github.io/

Projects/RankSRGAN

1. Introduction

Single image super resolution aims at reconstruct-

ing/generating a high-resolution (HR) image from a low-

resolution (LR) observation. Thanks to the strong learning

capability, Convolutional Neural Networks (CNNs) have

demonstrated superior performance [10, 24, 42] to the con-

ventional example-based [40] and interpolation-based [41]

algorithms. Recent CNN-based methods can be divided into

two groups. The first one regards SR as a reconstruction

problem and adopts MSE as the loss function to achieve

†Corresponding author (e-mail: chao.dong@siat.ac.cn)

SRGAN  1.96/24.02 ESRGAN 1.88/23.87

RankSRGAN 1.83/24.08 GT   NIQE/PSNR

Figure 1. The comparison of RankSRGAN and the state-of-the-
art perceptual SR methods on ×4. NIQE: lower is better. PSNR:
higher is better.

high PSNR values. However, due to the conflict between

the reconstruction accuracy and visual quality, they tend to

produce overly smoothed/sharpened images. To favor bet-

ter visual quality, the second group casts SR as an image

generation problem [22]. By incorporating the perceptual

loss [6, 18] and adversarial learning [22], these perceptual

SR methods have potential to generate realistic textures and

details, thus attracted increasing attention in recent years.

The most challenging problem faced with perceptual SR

methods is the evaluation. Most related works resort to user

study for subjectively evaluating the visual quality [2, 34].

However, without an objective metric like PSNR/SSIM, it

is hard to compare different algorithms on a fair platform,

which largely prevents them from rapid development. To

address this issue, a number of no-reference image quality

assessment (NR-IQA) metrics are proposed, and some of

them are proven to be highly correlated with human ratings

[2], such as NIQE [29] (correlation 0.76) and PI [2] (cor-

relation 0.83). Specially, the PIRM2018-SR challenge [2]

introduced the PI metric as perceptual criteria and success-

fully ranked the entries. Nevertheless, most of these NR-

IQA metrics are not differentiable (e.g., they include hand-

crafted feature extraction or statistic regression operation),

making them infeasible to serve as loss functions. Without
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considering NR-IQA metrics in optimization, existing per-

ceptual SR methods could not show stable performance in

the orientation of objective perceptual criteria.

To overcome this obstacle, we propose a general and dif-

ferentiable model – Ranker, which can mimic any NR-IQA

metric and provide a clear goal (as loss function) for opti-

mizing perceptual quality. Specifically, Ranker is a Siamese

CNN that simulates the behavior of the perceptual metric

by learning to rank approach [7]. Notably, as NR-IQA met-

rics have various dynamic ranges, Ranker learns their out-

put ranking orders instead of absolute values. Just like in the

real world, people tend to rank the quality of images rather

than give a specific value. We equip Ranker with the stan-

dard SRGAN model and form a new perceptual SR frame-

work – RankSRGAN (Super-Resolution Generative Adver-

sarial Networks with Ranker). In addition to SRGAN, the

proposed framework has a rank-content loss using a well-

trained Ranker to measure the output image quality. Then

the SR model can be stably optimized in the orientation of

specific perceptual metrics.

To train the proposed Ranker, we prepare another train-

ing dataset by labeling the outputs of different SR algo-

rithms. Then the Ranker, with a Siamese-like architec-

ture, could learn these ranking orders with high accuracy.

The effectiveness of the Ranker is largely determined by

the selected SR algorithms. To achieve the best perfor-

mance, we adopt two state-of-the-art perceptual SR models

– SRGAN [22] and ESRGAN [35]. As the champion of

PIRM2018-SR challenge [2], ESRGAN is superior to SR-

GAN on average scores, but can not outperform SRGAN on

all test images. When evaluating with NIQE [29], we ob-

tain mixed orders for these two methods. Then the Ranker

will favor different algorithms on different images, rather

than simply classifying an image into a binary class (SR-

GAN/ESRGAN). After adopting the rank-content loss, the

generative network will output results with higher ranking

scores. In other words, the learned SR model could com-

bine the better parts of SRGAN and ESRGAN, and achieve

superior performance both in perceptual metric and visual

quality. Figure 1 shows an example of RankSRGAN, which

fuses the imagery effects of SRGAN and ESRGAN and ob-

tains better NIQE score.

We have done comprehensive ablation studies to further

validate the effectiveness of the proposed method. First,

we distinguish our Ranker from the regression/classification

network that could also mimic the perceptual metric. Then,

we train and test RankSRGAN with several perceptual met-

rics (i.e. NIQE [29], Ma [26], PI [2]). We further show

that adopting different SR algorithms to build the dataset

achieves different performance. Besides, we have also in-

vestigated the effect of different loss designs and combina-

tions. With proper formulation, our method can clearly sur-

pass ESRGAN and achieve state-of-the-art performance.

In summary, the contributions of this paper are three-

fold. (1) We propose a general perceptual SR framework –

RankSRGAN that can optimize generator in the direction of

indifferentiable perceptual metrics and achieve the state-of-

the-art performance. (2) We, for the first time, utilize results

of other SR methods to build training dataset. The proposed

method combines the strengths of different SR methods and

generates better results. (3) The proposed SR framework is

highly flexible and produce diverse results given different

rank datasets, perceptual metrics, and loss combinations.

2. Related work

Super resolution. Since Dong et al. [10] first introduced

convolutional neural networks (CNNs) to the SR task, a se-

ries of learning-based works [40, 15, 20, 16, 13, 14] have

achieved great improvements in terms of PSNR. For exam-

ple, Kim et al. [20] propose a deep network VDSR with

gradient clipping. The residual and dense block [24, 42] are

explored to improve the super-resolved results. In addition,

SRGAN [22] is proposed to generate more realistic images.

Then, texture matching [31] and semantic prior [34] are in-

troduced to improve perceptual quality. Furthermore, the

perceptual index [2] consisting of NIQE [29] and Ma [26]

is adopted to measure the perceptual SR methods in the

PIRM2018-SR Challenge at ECCV [2]. In the Challenge,

ESRGAN [35] achieves the state-of-the-art performance by

improving network architecture and loss functions.

CNN for NR-IQA. No-reference Image Quality As-

sessment (NR-IQA) can be implemented by learning-based

models, which extract hand-crafted features from Natural

Scene Statistics (NSS), such as CBIQ [37], NIQE [29], and

Ma [26], etc. In [23], Li et al. develop a general regression

neural network to fit human subjective opinion scores with

pre-extracted features. Kang et al. [19, 4] integrate a gen-

eral CNN framework which can predict image quality on

local regions. In addition, Liu et al. [25] propose RankIQA

to tackle the problem of lacking human-annotated data in

NR-IQA. They first generate large distorted images in dif-

ferent distortion level. Then they train a Siamese Network

to learn the rank of the quality of those images, which can

improve the performance of the image quality scores.

Learning to rank. It has been demonstrated that learn-

ing to rank approach is effective in computer vision. For

instance, Devi Parikh et al. [30] model relative attributes

using a well-learned ranking function. Yang et al. [36]

first employ CNN for relative attribute ranking in a unified

framework. One of the most relevant studies to our work

is RankCGAN [32], which investigates the use of GAN to

tackle the task of image generation with semantic attributes.

Unlike standard GANs that generate the image from noise

input (CGAN [28]), RankCGAN incorporates a pairwise

Ranker into CGAN architecture so that it can handle con-

tinuous attribute values with subjective measures.
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Figure 2. Overview of the proposed method. Stage 1: Generate pair-wise rank images by different SR models in the orientation of
perceptual metrics. Stage 2: Train Siamese-like Ranker network. Stage 3: Introduce rank-content loss derived from well-trained Ranker
to guide GAN training. RankSRGAN consists of a generator(G), discriminator(D), a fixed Feature extractor(F) and Ranker(R).

3. Method

3.1. Overview of RankSRGAN

The proposed framework is built upon the GAN-based

[22] SR approach, which consists of a generator and a dis-

criminator. The discriminator network tries to distinguish

the ground-truth images from the super-resolved results,

while the generator network is trained to fool the discrim-

inator. To obtain more natural textures, we propose to add

additional constraints on the standard SRGAN [22] by ex-

ploiting the prior knowledge of perceptual metrics to im-

prove the visual quality of output images. The overall

framework of our approach is depicted in Figure 2. The

pipeline involves the following three stages:

Stage 1: Generate pair-wise rank images. First, we

employ different SR methods to generate super-resolved

images on public SR datasets. Then we apply a chosen per-

ceptual metric (e.g. NIQE) on the generated images. After

that, we can pick up two images of the same content to form

a pair and rank the pair-wise images according to the qual-

ity score calculated by the perceptual metric. Finally, we

obtain the pair-wise images and the associated ranking la-

bels. More details will be presented in Section 4.1.

Stage 2: Train Ranker. The Ranker adopts a Siamese

architecture to learn the beheviour of perceptual metrics and

the network structure is depicted in Section 3.2. We adopt

margin-ranking loss, which is commonly used in “learning

to rank” [7], as the cost function to optimize Ranker. The

learned Ranker is supposed to have the ability to rank im-

ages according to their perceptual scores.

Stage 3: Introduce rank-content loss. Once the Ranker

is well-trained, we use it to define a rank-content loss for

a standard SRGAN to generate visually pleasing images.

Please see the rank-content loss in Section 3.3.

3.2. Ranker

Rank dataset. Similar to [8, 25], we use super-

resolution results of different SR methods to represent dif-

ferent perceptual levels. With a given perceptual metric,

we can rank these results in a pair-wise manner. Picking

any two SR images, we can get their ranking order accord-

ing to the quality score measured by the perpetual metric.

These pair-wise data with ranking labels form a new dataset,

which is defined as the rank dataset. Then we let the pro-

posed Ranker learn the ranking orders. Specifically, given

two input images y1, y2, the ranking scores s1 and s2 can

be obtained by

s1 = R(y1; ΘR) (1)

s2 = R(y2; ΘR), (2)

where ΘR represents the network weights and R(.) indi-
cates the mapping function of Ranker. In order to make the
Ranker output similar ranking orders as the perceptual met-
ric, we can formulate:

{

s1 < s2 if my1 < my2

s1 > s2 if my1 > my2

, (3)

where my1
and my2

represent the quality scores of image

y1 and image y2, respectively. A well-trained Ranker could

guide the SR model to be optimized in the orientation of the

given perceptual metric.

Siamese architecture. The Ranker uses a Siamese-like

architecture [5, 9, 38], which is effective for pair-wise in-

puts. The architecture of Ranker is shown in Figure 2. It
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has two identical network branches which contain a series

of convolutional, LeakyReLU, pooling and full-connected

layers. Here we use a Global Average Pooling layer after

the Feature Extractor, thus the architecture can get rid of the

limit of input size. To obtain the ranking scores, we employ

a fully-connected layer as a regressor to quantify the rank

results. Note that we do not aim to predict the real values of

the perceptual metric since we only care about the ranking

information. Finally, the outputs of two branches are passed

to the margin-ranking loss module, where we can compute

the gradients and apply back-propagation to update param-

eters of the whole network.
Optimization. To train Ranker, we employ margin-

ranking loss that is commonly used in sorting problems
[36, 25]. The margin-ranking loss is given below:

L(s1,s2; γ) = max(0, (s1 − s2) ∗ γ + ε)
{

γ = −1 if my1 < my2

γ = 1 if my1 > my2

,
(4)

where the s1 and s2 represent the ranking scores of pair-

wise images. The γ is the rank label of the pair-wise training

images. The margin ε can control the distance between s1
and s2. Therefore, the N pair-wise training images can be

optimized by:

Θ̂ = argmin
ΘR

1

N

N
∑

i=1

L(s
(i)
1 , s

(i)
2 ; γ(i))

= argmin
ΘR

1

N

N
∑

i=1

L(R(y
(i)
1 ; ΘR), R(y

(i)
2 ; ΘR); γ

(i))

(5)

3.3. RankSRGAN

RankSRGAN consists of a standard SRGAN and the
proposed Ranker, as shown in Figure 2. Compared with ex-
isting SRGAN, our framework simply adds a well-trained
Ranker to constrain the generator in SR space. To obtain vi-
sually pleasing super-resolved results, adversarial learning
[22, 31] is applied to our framework where the generator
and discriminator are jointly optimized with the objective
given below:

min
θ

max
η

Ey∽pHR
logDη(y) + Ey∽pLR

log(1−Dη(Gθ(x))),

(6)

where pHR and pLR represent the probability distributions

of HR and LR samples, respectively. In order to demon-

strate the effectiveness of the proposed Ranker, we do not

use complex architectural designs of GAN [35] but use the

general SRGAN [22].
Perceptual loss. In [12, 18], the perceptual loss is pro-

posed to measure the perceptual similarity between two im-
ages. Instead of computing distances in image pixel space,
the images are first mapped into feature space and the per-
ceptual loss can be presented as:

LP =
∑

i

||φ(ŷi)− φ(yi)||
2
2, (7)

where φ(yi) and φ(ŷi) represent the feature maps of HR and

SR images, respectively. Here φ is obtained by the 5-th con-

volution (before maxpooling) layer within VGG19 network

[33].
Adversarial loss. Adversarial training [22, 31] is re-

cently used to produce natural-looking images. A discrim-
inator is trained to distinguish the real image from the gen-
erated image. This is a minimax game approach where the
generator loss LG is defined based on the output of discrim-
inator:

LG = −logD(G(xi)), (8)

where xi is the LR image, D(G(xi)) represents the proba-

bility of the discriminator over all training samples.

Rank-content loss. The generated image is put into the

Ranker to predict the ranking score. Then, the rank-content

loss can be defined as:

LR = sigmoid(R(G(xi))), (9)

where R(G(xi)) is the ranking score of the generated im-

age. A lower ranking score indicates better perceptual qual-

ity. After applying the sigmoid function, LR represents

ranking-content loss ranging from 0 to 1.

3.4. Analysis of Ranker

The proposed Ranker possesses an appealing property:

by elaborately selecting the SR algorithms and the percep-

tual metric, the RankSRGAN has the potential to surpass

the upper bound of these methods and achieve superior per-

formance. To validate this comment, we select the state-

of-the-art perceptual SR methods – SRGAN [22] and ESR-

GAN [35] to build the rank dataset. Then we use the per-

ceptual metric NIQE [29] for evaluation. NIQE is demon-

strated to be highly correlated with human ratings and easy

to implement. A lower NIQE value indicates better percep-

tual quality. When measured with NIQE on the PIRM-Test

[2] dataset, the average scores of SRGAN and ESRGAN

are 2.70 and 2.55, respectively. ESRGAN obtains better

NIQE scores for most images but not all images, indicating

that SRGAN and ESRGAN have mixed ranking orders with

NIQE.
In order to examine the effectiveness of our proposed

Ranker, we compare two ranking strategies – metric rank
and model classification. Metric rank, which is our pro-
posed method, uses perceptual metrics to rank the images.
For example, in each image pair, the one with a lower score
is labeled to 1 and the other is 2. The model classification,
as the comparison method, ranks images according to the
used SR methods, i.e., all results of ESRGAN are labeled
to 1 and those of SRGAN are labeled to 2. We then give
an analysis of the upper bound of these two methods. The
upper bound can be calculated as:

UBMC = Mean(PMSR2−L + PMSR2−H)

UBMR = Mean(PMSR2−L + PMSR1−L)

where : PMSR1−L < PMSR2−H ,

(10)

where UBMC and UBMR represent the upper bound of

model classification and metric rank, respectively. PM

3099



2.7
2.55
2.55

2.47

2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75

N
IQ

E

Metric Rank Model Classification ESRGAN SRGAN

Figure 3. The upper bound (average NIQE value) of SRGAN,
ESRGAN, model rank and model classification.

(Perceptual Metric) is the perceptual score for each image

in the corresponding class. (SR1, SR2) represents two SR

results of the same LR. Subscripts −L and −H indicate

the Lower and Higher perceptual score in (SR1, SR2). We

use (SRGAN, ESRGAN) as (SR1, SR2) to obtain the upper

bound of these methods, as shown in Figure 3. Obviously,

metric rank could combine the better parts of different algo-

rithms and exceed the upper bound of a single algorithm.

We further conduct SR experiments to support the above

analysis. We use the metric rank and model classifica-

tion approach to label the rank dataset. Then the Ranker-

MC (model classification) and Ranker-MR (metric rank)

are used to train separate RankSRGAN models. Figure 4

shows the quantitative results (NIQE), where RankSRGAN-

MR outperforms ESRGAN and RankSRGAN-MC. This

demonstrates that our method can exceed the upper bound

of all chosen SR algorithms.

4. Experiments

4.1. Training details of Ranker

Datasets. We use DIV2K (800 images) [1] and Flickr2K

(2650 images) [1] datasets to generate pair-wise images as

rank dataset for training. Three different SR algorithms

(SRResNet [22], SRGAN [22] and ESRGAN [35]) are used

to generate super-resolved images as three perceptual lev-

els, as shown in Table 1.

PIRM-Test SRResNet SRGAN ESRGAN

NIQE 5.968 2.705 2.557

PSNR 28.33 25.62 25.30

Table 1. The performance of super-resolved results with three per-
ceptual levels in PIRM-Test [2]

We extract patches from those pair-wise images with a

stride of 200 and size of 296 × 296. For one perceptual

level (SR algorithm), we can generate 150 K patches (10%
for validation, 90% for training). Inspired by PIRM2018-

SR Challenge [2], we use NIQE [29] as the perceptual met-

ric, while other metrics will be investigated in Section 4.4.

Finally, we label every image pair to (3,2,1) according to the

order of corresponding NIQE value (the one with the best

NIQE value is set to 1).

Implementation details. As shown in Figure 2, we

utilize VGG [33] structure to implement the Ranker [25],

which includes 10 convolutional layers, a series of batch

2.7

2.55
2.64

2.51

25.6

25.3

25.1

25.6NIQE PSNR

SRGAN ESRGAN RankSRGAN-MC RankSRGAN-MR

Figure 4. The NIQE of RankSRGAN-MR exceeds that of SR-
GAN, ESRGAN and RankSRGAN-MC.

normalization and LeakyReLU operations. Instead of max-

pooling, we apply convolutional layer with a kernel size 4
and stride 2 to downsample the features. In one iteration,

two patches with different perceptual levels are randomly

selected as the input of Ranker. For optimization, we use

Adam [21] optimizer with weight decay 1 × 10−4. The

learning rate is initialized to 1 × 10−3 and decreases with

a factor 0.5 of every 10 × 104 iterations for total 30 × 104

iterations. The margin ǫ of margin-ranking loss is set to

0.5. For weight initialization, we use He. [17] method to

initialize the weights of Ranker.
Evaluation. The Spearman Rank Order Correlation Co-

efficient (SROCC) [25] is a traditional evaluation metric to
evaluate the performance of image quality assessment algo-
rithms. In our experiment, SROCC is employed to measure
the monotonic relationship between the label and the rank-
ing score. Given N images, the SROCC is computed as:

SROCC = 1−
6
∑N

i=1(yi − ŷi)
2

N(N2 − 1)
, (11)

where yi represents the order of label, and ŷi is the order of

output score of the Ranker. SROCC has the ability to mea-

sure the accuracy of Ranker. The larger value of SROCC

represents the better accuracy of Ranker. For validation

dataset, the ranker achieves a SROCC of 0.88, which is an

adequate performance compared with those in the related

work [8, 25].

4.2. Training details of RankSRGAN

We use the DIV2K [1] dataset to train RankSRGAN. The

patch sizes of HR and LR are set to 296 and 74, respectively.

For testing, we use benchmark datasets Set14 [39], BSD100

[27] and PIRM-test [2]. PIRM-test is used to measure the

perceptual quality of SR methods in PIRM2018-SR [2].

Following the settings of SRGAN [22], we employ a stan-

dard SRGAN [22] as our base model. The generator is built

with 16 residual blocks, and the batch-normalization lay-

ers are removed [35]. The discriminator utilizes the VGG

network [33] with ten convolutional layers. The mini-batch

size is set to 8. At each training step, the combination of

loss functions (Section 3.3) for the generator is:

Ltotal = LP + 0.005LG + 0.03LR, (12)

where the weights of LG and LR are determined empiri-

cally to obtain high perceptual improvement[8, 22, 35]. The
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Dataset Metric Bicubic FSRCNN SRResNet SRGAN ESRGAN RankSRGAN (ours)

Set14

NIQE 7.61 6.92 6.12 3.82 3.28 3.28

PI 6.97 6.16 5.36 2.98 2.61 2.61

PSNR 26.08 27.66 28.57 26.68 26.39 26.57

BSD100

NIQE 7.60 7.11 6.43 3.29 3.21 3.01

PI 6.94 6.17 5.34 2.37 2.27 2.15

PSNR 25.96 26.94 27.61 25.67 25.72 25.57

PIRM-Test

NIQE 7.45 6.86 5.98 2.71 2.56 2.51

PI 7.33 6.02 5.18 2.09 1.98 1.95

PSNR 26.45 27.57 28.33 25.60 25.30 25.62

Table 2. Average NIQE [29], PI [2] and PSNR values on the Set14 [39], BSD100 [27] and PIRM-Test [2].

Figure 5. Visual results comparison of our model with other works on ×4 super-resolution. Lower NIQE value indicates better perceptual
quality, while higher PSNR indicates less distortion.

Adam[21] optimization method with β1 = 0.9 is used for

training. For generator and discriminator, the initial learn-

ing rate is set to 1 × 10−4 which is reduced by a half for

multi-step [50× 103, 100× 103, 200× 103, 300× 103]. A

total of 600 × 103 iterations are executed by PyTorch. In

training procedure, we add Ranker to the standard SRGAN.

The Ranker takes some time to predict the ranking score,

thus the traning time is a little slower (about 1.18 times)

than standard SRGAN[22]. For the generator, the number

of parameters remains the same as SRGAN[22].

4.3. Comparison with the-state-of-the-arts

We compare the performance of the proposed method

with the state-of-the-art perceptual SR methods ESRGAN

[35]/ SRGAN [22] and the PSNR-orientated methods FS-

RCNN [11] and SRResNet [22] 1. The evaluation metrics

include NIQE [29], PI [2] and PSNR. Table 2 shows their

performance on three test datasets – Set14, BSD100 and

PIRM-Test. Note that lower NIQE/PI indicates better visual

quality. When comparing our method with SRGAN and ES-

RGAN, we find that RankSRGAN achieves the best NIQE

and PI performance on all test sets. Furthermore, the im-

provement of perceptual scores does not come at the price

of PSNR. Note that in PIRM-Test, RankSRGAN also ob-

tains the highest PSNR values among perceptual SR meth-

ods. Figure 5 shows some visual examples, where we ob-

serve that our method could generate more realistic textures

without introducing additional artifacts (please see the win-

1 Our implementation of SRResNet and SRGAN achieve even better perfor-

mance than that reported in the original paper.
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Figure 6. Convergence curves of RankSRGAN in PSNR/ NIQE.

dows in Img 233 and feathers in Img 242).

As the results may vary across different iterations, we

further show the convergence curves of RankSRGAN in

Figure 6. Their performance on NIQE and PSNR are rel-

atively stable during the training process. For PSNR, they

obtain comparable results. But for NIQE, RankSRGAN is

consistently better than SRGAN by a large margin.

4.4. Ablation study

Effect of different rank datasets. The key factor that

influences the performance of Ranker is the choice of SR al-

gorithms. In the main experiments, we use (SRResNet, SR-

GAN, ESRGAN) to generate the rank dataset. Then what if

we select other SR algorithms? Will we always obtain better

results than SRGAN? To answer the question, we first ana-

lyze the reason of using these three algorithms, then conduct

another experiment using a different combination.

As our baseline model is SRGAN, we need the Ranker

to have the ability to rank the outputs of SRGAN. Since the

training of SRGAN starts from the pre-trained model SR-

ResNet, the Ranker should recognize the results between

SRResNet and SRGAN. That is the reason why we choose

SRResNet and SRGAN. Then the next step is to find a bet-

ter algorithm that could guide the model to achieve better

results. We choose ESRGAN as it surpasses SRGAN by

a large margin in the PIRM-SR2018 challenge [2]. There-

fore, we believe that a better algorithm than SRGAN could

always lead to better performance.

Method SRGAN RankSRGAN RankSRGAN-HR

NIQE 2.70 2.51 2.58

PSNR 25.62 25.60 26.00

Table 3. Comparison with RankSRGAN and RankSRGAN-HR.

To validate this comment, we directly use the ground

truth HR as the third algorithm, which is the extreme case.

We still apply NIQE for evaluation. Interestingly, although

HR images have infinite PSNR values, they cannot sur-

pass all the results of SRGAN on NIQE. Similar to ESR-

GAN, HR and SRGAN have mixed ranking orders. We

train our Ranker with (SRResNet, SRGAN, HR) and ob-

tain the new SR model – RankSRGAN-HR. Table 3 com-

pares its results with SRGAN and RankSRGAN. As ex-

pected, RankSRGAN-HR achieves better NIQE values than

SRGAN. But at the same time, RankSRGAN-HR also im-

proves the PSNR by almost 0.4 dB. It achieves a good bal-

ance between the perceptual metric and PSNR. This also

indicates that the model could always have an improvement

space as long as we have better algorithms for guidance.

Effect of different perceptual metrics. As we claim

that Ranker can guide the SR model to be optimized in the

direction of perceptual metrics, we need to verify whether it

works for other perceptual metrics. We choose Ma [27] and

PI [2], which show high correlation with Mean-Opinion-

Score (Ma: 0.61, PI: 0.83) in [2]. We use Ma and PI as

the evaluation metric to generate the rank dataset. All other

settings remain the same as RankSRGAN with NIQE. The

only difference in these experiments is the ranking labels

in the rank dataset. The results are summarized in Table

4, where we observe that the Ranker could help RankSR-

GAN achieve the best performance in the chosen metric.

This shows that our method can generalize well on different

perceptual metrics.

Method NIQE 10-Ma PI PSNR

SRGAN 2.71 1.47 2.09 25.62

ESRGAN 2.56 1.40 1.98 25.30

RankSRGANN 2.51 1.39 1.95 25.62

RankSRGANM 2.65 1.38 2.01 25.21

RankSRGANPI 2.49 1.39 1.94 25.49

Table 4. The performance of RankSRGAN with different Rankers.
N : Ranker with NIQE [29], M : Ranker with Ma [26] and PI:
Ranker with PI [2].

Effect of Ranker: Rank VS. Regression. To train our

Ranker, we choose to use the ranking orders instead of the

real values of the perceptual metric. Actually, we can also

let the network directly learn the real values. In [8], Choi et

al. use a regression network to predict a subjective score for

a given image and define a corresponding subjective score

loss. To compare these two strategies, we train a “regres-

sion” Ranker with MSE loss instead of the margin-ranking

loss. The labels in the rank dataset are real values of the

perceptual metric. We use NIQE and Ma to generate the la-

bels of rank dataset. All the other settings remain the same

as RankSRGAN.

Metric Method E(|SR1 − SR2|)

NIQE regression 0.06

NIQE rank 0.11

Ma regression 0.09

Ma rank 0.15

Table 5. The distance between SR1 and SR2 with regression and
rank.

Theoretically, the real values of perceptual metrics may

distribute unevenly among different algorithms. For exam-

ple, SRGAN and ESRGAN are very close to each other

on NIQE values. This presents a difficulty for the learn-

ing of regression. On the contrary, learning ranking orders
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can simply ignore these variances. In experiments, we first

measure the distances between the outputs of SRGAN and

ESRGAN with different strategies. Table 5 shows the mean

absolute distances of these two strategies. Obviously, re-

sults with rank have larger distances than results with re-

gression. When applying these Rankers in SR training, the

rank strategy achieves better performance than the regres-

sion strategy on the selected perceptual metric. Results are

shown in Table 6.

Method NIQE 10-Ma PSNR

SRGAN 2.71 1.47 25.62

ESRGAN 2.55 1.40 25.30

RankSRGAN-ReN 2.53 1.42 25.58

RankSRGANN 2.51 1.39 25.60

RankSRGAN-ReM 2.61 1.43 25.23

RankSRGANM 2.65 1.38 25.21

Table 6. The performance of RankSRGAN with different rankers.
Re: Ranker with regression, N : Ranker with NIQE, M : Ranker
with Ma.

Effect of different losses. To test the effects of rank-

content loss, we expect to add MSE loss to achieve im-

provement in PSNR. Table 7 shows the performance of our

method trained with the combination of loss functions.

Method Loss NIQE PSNR

SRGAN LP 2.71 25.62

ESRGAN LP + 10LM 2.55 25.30

RankSRGAN LP + LR 2.51 25.62

RankSRGAN-M1 LP + LR + α1LM 2.55 25.87

RankSRGAN-M2 LP + LR + α2LM 2.72 26.62

Table 7. The performance of RankSRGAN with the combination
of loss functions (P: perceptual loss, R: rank-content loss, M: MSE
loss). α1, α2 : {1, 5}

As expected, increasing the contribution of the MSE loss

with the larger α results in higher PSNR values. On the

other hand, the NIQE values are increased which is a trade-

off between PSNR and NIQE as mentioned in [3], and our

method has a capability to deal with the priorities by adjust-

ing the weights of the loss functions.

4.5. User study

To demonstrate the effectiveness and superiority of

RankSRGAN, we conduct a user study against state-of-the-

art models, i.e. SRGAN [22] and ESRGAN [35]. In the first

session, two different SR images are shown at the same time

where one is generated by the proposed RankSRGAN and

the other is generated by SRGAN or ESRGAN. The partic-

ipants are required to pick the image that is more visually

pleasant (more natural and realistic). We use the PIRM-Test

[2] dataset as the testing dataset. There are a total of 100

images, from which 30 images are randomly selected for

each participant. To make a better comparison, one small

patch from the image is zoomed in. In the second session,

66.2 

75.1 

33.8 

24.9 ESRGAN

SRGAN

Ours

Ours

Figure 7. The results of user studies, comparing our method with
SRGAN [22] and ESRGAN [35].

we focus on the perceptual quality of different typical SR

methods in a sorting manner. The participants are asked to

rank 4 versions of each image: SRResNet [22], ESRGAN

[35], RankSRGAN, and the Ground Truth (GT) image ac-

cording to their visual qualities. Similar to the first session,

20 images are randomly shown for each participant. There

are totally 30 participants to finish the user study.

91.5 

24.7 

69.3 

5.0 

3.6 

67.7 

25.2 

95.4 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SRResNet

ESRGAN

Ours

GT

Rank 1 Rank 2 Rank 3 Rank 4

Figure 8. The ranking results of user studies: SRResNet [22],
ESRGAN [35], RankSRGAN (ours), and the original HR image.

As suggested in Figure 7, RankSRGAN has achieved

better visual performance against ESRGAN and SRGAN.

Since RankSRGAN consists of a base model SRGAN and

the proposed Ranker, it can naturally inherit the character-

istics of SRGAN and achieve better performance in per-

ceptual metric. Thus, RankSRGAN performs more simi-

lar to SRGAN than ESRGAN. Figure 8 shows the ranking

results of different SR methods. As RankSRGAN has the

best performance in perceptual metric, the ranking results

of RankSRGAN are second to GT images, but sometimes it

even produces images comparable to GT.

5. Conclusion

For perceptual super-resolution, we propose RankSR-

GAN to optimize SR model in the orientation of percep-

tual metrics. The key idea is introducing a Ranker to learn

the behavior of the perceptual metrics by learning to rank

approach. Moreover, our proposed method can combine

the strengths of different SR methods and generate better

results. Extensive experiments well demonstrate that our

RankSRGAN is a flexible framework, which can achieve

superiority over state-of-the-art methods in perceptual met-

ric and have the ability to recover more realistic textures.
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