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Abstract

Multi-sensor perception is crucial to ensure the reliabil-

ity and accuracy in autonomous driving system, while multi-

object tracking (MOT) improves that by tracing sequential

movement of dynamic objects. Most current approaches for

multi-sensor multi-object tracking are either lack of relia-

bility by tightly relying on a single input source (e.g., cen-

ter camera), or not accurate enough by fusing the results

from multiple sensors in post processing without fully ex-

ploiting the inherent information. In this study, we design

a generic sensor-agnostic multi-modality MOT framework

(mmMOT), where each modality (i.e., sensors) is capable

of performing its role independently to preserve reliability,

and could further improving its accuracy through a novel

multi-modality fusion module. Our mmMOT can be trained

in an end-to-end manner, enables joint optimization for the

base feature extractor of each modality and an adjacency

estimator for cross modality. Our mmMOT also makes the

first attempt to encode deep representation of point cloud

in data association process in MOT. We conduct extensive

experiments to evaluate the effectiveness of the proposed

framework on the challenging KITTI benchmark and report

state-of-the-art performance. Code and models are avail-

able at https://github.com/ZwwWayne/mmMOT.

1. Introduction

Reliability and accuracy are the two fundamental re-

quirements for autonomous driving system. Dynamic ob-

ject perception is vital for autonomous driving. To improve

its reliability, multi-modality sensors can be employed to

provide loosely coupled independent clues to prevent fail-

ure showed in Figure 1 (a). To improve accuracy, sequen-

tial information from multiple object tracking can be incor-

porated, and better multi-sensor information can reinforce

the final score as in Figure 1 (b). In this paper, we pro-

pose the multi-modality Multi-Object Tracking (mmMOT)

framework, which preserves reliability by a novel fusion
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(b)

Overexposure

False Negative

LiDAR

False Negative

Image

LiDAR

Figure 1. Figure (a) For reliability: camera is disabled when over-

exposure or crashed in transmission. Figure (b) For accuracy:

multi-sensor information could reinforce the perception ability.

The image is cropped and best viewed in color and zoomed in.

module for multiple sensors and improves accuracy with at-

tention guided multi-modality fusion mechanism.

It is non-trivial for traditional methods to design a multi-

modality (i.e., multi-sensor) MOT framework and preserve

both reliability and accuracy. A majority of traditional

methods [1, 9, 12, 25] use camera, LiDAR or radar with

hand-crafted features fused by Kalman Filter or Bayesian

framework. Their accuracy is bounded by the expression

ability of hand-crafted features. Another stream of methods

uses deep feature extractors [11], which significantly im-

prove the accuracy. Nevertheless, they focus on image level

deep representation to associate object trajectories and use

LiDAR only in detection stage. Such a binding method can-

not preserve reliability if the camera is down.

In this work, we design a multi-modality MOT (mm-

MOT) framework that is extendable to camera, LiDAR and

radar. Firstly, it obeys a loose coupling scheme to allow

high reliability during the extraction and fusion of multi-

sensor information. Specifically, multi-modality features

are extracted from each sensor independently, then a fusion

module is applied to fuse these features, and pass them to an

adjacency estimator, which is capable of performing infer-

ence based on each modality. Second, to enable the network

to learn to infer from different modalities simultaneously,

our mmMOT is trained in an end-to-end manner, so that
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the multi-modality feature extractor and cross-modality ad-

jacency estimator are jointly optimized. Last but not least,

we make the first attempt of using deep representation of

point cloud in the data association process for MOT and

achieve competitive results.

We conduct extensive experiments on the fusion module

and evaluate our framework on the KITTI tracking dataset

[13]. Without bells and whistles, we achieve state-of-the-art

results on KITTI tracking benchmark [13] under the online

setting, purely relying on image and point cloud, and our

results with single modality (under sensor failure condition)

by the same model are also competitive (only 0.28% worse).

To summarize, our contributions are as follows:

1. We propose a multi-modality MOT framework with a

robust fusion module that exploits multi-modality in-

formation to improve both reliability and accuracy.

2. We propose a novel end-to-end training method that

enables joint optimization of cross-modality inference.

3. We make the first attempt to apply deep features of

point cloud for tracking and obtain competitive results.

2. Related Work

Multi-Object Tracking Framework. Recent research of

MOT primarily follows the tracking-by-detection paradigm

[6, 11, 38, 50], where object of interests is first obtained by

an object detector and then linked into trajectories via data

association. The data association problem could be tackled

from various perspectives, e.g., min-cost flow [11, 20, 37],

Markov decision processes (MDP) [48], partial filtering [6],

Hungarian assignment [38] and graph cut [44, 49]. How-

ever, most of these methods are not trained in an end-to-end

manner thus many parameters are heuristic (e.g., weights of

costs) and susceptible to local optima.

To achieve end-to-end learning within the min-cost flow

framework, Schulter et al. [37] applies bi-level optimization

by smoothing the linear programming and Deep Structured

Model (DSM) [11] exploits the hinge loss. Their frame-

works, however, are not designed for cross-modality. We

solve this problem by adjacency matrix learning.

Apart from different data association paradigms, corre-

lation features have also been explored widely to determine

the relation of detections. Current image-centric methods

[11, 35, 38, 50] mainly use deep features of image patches.

Hand-crafted features are occasionally used as auxiliary in-

puts, including but not limited to bounding box [15], geo-

metric information [27], shape information [38] and tempo-

ral information [45]. 3D information is also beneficial and

thus exploited by prediction from 3D detection [11] or es-

timation from RGB image with either neural networks [36]

or geometric prior [38]. Osep et al. [25] fuses the infor-

mation from RGB images, stereo, visual odometry, and op-

tionally scene flow, but it cannot be trained in an end-to-end

manner. All the aforementioned methods must work with

camera thus lack of reliability. By contrast, our mmMOT

extracts feature from each sensor independently (both deep

image features and deep representation of point cloud), and

each sensor plays an equally important role and they can be

decoupled. The proposed attention guided fusion mecha-

nism further improves accuracy.

Deep Representation of Point Cloud. A traditional us-

age of point cloud for tracking is to measure distances [31],

provide 2.5D grid representation [2, 10] or to derive some

hand-crafted features [42]. None of them fully exploit the

inherent information of the point cloud for the data associ-

ation problem. Recent studies [3, 7, 24] have demonstrated

the value of using 3D point cloud as perception features in

autonomous driving. To learn a good deep representation

for point cloud, PointNet [29] and PointNet++ [30] process

raw unstructured point clouds using symmetric functions.

We adopt this effective method in our framework. Other

studies such as PointSIFT [17] proposes an orientation-

encoding unit to learn SIFT-like features of point cloud,

and 3DSmoothNet [14] learns a voxelized smoothed den-

sity value representation. There are also methods [46, 47]

which project the point cloud to a sphere thus 2D CNN can

be applied for the segmentation task.

Object Detection. An object detector is also a vital com-

ponent in the tracking by detection paradigm. Deep learn-

ing approaches for 2D object detection have improved dras-

tically [23, 32, 43] since Faster R-CNN [33]. 3D object

detection receives increasing attention recently. To exploit

both image and point cloud, some methods [8, 18] aggregate

point cloud and image features from different views, while

F-PointNet [28] obtains frustum proposal from an image,

and then applies PointNet [29] for 3D object localization

with the point cloud. There exist state-of-the-art methods

[19, 39, 51] that use point cloud only. One-stage detectors

[19, 51] usually apply CNN on the voxelized representation,

and two-stage detectors such as Point RCNN [39] generates

proposals first by segmentation, which are refined in the

second stage. Our mmMOT is readily adaptable for both

2D and 3D object detectors.

3. Multi-Modality Multi-Object Tracking

We propose a multi-modality MOT (mmMOT) frame-

work, which preserves reliability via independent multi-

sensor feature extraction and improves accuracy via modal-

ity fusion. It generally follows the widely adopted tracking-

by-detection paradigm from the min-cost flow perspective.

Specifically, our framework contains four modules includ-

ing an object detector, feature extractor, adjacency estima-

tor and min-cost flow optimizer, as shown in Fig. 2 (a),

(b), (c), (d), respectively. First, an arbitrary object detector

is used to localize objects of interests. We use PointPillar

[19] for convenience. Second, the feature extractor extracts
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Figure 2. The pipeline of mmMOT. The feature extractors first extract features from image and LiDAR, and the robust fusion module fuses

the multi-sensor features. Next, the correlation operator produces the correlation features for each detection pair, by which the adjacency

estimator predicts the adjacency matrix. All the predicted scores are optimized to predict the binary variable Y .

features from each sensor independently for each detection

(Section 3.2), after which a fusion module is applied to fuse

and pass the single modality feature to the adjacency es-

timator (Section 3.3). The adjacency estimator is modality

agnostic. It infers the scores necessary for the min-cost flow

graph computation. The structure of the adjacency estima-

tor and the associated end-to-end learning method will be

demonstrated in Section 3.4. The min-cost flow optimizer

is a linear programming solver that finds the optimal solu-

tion based on the predicted scores (Section 3.5).

3.1. Problem Formulation

Our mmMOT follows the tracking-by-detection

paradigm to define the data association cost, which is

solved as a min-cost flow problem [11, 20, 37]. Take

the online MOT setting for example, assume there are

N and M detections in two consecutive frames i and

i + 1, denoted by Xi =
{

xi
j | j = 1, · · · , N

}

and

Xi+1 =
{

xi+1

k | k = 1, · · · ,M
}

, respectively. Each

detection is associated to four types of binary variables in

this paradigm. We introduce them following the notation

of Deep Structured Model (DSM) [11]. First, for any xj ,

a binary variable ytruej indicates whether the detection is

a true positive. Second, binary variables ylinkjk indicates

if the j-th detection in the first frame and k-th detection

in the second frame belong to the same trajectory, and

all these ylinkjk form an adjacency matrix Ai ∈ RN×M ,

where Ai
jk = ylinkjk . The other two variables ynewj , yendj

represents whether the detection is the start or the end of

a trajectory, respectively. For convenience, we flatten the

adjacency matrix into a vector Y link, and gather all the

binary variables having the same type as Y true, Y new,

Y end, then all these variables are collapsed into a vector

Y =
[

Y true, Y link, Y new, Y end
]

, which comprises all

states of edges in the network flow. For each binary variable

in Y true, Y link, Y new, Y end, the corresponding scores are

predicted by the confidence estimator, affinity estimator,

start and end estimator, respectively. These estimators form

the adjacency estimator, and we solve them in a multi-task

learning network as shown in Figure 2.

3.2. Single Modality Feature Extractor

In an online setting, only detections in two consecutive

frames are involved. To estimate their adjacency, their deep

representations are first extracted from the respective image

or point cloud. The features of each single modality form

a tensor with a size of 1 × D × (N +M), where D =
512 is the vector length, and N +M is the total number of

detections in the two frames.

Image Feature Extractor. Upon obtaining 2D bounding

boxes from either a 2D or 3D detector, the image patches

associated to each detection are cropped and resized to a

square with a side length of 224 pixels to form a batch. All
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Figure 3. The robust fusion module and three multi-modality fu-

sion modules. The robust fusion module can apply any one of the

fusion modules A, B and C to produce the fused modality. Unlike

the conventional fusion modules, the robust fusion module pro-

duces both the single modalities and the fused modality as an out-

put. Fusion module A concatenates the multi-modality features,

module B fuses them with a linear combination, module C intro-

duces attention mechanism to weights the importance of sensor’s

feature adaptively.

these patches form a 4D tensor with a size of (N +M) ×
3× 224× 224. We use VGG-Net [40] as the image feature

extractor’s backbone. To exploit features at different level,

we modify the skip-pooling [4] so as to pass different level’s

feature to the top, as shown in the VGG-Net depicted in

Figure 2. The details of skip-pooling are provided in the

supplementary material.

Point Cloud Feature Extractor. One of our contributions

is to apply deep representation of point cloud in data associ-

ation process for MOT. While the LiDAR point cloud asso-

ciated to a single detection could be easily obtained by a 3D

bounding box, it remains a challenge if only a 2D bound-

ing box is provided. It is possible to obtain a 3D bound-

ing box using F-PointNet [28], or directly estimated the 3D

bounding box with other geometric information and priori

[36, 38]. In this study, we choose not to locate the detection

in 3D space because we observed more errors. Rather, in-

spired by F-PointNet [28], we exploit all the point clouds in

the frustum projected by the 2D bounding box. This leads

to high flexibility and reliability, and save computation from

obtaining 3D bounding box.

The point cloud forms a tensor with a size 1 × D × L,

where L is the total number of all the points in all bound-

ing boxes, and D = 3 is the dimension of the point cloud

information. We empirically found the reflectivity of point

cloud provides only with marginal improvement, thus we

only used the coordinates in 3D space. We modify the

vanilla PointNet [30] to extract features from point cloud

for each detection as shown in the PointNet depicted in Fig-

ure 2. To enhance the global information of points in each

bounding box, we employ the global feature branch origi-

nally designed for the segmentation task in PointNet [30],

and we found that average pooling works better than max

pooling in PointNet for tracking. During pooling, only the

feature of points belonging to the same detection are pooled

together. The feature vector of point cloud has a length of

512 for each detection.

3.3. Robust MultiModality Fusion Module

In order to better exploit multi-sensor features while

maintaining the ability to track with each single sensor, our

robust fusion module is designed to have the capability of

fusing features of multiple modalities as well as handing

original features from just a single modality.

Robust Fusion Module. The operations in the adjacency

estimator is batch-agnostic, thus we concatenate single

modalities and the fused modality in the batch dimension

to ensure that the adjacency estimator could still work as

long as there is an input modality. This design enables the

proposed robust fusion module to skip the fusion process

or fuse the remaining modalities (if there are still multi-

ple sensors) during sensor malfunctioning, and pass them to

the adjacency estimator thus the whole system could work

with any sensor combination. Formally, we denote the fea-

ture vectors of different modalities as {F s
i }

S

s=0
, where the

number of sensors is S, and the fused feature is denoted as

F
fuse
i . In our formulation, the features of fused modality

has the same size as a single modality. The robust fusion

module concatenates {F s
i }

S

s=0
and F

fuse
i along the batch

dimension and feeds them to the adjacency estimator. They

form a tensor of size (S + 1)×D × (N +M).
The robust fusion module could employ arbitrary fusion

module, and we investigate three fusion modules as shown

in Figure 3. Take two sensors’ setting as an example, the

fusion module A naively concatenates features of multiple

modalities; the module B add these features together; the

module C introduces attention mechanism.

Fusion Module A. A common approach is to concatenate

these features, and use point-wise convolution with weight

W to adapt the length of the output vector to be the same as

a single sensor’s feature as follows:

F
fuse
i = W ⊗ CONCAT

(

F 0
i , · · · , F

S
i

)

, (1)

where ⊗ denotes a convolution operation, and CONCAT (·)
denotes a concatenation operation.

Fusion Module B. Another intuitive approach is to fuse

these two features with addition, we reproject the features

of each modality and add them together as follows:

F
fuse
i =

(

∑S

s=0
W s ⊗ F s

i

)

, (2)

where W s denotes the corresponding convolution kernels

to the s-th sensor’s feature. By addition the module gath-

ers information from each sensor, and correlation feature of

fused modality is also more like that of single sensor. It

is favorable for the adjacency estimator to handle different
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modality since the correlation operation is multiplication or

subtraction.

Fusion Module C. The module C introduces an attention

mechanism for guiding the information fusion from differ-

ent sensors, since the significance of a sensor’s information

might vary in different situations, e.g., the point cloud fea-

ture might be more important when the illumination condi-

tion is bad, and the image feature might be more important

when the point cloud is affected in rainy days. The attention

map Gs
i for each sensor is first calculated as follows:

Gs
i = σ (W s

att ⊗ F s
i ) , (3)

where W s
att is the convolution parameter and σ is a sig-

moid function. We expect the W s
att to learn predict the im-

portance conditioned on the feature itself, and the sigmoid

function normalizes the attention map to be in the range

from 0 to 1. Then the information is fused as follows:

F
fuse
i =

1
∑S

s=0
Gs

i

∑S

s=0
Gs

i ⊙ (W s ⊗ F s
i ) , (4)

where ⊙ denotes element-wise multiplication, and the sum-

mation of Gs
i is taken as a denominator for normalization.

3.4. Deep Adjacency Matrix Learning

Given the extracted multi-modality features, the adja-

cency estimator infers the confidence, affinity, start and end

scores in the min-cost flow graph [11, 37] based on each

modality. These features are shared for each branch of the

adjacency estimator, namely the confidence estimator, affin-

ity estimator, start and end estimator. It is straightforward

to learn a model for confidence estimator by taking it as a

binary classification task. We focus on the design of the two

other branches.

Correlation Operation. To infer the adjacency, the corre-

lation of each detection pair is needed. The correlation op-

eration is batch-agnostic thus it can handle cross-modality,

and the operation applied channel by channel to take ad-

vantage of the neural network. The commutative property

is theoretically favorable for learning paired data, since it

is agnostic of the order of F i
j and F i+1

k . In this work, we

compare three simple yet effective operators as follows:

• Element-wise multiplication,: Fjk = F i
j ⊙ F i+1

k ,

• Subtraction: Fjk = F i
j − F i+1

k ,

• Absolute subtraction: Fjk =
∣

∣F i
j − F i+1

k

∣

∣.

The element-wise multiplication is equivalent to a depth-

wise correlation filter [21], where the filter size is 1 × 1.

The subtraction measures the distance of two vectors. By

taking the absolute value of subtraction, the operation be-

comes commutative and agnostic to the chronology of de-

tection, which makes the network more robust.

Affinity Estimator. The obtained Fjk is then used by

the affinity estimator to predict the adjacency matrix Ai.

Point-wise	
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Average
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𝜃"
#$%
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Figure 4. The structure of the affinity estimator and start and end

estimator. The affinity estimator estimates the adjacency using

point-wise convolution. The start and end estimator gathers the

correlation feature of each detection to check whether a detection

is linked to make prediction more robust.

Since the correlation operation handles multi-modality in

the batch dimension and is performed on each detection

pair between two frames, the correlation feature map has

a size of 3 × D × N × M . We use 2D point-wise convo-

lution as shown in Figure 4. This makes the network han-

dle each correlation feature separately since it only needs

to determine whether Fjk indicates a link. Since the con-

volution is batch-agnostic, it could work on any combina-

tion of modality, and the output adjacency matrix will has

a size of 3 × 1 × N × M . Because these three predic-

tions have the same target, we apply supervision signal to

each of them, which enables joint optimization of feature

extractor for each modality and affinity estimator for cross

modality. During inference, the affinity estimator needs no

modification if the sensor combination is changed, which

allows both flexibility and reliability.

Start and End Estimator. The start and end estimator es-

timate whether a detection is linked, thus their parameters

are shared for efficiency. Given the correlation feature Fjk,

after gathering all the correlation information of one detec-

tion in each row or column by average pooling, the estima-

tor also uses point-wise convolution to infer whether one

detection is linked as shown in Figure 4. Since the pool-

ing layer is batch-agnostic, the start and end estimator is

also flexible for different sensor settings. During inference,

we simply pad zeros for new score of detection in the first

frame and end score of detection in the last frame, since

they cannot be estimated from the correlation feature map.

Ranking Mechanism. We denote the raw output of the

neural network’s last layer as oijk, and we found that ajk
should also be the greatest value among ajs, s = 1, ...M
and atk, t = 1, ...N , but directly take Ai

jk = oijk does not

exploit this global information, thus we design a ranking

mechanism to handle this problem. Specifically, we apply a

softmax function for each row and each column in the out-

put matrix, and gather these two matrices to get the final

adjacency matrix. In this work, we investigate three op-

erations to combine the two softmax feature maps: max,
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multiplication and average. Taking the multiplication for

example, the ranking mechanism is introduced as follows:

aijk =
eo

i
jk

∑N

s=0
eo

i
js

×
eo

i
jk

∑M

t=0
eo

i
tk

. (5)

Loss Function. The whole framework can be learnt in an

end-to-end manner in a multi-task learning framework. We

adopt the cross entropy loss for the classification branch and

the L2 loss for the other two, thus the overall loss function

can be written as follows:

L = Llink + αLstart + γLend + βLtrue, (6)

where α, γ and β indicates the weight of loss for each task.

We empirically set α = γ = 0.4 and β = 1.5 in all the

experiments in this paper.

3.5. Linear Programming

After obtaining the prediction score from the neural net-

works, the framework needs to find an optimal solution

from the min-cost flow graph. There are several facts that

could be exploited as linear constraints among these binary

variables in Y. Firstly, if a detection is a true positive, it has

to be either linked to another detection in the previous frame

or the start of a new trajectory. Therefore, for one detection

in current frame and all detections in its previous frame, a

linear constraint can be defined in the form as follows:

∀k, ytruek =
∑N

j=0
ylinkjk + ystartk . (7)

Symmetrically, for one detection in previous frame and all

detections in current frame, a linear constraint can be de-

fined as follows:

∀j, ytruej =
∑M

k=0
ylinkjk + yendj . (8)

These two constraints can be collapsed in a matrix form to

yield CY = 0, which has already encodes all valid trajec-

tories. Then the data association problem is formulated as

an integer linear program as follows:

argmax
y

= Θ (X)
⊤
Y

s.t. CY = 0,Y ∈ {0, 1}
|Y|

,

(9)

where Θ (X) is a flattened vector comprising all the pre-

dicted scores by the adjacency estimator.

4. Experiments

Dataset. Our method is evaluated on the challenging KITTI

Tracking Benchmark [13]. This dataset contains 21 training

sequences and 29 test sequences. We select 10 sequences

from the training partition as the training set and the remain-

ing 11 sequences as the validation set. The train/validation

set split is entirely based on frame number of these se-

quences to make the total frame number of training set

(3975) close to that of validation set (3945). We submit our

test-set result with the model trained only on split training

set for fair comparison [36].

Each vehicle in the dataset is annotated with 3D and 2D

bounding boxes with a unique ID across different frames,

and this allows us to obtain the ground truth adjacency ma-

trix for each detection predicted by the detector. We cal-

culate the Intersection over Union (IoU) between each de-

tection and ground truth (GT) bounding boxes, and assign

the ID of one GT box to a detection if one has an IoU

greater than 0.5 and has the greatest IoU among other de-

tections. This setting is consistent with the test setting of

KITTI Benchmark. The KITTI Benchmark [13] assesses

the performance of tracking algorithms relying on standard

MOT metrics, CLEAR MOT [5] and MT/PT/ML [22]. This

set of metrics measures recall and precision of detection,

and counts the number of identity switches and fragmen-

tation of trajectories. It also counts the mostly tracked or

mostly lost objects, and provides an overall tracking accu-

racy (MOTA).

Implementation Details. We first produce detections using

the official code of PointPillar 1 [19]. The whole tracking

framework is implemented with PyTorch [26]. The image

appearance model’s backbone is VGG-16 [40] with Batch

Normalization [16] pretrained on ImageNet-1k [34]. For

linear programming, we use the mixed integer program-

ming (MIP) solver provided by Google OR-Tools 2. We

train the model for 40 epochs using ADAM optimizer with

a learning rate of 6e−4 and the super convergence strategy

[41]. We manually set the score to be −1 if the confidence

score falls below 0.2, this forces any detection having low

confidence to be ignored during linear programming.

4.1. Ablation Study

To evaluate the proposed approach and demonstrate the

effectiveness of the key components, we conduct an abla-

tion study on the KITTI benchmark [13] under the online

setting, with the state-of-the-art detector PointPillar [19].

We found that PointPillar detector produces large amount

of false positive detections with low prediction score, so we

discard detections with a score below 0.3. This does not hurt

the mAP of detection, but saves a lot of memory in training.

Competency of Point Cloud for Tracking. We set a 2D

tracker as our baseline, which only employs 2D image

patches as cues and use multiplication as correlation op-

erator during data association, without the ranking mech-

anism. We first compare the effectiveness of image and Li-

1https://github.com/nutonomy/second.pytorch
2https://developers.google.com/optimization
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Table 1. Comparison of different modalities. ‘Frustum’ indicates

using point cloud in the frustum. Robust Modules X indicates

using fusion module X in the robust fusion module.

Method Modality MOTA↑ ID-s↓ FP↓ FN↓

Baseline

Image 74.88 454 951 1387

Frustum 75.50 387 918 1418

Point Cloud 75.70 362 946 1393

Ensemble 77.54 158 949 1388

Robust Module A

Image 75.40 396 951 1387

Point Cloud 76.13 317 948 1392

Fusion 77.57 177 910 1406

Robust Module B

Image 75.17 421 951 1387

Point Cloud 74.55 490 951 1387

Fusion 77.62 193 850 1444

Robust Module C

Image 74.86 456 951 1387

Point Cloud 74.94 452 946 1398

Fusion 78.18 129 895 1401

Module A Fusion 77.31 176 934 1412

Module B Fusion 77.31 212 913 1396

Module C Fusion 77.62 142 945 1400

DAR point cloud, and evaluate two approaches to employ

the point cloud: using point cloud in the frustum or in the

bounding box. From the row of baseline in Table 1, it is

observed that using the point cloud in the frustum yields

competitive results as using that in the bounding box. The

results suggest the applicability of point cloud even with 2D

detections (as discussed in Section 3.2), thus the proposed

framework is adaptable for 2D or 3D detector with arbi-

trary modality. More surprisingly, all point cloud methods

perform better than the image baseline, which suggests the

efficacy of point cloud’s deep representation, and indicates

that the system could still work when camera is failed.

Robust Multi-Modality Fusion Module. We compare the

effectiveness of the robust fusion modules A, B, and C.

Baselines comprise of trackers using a single sensor, i.e,

camera or LiDAR; we train and evaluate each modality sep-

arately. To form a stronger baseline, we ensemble the image

model (MOTA 74.88) and point cloud model in bounding

box (MOTA 75.70), and yields much better result (MOTA

77.54). As shown in Table 1, only robust fusion mod-

ule C with attention mechanism surpasses the ensemble re-

sult remarkably, although all fusion methods surpass single-

sensor baselines. The results suggest the non-triviality of

finding a robust fusion module for multi-sensor inputs.

Since each methods with robust fusion module also pro-

vides prediction of single sensor, we compare the single

sensor results of each robust fusion module in Table 1. As

can be observed, while the proposed Robust Module is ca-

pable of fusing multi-modality effectively, it can maintain

competitive performance on the single modality in com-

parison to baselines (wherein dedicated training on single

modality is conducted). Such kind of reliability in fusion is

new in the literature.

Table 2. Comparison of 2D trackers with further modification.

Modification MOTA↑ ID-s↓ FP↓ FN↓
Multiplication 74.88 454 951 1387

Subtraction 75.27 410 951 1387

Absolute subtraction 77.76 143 941 1387

Softmax w mul 75.08 431 951 1387

Softmax w max 76.24 313 940 1387

Softmax w add 77.40 234 891 1387

Table 3. Further improvement on fusion results. ’Correlation’ in-

dicates using absolute subtraction as correlation operation, ’Rank-

ing’ indicates using softmax with addition in ranking mechanism.

Correlation Ranking MOTA↑ ID-s↓ FP↓ FN↓
78.18 129 895 1401

X 79.18 23 873 1418

X X 80.08 13 790 1411

Fusion Module. We further compare the results of normal

fusion modules, which only outputs fused modality to the

adjacency estimator, thus the tracker cannot perform track-

ing with single modality under multi-modality setting. The

results in the last row of Table 1 shows that the proposed

robust module outperforms the baseline modules A, B, and

C consistently, with the additional capability of handling

single modality. The results suggests that by preserving re-

liability, mmMOT gets more supervision signal which is fa-

vorable, and thus further improves the accuracy.

4.2. Further Analysis

Correlation Operator. We further conduct experiments on

correlation function discussed in Section 3.4, and compare

the effectiveness of three different correlation functions on

the 2D baseline. As shown in Table 2, the subtraction vari-

ant always performs better than the multiplication variant,

and with commutative property the absolute subtraction per-

forms the best.

Ranking Mechanism. We also examine the effectiveness

of the ranking mechanism, and investigate three different

variants: the Softmax w mul, Softmax w max, Softmax w

add, which indicate combining the softmax output by multi-

plication, argmax, addition, respectively. From Table 2, we

can see that the ranking mechanism could improve MOTA

by 0.2 at least, and adding the softmax output could yield

improvement of about 2.5 in MOTA.

Best Results with 3D Detection. We further improve the

results of fusion model. Following the conclusion in Table

2, we use the absolute subtraction for correlation operation,

and softmax activation by addition for ranking mechanism.

We compare the efficacy of each modification in Table 3.

The absolute subtraction correlation improves the fusion

model’s MOTA by 1, and the softmax activation with ad-

dition further improves 1 in MOTA and decreases the count

of ID switches to 13, which is a remarkable improvement.
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Table 4. Comparison on the testing set of KITTI tracking benchmark. Only published online methods are reported.

Method MOTA↑ MOTP↑ Prec.↑ Recall↑ FP↓ FN↓ ID-s↓ Frag↓ MT↑ ML↓

DSM [11] 76.15 83.42 98.09 80.23 578 7328 296 868 60.00 8.31

extraCK [15] 79.99 82.46 98.04 84.51 642 5896 343 938 62.15 5.54

PMBM [36] 80.39 81.26 96.93 85.01 1007 5616 121 613 62.77 6.15

JCSTD [45] 80.57 81.81 98.72 83.37 405 6217 61 643 56.77 7.38

IMMDP [48] 83.04 82.74 98.82 86.11 391 5269 172 365 60.62 11.38

MOTBeyondPixels [38] 84.24 85.73 97.95 88.80 705 4247 468 944 73.23 2.77

mmMOT-normal 84.77 85.21 97.93 88.81 711 4243 284 753 73.23 2.77

mmMOT-lose image 84.53 85.21 97.93 88.81 711 4243 368 832 73.23 2.77

mmMOT-lose point cloud 84.59 85.21 97.93 88.81 711 4243 347 809 73.23 2.77

𝑡"
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Figure 5. Failure case analysis.

4.3. KITTI Results

We achieve state-of-the-art and competitive results us-

ing 2D detection from RRC-Net [32] provided by MOT-

BeyondPixels [38]. We use PointNet [30] to process point

clouds in frustum, and VGG-16 [40] for image patches.

More details are provided in the supplementary material.

Table 4 compares our method with other published state-

of-the-art online methods. We first test mmMOT using all

the modalities, namely mmMOT-normal. Then we simulate

the sensor failure case by only passing single modality to

the same model, named mmMOT-lose image/point cloud.

Under both conditions our mmMOT surpass all the other

published state-of-the-art online methods on MOTA.

The proposed method by modality fusion surpasses the

previous best method MOTBeyondPixels [38] by far fewer

ID switches (184 fewer) with the same detection method.

It is noteworthy that our single modality results still per-

form better, and we did not use bounding box and shape

information of detections while MOTBeyondPixels does.

PMBM [27], JCSTD [45], and IMMDP [48] exhibit fewer

ID switches but miss approximately one to two thousand

detections. Those missed detections are hard examples not

only for detection but also for tracking, so it is likely that

they would exhibit higher number of ID switches than our

method if they use the same detections. Our method with

each of the modalities surpasses the DSM [11] and extraCK

[15] with fewer False Negatives and ID switches, i.e, our

method makes fewer mistakes even when more hard exam-

ples are given.

4.4. Failure Case Analysis

We observe several conditions that could cause failure in

our mmMOT. The statistical results are provided in the sup-

plementary material, and the examples are shown in Figure

5, where each row includes four consecutive frames in a

video. First, for objects far away, early errors caused by 2D

detector will lead to false negative detection as shown by

the car with ID 9 in the first row. The error could also cause

ID switches if the car is missed but recovered, as shown by

the car with ID 6 in the first row and the car with ID 7 in

the second row. Second, the illumination also affects the

performance, e.g., the black car in the shade with ID 9 in

the second row. Third, the occlusion also causes difficul-

ties, e.g., the detector missed the car with ID 7 in the first

row. And partial observation makes the cars hard to be dis-

tinguished, e.g., the cars with ID 5 and 7 in the first row

both only have black rears observed, thus are inferred to be

the same. To further address the challenge caused by the

occlusion, illumination and long distance, one may further

exploit multi-modality in detection to prevent early errors,

or exploit more information (e.g., temporal information) in

data association to reinforce the prediction.

5. Conclusion

We have presented the mmMOT: a multi-modality

Multi-object Tracking framework. We make the first at-

tempt to avoid single-sensor instability while keeping multi-

modality effective via a deep end-to-end network. Such a

function is crucial for safe autonomous driving and has been

overlooked by the community. Our framework is learned in

an end-to-end manner with adjacency matrix learning, thus

could learn to infer from arbitrary modality well in the same

time. In addition, this framework is the first to introduce

deep representation of LiDAR point cloud into data associ-

ation problem, and enhances the multi stream framework’s

robustness against sensor malfunctioning.
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