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Abstract

Object detection is an important vision task and has

emerged as an indispensable component in many vision sys-

tem, rendering its robustness as an increasingly important

performance factor for practical applications. While object

detection models have been demonstrated to be vulnerable

against adversarial attacks by many recent works, very few

efforts have been devoted to improving their robustness. In

this work, we take an initial attempt towards this direction.

We first revisit and systematically analyze object detectors

and many recently developed attacks from the perspective

of model robustness. We then present a multi-task learning

perspective of object detection and identify an asymmetric

role of task losses. We further develop an adversarial train-

ing approach which can leverage the multiple sources of at-

tacks for improving the robustness of detection models. Ex-

tensive experiments on PASCAL-VOC and MS-COCO veri-

fied the effectiveness of the proposed approach.

1. Introduction

Deep learning models have been widely applied to many

vision tasks such as classification [45, 47, 19] and object

detection [15, 14, 29, 40, 42, 3], leading to state-of-the-

art performance. However, one impeding factor of deep

learning models is their issues with robustness. It has been

shown that deep net-based classifiers are vulnerable to ad-

versarial attack [49, 16], i.e., there exist adversarial exam-

ples that are slightly modified but visually indistinguish-

able version of the original images that cause the classi-

fier to generate incorrect predictions [36, 4]. Many efforts

have been devoted to improving the robustness of classi-

fiers [35, 34, 56, 17, 25, 44, 46, 38, 30].

Object detection is a computer vision technique that

deals with detecting instances of semantic objects in im-

ages [54, 8, 12]. It is a natural generalization of the vanilla

classification task as it outputs not only the object label as in

classification but also the location. Many successful object

detection approaches have been developed during the past

several years [15, 14, 42, 29, 40] and object detectors pow-
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Figure 1. Standard v.s. robust detectors on clean and adversar-

ial images. The adversarial image is produced using PDG-based

detector attacks [23, 33] with perturbation budget 8 (out of 256).

The standard model [29] fails completely on the adversarial image

while the robust model can produce reasonable detection results.

ered by deep nets have emerged as an indispensable com-

ponent in many vision systems of real-world applications.

Recently, it has been shown that object detectors can also

be attacked by maliciously crafted inputs [57, 32, 23, 6, 55,

11, 31, 22] (c.f . Figure 1). Given its critical role in appli-

cations such as surveillance and autonomous driving, it is

important to investigate approaches for defending object de-

tectors against various adversarial attacks. However, while

many works have shown it is possible to attack a detector,

it remains largely unclear whether it is possible to improve

the robustness of the detectors and what is the practical ap-

proach for that. This work servers as an initial attempt to

bridge this gap towards this direction. We show that it is

possible to improve the robustness of the object detector

w.r.t.various types of attacks and propose a practical ap-

proach for achieving this, by generalizing the adversarial

training framework from classification to detection.
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The contribution of this paper is threefold: i) we pro-

vide a categorization and analysis of different attacks for

object detectors, revealing their shared underlying mecha-

nisms; ii) we highlight and analyze the interactions between

different tasks losses and their implication on robustness;

iii) we generalize the adversarial training framework from

classification to detection and develop an adversarial train-

ing approach that can properly handle the interactions be-

tween task losses for improving detection robustness.

2. Related Work

Attacks and Adversarial Training for Classification.

Adversarial examples have been investigated for general

learning-based classifiers before [2]. As a learning-based

model, deep networks are also vulnerable to adversarial ex-

amples [49, 37]. Many variants of attacks [16, 36, 4] and

defenses [35, 34, 56, 17, 25, 30, 44, 46, 38, 1] have been de-

veloped. Fast gradient sign method (FGSM) [16] and Pro-

jective Gradient Descend (PGD) [33] are two representa-

tive approaches for white-box adversarial attack generation.

Adversarial training [16, 21, 50, 33] is one of the effective

defense method against adversarial attacks. It achieves ro-

bust model training by solving a minimax problem, where

the inner maximization generates attacks according to the

current model parameters while the outer optimization min-

imize the training loss w.r.t.the model parameters [16, 33].

Object Detection and Adversarial Attacks. Many suc-

cessful object detection approaches have been developed

during the past several years, including one-stage [29, 40]

and two-stage variants [15, 14, 42]. Two stage detectors

refine proposals from the first stage by one or multiple re-

finement steps [42, 3]. We focus on one-stage detectors in

this work due to its essential role in different variants of

detectors. A number of attacks for object detectors have

been developed very recently [57, 32, 6, 11, 55, 23, 22, 31].

[57] extends the attack generation method from classifica-

tion to detection and demonstrates that it is possible to at-

tack objectors using a designed classification loss. Lu et al.

generate adversarial examples that fool detectors for stop

sign and face detections [32]. [6] develops physical attacks

for Faster-RCNN [42] and adapts the expectation-over-

transformation idea for generating physical attacks that re-

main effective under various transformations such as view-

point variations. [23] proposes to attack the region-proposal

network (RPN) with a specially designed hybrid loss incor-

porating both classification and localization terms. Apart

from the full images, it is also possible to attack detectors

by restricting the attacks to be within a local region [22, 31].

3. Object Detection and Attacks Revisited

We revisit object detection and discuss the connections

between many variants of attacks developed recently.

base-net
θb

classification
θc

localization
θl

NMS

Figure 2. One-stage detector architecture. A base-net (w. para.

θb) is shared by classification (w. para. θc) and localization (w.

para. θl) tasks. θ = [θb,θc,θl] denotes the full parameters for

the detector. For training, the NMS module is removed and task

losses are appended for classification and localization respectively.

3.1. Object Detection as Multi­Task Learning

An object detector f(x) → {pk,bk}
K
k=1 takes an im-

age x ∈ [0, 255]n as input and outputs a varying number of

K detected objects, each represented by a probability vec-

tor pk ∈ R
C over C classes (including background) and a

bounding box bk = [xk, yk, wk, hk]. Non-maximum sup-

pression (NMS) [43] is applied to remove redundant detec-

tions for the final detections (c.f . Figure 2).

For training, we parametrize the detector f(·) by θ. Then

the training of the detector boils down to the estimation of

θ which can be formulated as follows:

min
θ

E(x,{yk,bk})∼D L(fθ(x), {yk,bk}). (1)

x denotes the training image and {yk,bk} the ground-truth

(class label yk and the bounding box bk) sampled from

the dataset D. We will drop the expectation over data and

present subsequent derivations with a single example to

avoid notation clutter without loss of generality as follows:

min
θ

L(fθ(x), {yk,bk}). (2)

L(·) is a loss function measuring the difference between the

output of fθ(·) and the ground-truth and the minimization

of it (over the dataset) leads to a proper estimation of θ.

In practice, it is typically instantiated as a combination of

classification loss and localization loss as follows [29, 40]:

min
θ

losscls(fθ(x), {yk,bk})+lossloc(fθ(x), {yk,bk}). (3)

As shown in Eqn.(3), the classification and localization

tasks share some intermediate computations including the

base-net (c.f. Figure 2). However, they use different parts of

the output from fθ(·) for computing losses emphasizing on

different aspects, i.e., classification and localization perfor-

mance respectively. This is a design choice for sharing fea-

ture and computation for potentially relevant tasks [29, 40],

which is essentially an instance of multi-task learning [5].

3.2. Detection Attacks Guided by Task Losses

Many different attack methods for object detectors have

been developed very recently [57, 32, 6, 11, 55, 23, 22, 31].

Although there are many differences in the formulations

of these attacks, when viewed from the multi-task learning
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Attacks for Object Detection

Components

losscls lossloc
T N T N

ShapeShifter [6] X

DFool [32], PhyAttack [11] X

DAG [57], Transfer [55] X X

DPatch [31] X X

RAP [23] X X

BPatch [22] X X

Table 1. Analysis of existing attack methods for object detection.

“T” denotes “targeted attack” and “N” for “non-targeted attack”.

perspective as pointed out in Section 3.1, they have the same

framework and design principle: an attack to a detector can

be achieved by utilizing variants of individual task losses

or their combinations. This provides a common grounding

for understanding and comparing different attacks for object

detectors. From this perspective, we can categorize existing

attack methods as in Table 1. It is clear that some methods

use classification loss [6, 32, 11, 57, 55] while other meth-

ods also incorporated localization loss [31, 23, 22]. There

are two perspectives for explaining the effectiveness of in-

dividual task loss in generating attacks: i) the classification

and localization tasks share a common base-net, implying

that the weakness in the base-net will be shared among all

tasks built upon it; ii) while the classification and localiza-

tion outputs have dedicated branches for each task beyond

the shared base-net, they are coupled in the testing phase

due to the usage of NMS, which jointly use class scores and

bounding box locations for redundant prediction pruning.

Although many attacks have been developed and it is

possible to come up with new combinations and configu-

rations following the general principle, there is a lack of un-

derstanding on the role of individual components in model

robustness. Filling this gap one of our contributions which

will naturally lead to our robust training method for object

detectors as detailed in the sequel.

4. Towards Adversarially Robust Detection

4.1. The Roles of Task Losses in Robustness

As the classification and localization tasks of a detec-

tor share a base-net (c.f . Figure 2), the two tasks will in-

evitably affect each other even though the input images are

manipulated according to a criterion trailered for one indi-

vidual task. We therefore conduct analysis on the role of

task losses in model robustness from several perspectives.

Mutual Impacts of Task Losses. Our first empirical ob-

servation is that different tasks have mutual impacts and

the adversarial attacks trailered for one task can reduce the

performance of the model on the other task. To show this,

we take a marginalized view over one factor while inves-

tigating the impact of the other. For example, when con-

classification localization
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Figure 3. Mutual impacts of task losses and gradient visualiza-

tion. (a) Model performance on classification and localization un-

der different attacks: clean image, losscls-based attack and lossloc-

based attack. The model is a standard detector trained on clean

images. The performance metric is detailed in text. (b) Scatter

plot of task gradients for classification gc and localization gl.

sidering classification, we can marginalize out the factor of

location and the problem reduces to a multi-label classifica-

tion task [52]; on the other hand, when focusing on local-

ization only, we can marginalize out the class information

and obtain a class agnostic object detection problem [53].

The results with single step PGD and budget 8 are shown in

Figure 3 (a). The performances are measured on detection

outputs prior to NMS to better reflect the raw performance.

A candidates set is first determined as the foreground can-

didates whose prior boxes have an IoU value larger than 0.5

with any of the ground-truth annotation. This ensures that

each selected candidate has a relative clean input both tasks.

For classification, we compute the classification accuracy

on the candidate set. For localization, we compute the av-

erage IoU of the predicted bounding boxes with ground-

truth bounding boxes. The attack is generated with one-

step PGD and a budget of 8. It can be observed from the

results in Figure 3 (a) that the two losses interact with each

other. The attacks based on the classification loss (losscls)
reduces the classification performance and decreases the lo-

calization performance at the same time. Similarly, the lo-

calization loss induced attacks (lossloc) reduces not only the

location performance but the classification performance as

well. This can essentially be viewed as a type of cross-

task attack transfer: i.e.. when using only the classification

loss (task) to generate adversarial images, the attacks can be

transferred to localization tasks and reduce its performance

and vice versa. This is one of the reason why adversarial

images generated based on individual task losses (e.g. clas-

sification loss [57]) can effectively attack object detectors.

Misaligned Task Gradients. Our second empirical obser-

vation is that the gradients of the two tasks share certain

level of common directions but are not fully aligned, lead-

ing to misaligned task gradients that can obfuscate the sub-

sequent adversarial training. To show this, we analyze the

image gradients derived from the two losses (referred to as

task gradients), i.e., gc = ∇xlosscls and gl = ∇xlossloc.

The element-wise scatter plot between gc and gl is shown
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localization

task domain

Sloc

classification

task domain

Scls

Figure 4. Visualization of task domains Scls and Sloc using

t-SNE. Given a single clean image x, each dot in the picture repre-

sents one adversarial example generated by solving Eqn.(5) staring

from a random point within the ǫ-ball around x. Different colors

encode the task losses used for generating adversarial examples

(red: losscls, blue: lossloc). Therefore, the samples form empiri-

cal images of the corresponding task domains. It is observed that

the two task domains have both overlaps and distinctive regions.

in Figure 3 (b). We have several observations: i) the magni-

tudes of the task gradients are not the same (different value

ranges), indicating the potential existence of imbalance be-

tween the two task losses; ii) the direction of the task gradi-

ents are inconsistent (non-diagonal), implying the potential

conflicts between the two tasks gradients. We further vi-

sualize the task gradient domains representing the domain

of a task maximizing gradient for each respective task (c.f .

Eqn.(5)) as in Figure 4. The fact the the two domains are

not fully separated (i.e. they do not collapse to two iso-

lated clusters) further reinforces our previous observation

on their mutual impacts. The other aspect that they have a

significant non-overlapping portion is another reflection of

the mis-alignments between task gradients (task domains).

4.2. Adversarial Training for Robust Detection

Motivated by the preceding analysis, we propose the fol-

lowing formulation for robust object detection training:

min
θ

[

max
x̄∈Scls∪Sloc

L(fθ(x̄), {yk,bk})
]

, (4)

where the task-oriented domain Scls and Sloc represent the

permissible domains induced by each individual tasks:

Scls,{x̄| arg max
x̄∈Sx

losscls(f(x̄), {yk}))}

Sloc,{x̄| arg max
x̄∈Sx

lossloc(f(x̄), {bk}))}
(5)

where Sx is defined as Sx = {z | z∈B(x, ǫ) ∩ [0, 255]n},

and B(x, ǫ) = {z | ‖z − x‖∞ ≤ ǫ} denotes the ℓ∞-ball

with center as the clean image x and radius as the pertur-

bation budget ǫ. We denote PSx
(·) as a projection operator

projecting the input into the feasible region Sx. It is impor-

tant to note several crucial differences compared with the

conventional adversarial training for classification:

• multi-task sources for adversary training: different

from the adversarial training in classification case [16,

33] where only a single source is involved, here we have

Algorithm 1 Adversarial Training for Robust Detection

Input: dataset D, training epochs T , batch size S,

learning rate γ, attack budget ǫ

for t = 1 to T do

for random batch {xi, {yik,b
i
k}}

S
i=1 ∼D do

· x̃i ∼ B(xi, ǫ)
compute attacks in the classification task domain

· x̄i
cls = PSx

(

x̃i + ǫ · sign
(

∇xlosscls(x̃
i, {yik})

))

compute attacks in the localization task domain

· x̄i
loc=PSx

(

x̃i + ǫ · sign
(

∇xlossloc(x̃
i, {bi

k})
))

compute the final attack examples

· m = L(x̄i
cls, {y

i
k,b

i
k}) > L(x̄i

loc, {y
i
k,b

i
k})

· x̄i = m⊙ x̄i
cls + (1−m)⊙ x̄i

loc

perform adversarial training step

· θ = θ − γ · ∇θ
1
S

∑S

i=1 L(x̄
i, {yik,b

i
k};θ)

end for

end for

Output: learned model parameter θ for object detection.

multiple (in the presence of multiple objects) and hetero-

geneous (both classification and localization) sources of

supervisions for adversary generation and training, thus

generalizing the adversarial training for classification;

• task-oriented domain constraints: different from the

conventional adversarial training setting which uses a

task-agnostic domain constraint Sx, we introduce a task-

oriented domain constraint Scls∪Sloc which restricts the

permissible domain as the set of images that maximize

either the classification task losses or the localization

losses. The final adversarial example used for training

is the one that maximizes the overall loss within this set.

The crucial advantage of the proposed formulation with

task-domain constraints is that we can benefit from gen-

erating adversarial examples guided by each task without

suffering from the interferences between them.

If we relax the task-oriented domain to Sx, set the coor-

dinates of the bounding box corresponding to the full image

and assign a single class label to the image, then the pro-

posed formulation Eqn.(4) reduces to the conventional ad-

versarial training setting for classification [16, 33]. There-

fore, we can view the proposed adversarial training for ro-

bust detection as a natural generalization of the conven-

tional adversarial training under the classification setting.

However, it is crucial to note that while both tasks contribute

to improving the model robustness in expectation according

to their overall strengths, there is no interference between

the tasks for generating individual adversarial example due

to the task oriented domain in contrast to Sx (c.f . Sec.5.3).

Training object detection models that are resistant to ad-

versarial attacks boils down to solving a minimax prob-

lem as in Eqn.(4). We solve it approximately by replac-

ing the original training images with the adversarially per-
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Figure 5. Model performance under different number of steps

for (a) losscls and (b) lossloc-based PGD attack with ǫ = 8. STD

is the standard model. CLS and LOC are our robust models.

turbed ones obtained by solving the inner problem, and

then conducting conventional training of the model using

the perturbed images as typically done in adversarial train-

ing [16, 33]. The inner maximization is approximately

solved using a variant of FGSM [16] for efficiency. For

incorporating the task-oriented domain constraint, we pro-

pose to take FGSM steps within each task domain and then

select the one that maximizes the overall loss. The details

of the algorithm are summarized in Algorithm 1.

5. Experiments

5.1. Experiment and Implementation Details

We use the single-shot multi-box detector (SSD) [29]

with VGG16 [45] backbone as one of the representative

single-shot detectors in our experiments. We also make

the necessary modifications to the VGG16 net as detailed

in [29] and keep the batch normalization layers. Experi-

ments with different detector architectures (Receptive Field

Block-based Detector (RFB) [28], Feature Fusion Single

Shot Detector (FSSD) [24] and YOLO-V3 [40, 41]) and

backbones (VGG16 [45], ResNet50 [19], DarkNet53 [39])

are also conducted for comprehensive evaluations.

For PASCAL VOC dataset, we adopt the standard

“07+12” protocol (a union of 2007 and 2012 trainval,

∼16k images) following [29] for training. For testing, we

use PASCAL VOC2007 test with 4952 test images and

20 classes [10].1 For MS-COCO dataset [27], we train on

train+valminusminival 2014 (∼120k images) and

test on minival 2014 with 80 classes (∼5k images) . The

“mean average precision” (mAP) with IoU threshold 0.5 is

used for evaluating the performance of a detector [10].

All models are trained from scratch using SGD with

an initial learning rate of 10−2, momentum 0.9, weight

decay 0.0005 and batch size 32 [18] with the multi-box

loss [9, 48]. The learning rate schedule is [40k, 60k, 80k]

for PASCAL VOC and [180k, 220k, 260k] for MS-COCO

with decay factor 0.1. The size of the image is 300×300.

Pixel value range is [0, 255] shifted according to dataset

mean. For adversarial attacks and training, we use a bud-

get ǫ = 8, which roughly corresponds to a PSNR of 30

between the perturbed and original images following [23].

1VOC2012 test is not used as the annotations required for generating

attacks are unavailable.
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Figure 6. Model performance under different attack budgets

for (a) losscls and (b) lossloc-based PGD attack with 20 steps. STD

is the standard model. CLS and LOC are our robust models.

ǫ = 0 ǫ = 2 ǫ = 4 ǫ = 8

Figure 7. Visualization of attacks on STD model using losscls
based 20-step PGD attack (zoom electronically for better view).

All the attack methods incorporate sgn(·) operator into the

PGD steps for normalization and efficiency following [16].

5.2. Impacts of Task Losses on Robustness

We will investigate the role of task losses in model ro-

bustness. For this purpose, we introduce the standard model

and several variations of our proposed robust model:

• STD: standard training with clean image as the domain

• CLS: using Scls only as the task domain for training

• LOC: using Sloc only as the task domain for training.

We will systemically investigate the performance of these

models under attacks induced by individual task losses with

different number of attack steps and budgets as follows.

Attacks under different number of steps. We first evalu-

ate the performance of models under attacks with different

number of PGD steps under a fixed attack budget of 8. The

results are shown in Figure 5. We have several interest-

ing observations from the results: i) the performance of the

standard model (STD) drops below all other robust models

within just a few steps and decreases quickly (approach-

ing zero) as the number of PGD steps increases, for both

losscls-base and lossloc-based attacks. These results imply

that both types of attacks are very effective attacks for de-

tectors; ii) all the robust models maintains a relative stable

performance across different number of attack steps, indi-

cating their improved robustness against adversarial attacks

compared to the standard model.

Attacks with different budgets. We evaluate model ro-

bustness under a range of different attack budgets ǫ ∈
{2, 4, 6, 8, 10}. The results are presented in Figure 6. It is

observed that the performance of the standard model trained

with natural images (STD) drops significantly, e.g., from

∼72% on clean images (not shown in figure) to ∼4% with a

small attack budget of 2. Robust models, on the other hand,

degrade more gracefully as the attack budget increases, im-

plying their improved robustness compared to the standard
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attacks clean losscls lossloc DAG [57] RAP [23]

standard 72.1 1.5 0.0 0.3 6.6

ours

CLS 46.7 21.8 32.2 28.0 43.4

LOC 51.9 23.7 26.5 17.2 43.6

CON 38.7 18.3 27.2 26.4 40.8

MTD 48.0 29.1 31.9 28.5 44.9

ours avg 46.3 23.2 29.4 25.0 43.2
Table 2. Impacts of task domains on model performance (mAP)

and defense against attacks from literature (attack ǫ = 8).

model. In Figure 7, we visualize the detection results un-

der different attack budgets on standard model. It is ob-

served that even with a small attack budget (e.g. ǫ=2), the

detection results are changed completely, implying that the

standard model is very fragile in term of robustness, which

is consistent with our previous observation from Figure 6.

It is also observed that the erroneous detections can be of

several forms: i) label flipping: the bounding box loca-

tion is roughly correct but the class label is incorrect, e.g.,

“dinningtable” (ǫ : 0→ 2); ii) disappearing: the bounding

box for the object is missing, e.g., “horse” and “person”

(ǫ : 0 → 2); iii) appearing: spurious detections of objects

that do not exist in the image with locations not well aligned

with any of the dominant objects, e.g., “chair” (ǫ : 0→ 2)

and “pottedplant” (ǫ : 2 → 8). As the attack budget is

increased, the detection output will be further changed in

terms of the three types of changes described above. It can

also be observed from the figure that the attack image gen-

erated with ǫ = 8 bears noticeable changes compared with

the original one, although not very severe. We will therefore

use attack ǫ = 8 as it is a large enough attack budget while

maintain a reasonable resemblance to the original image.

5.3. Beyond Single­Task Domain

We further examine the impacts of task domains on ro-

bustness. The following approaches with different task do-

mains are considered in addition to STD, CLS and LOC:

• CON: using the conventional task agnostic domain Sx,

which is essentially the direct application of the adver-

sarial training for classification [16, 33] to detection;

• MTD: using the task oriented domain Scls ∪ Sloc.

The results are summarized in Table 2. It is observed from

comparison that different domains lead to different levels of

model robustness. For example, for methods with a single

task domain, LOC leads to less robust models compared with

CLS. On the other hand, LOC has a higher clean accuracy

than CLS. Therefore, it is not straightforward to select one

single domain as it is unknown a priori whether one of the

task domains is the best. Simply relaxing the task domains

as done in the conventional adversarial training CON [16, 33]

leads to compromised performance. Concretely, the perfor-

mance of CON with task-agnostic task domain achieves an

in-between or inferior performance compared to the models

SSD-backbone
DAG [57] RAP [23]

STD ours STD ours

VGG16 0.3 28.5 6.6 44.9

ResNet50 0.4 22.9 8.8 39.1

DarkNet53 0.5 26.2 8.2 46.6
Table 3. Evaluation results on across different backbones.

with individual task domains under different attacks, imply-

ing that simply mixing the task domains leads to compro-

mised performance, due to the conflicts between the task

gradients (Sec. 4.1). On the other hand, the robust model

MTD using adversarial training with task oriented domain

constraint can improve the performance over CON baseline.

More importantly, when the task-oriented multi-task do-

main is incorporated, a proper trade-off and overall perfor-

mance is observed compared with the single domain-based

methods, implying the importance of properly handling het-

erogeneous and possibly imbalanced tasks in object detec-

tors. In summary, the tasks could be imbalanced and con-

tribute differently to the model robustness. As it is unknown

a priori which is better, randomly adopting one or simply

combining the losses (CON) could lead to compromised per-

formance. MTD setting overcomes this issue and achieves

performance on par or better than best single domain mod-

els and the task-agnostic domain model.

5.4. Defense against Existing White­box Attacks

To further investigate the model robustness, we evalu-

ate models against representative attack methods from lit-

erature. We use DAG [57] and RAP [23] as representative

attacks according to Table 1. It is important to note that

the attack used in training and testing are different. The

results are summarized in Table 2. It is observed that the

performances of robust models improve over the standard

model by a large margin. CLS performs better in general

than LOC and CON in terms of robustness against the two

attacks from literature. The model using multi-task do-

mains (MTD) demonstrates the best performance. MTD has

a higher clean image accuracy than CLS and performs uni-

formly well against different attacks, thus overall is better

and will be used for reporting performance in the following.

Visualization of example results are provided in Figure 8.

5.5. Evaluation on Different Backbones

We evaluate the effectiveness of the proposed approach

under different SSD backbones, including VGG16 [45],

ResNet50 [19] and DarkNet53 [39]. Average performance

under DAG [57] and RAP [23] attacks are reported in

Table 3. It is observed that the proposed approach can

boost the performance of the detector by a large margin

(20%∼30% absolute improvements), across different back-

bones, demonstrating that the proposed approach performs

well across backbones of different network structures with

clear and consistent improvements over baseline models.

426



s
ta

n
d

a
rd

Results under the DAG [57] attack

o
u

rs
s
ta

n
d

a
rd

o
u

rs

Results under the RAP [23] attack
Figure 8. Visual comparison between standard model and ours under DAG [57] and RAP [23] attacks with attack budget 8.

architecture
DAG [57] RAP [23]

STD ours STD ours

SSD +VGG16 0.3 28.5 6.6 44.9

RFB +ResNet50 0.4 27.4 8.7 48.7

FSSD +DarkNet53 0.3 29.4 7.6 46.8

YOLO +DarkNet53 0.1 27.6 8.1 44.3
Table 4. Evaluation results on different detection architectures.

5.6. Results on Different Detection Architectures

Our proposed approach is also applicable to different

detection architectures. To show this, we use different

detection architectures, including SSD [29], RFB [28],

FSSD [24] and YOLO-V3 [40, 41]. The input image size

for YOLO is 416×416 and all others take 300×300 im-

ages as input. Average performance under DAG [57] and

RAP [23] attacks are summarized in Table 4. It is observed

that the proposed method can improve over the standard

method significantly and consistently for different detector

architectures. This clearly demonstrates the applicability of

the proposed approach across detector architectures.

5.7. Defense against Transferred Attacks

We further test the performance of the robust models

under transferred attacks: attacks that are transferred from

models with different backbones and/or detection architec-

tures. Our model under test is based on SSD+VGG16. For

attacks transferred from different backbones, they are gen-

erated under the SSD architecture but replacing the VGG

backbone with ResNet or DarkNet. For attacks transferred

from different detection architectures, we use RFB [28],

FSSD [24] and YOLO [40, 41].2 DAG [57] and RAP [23] are

used as the underlining attack generation algorithms. The

results are summarized in Table 5. It is observed that the

2As the input image size for YOLO is 416×416, which is different from

input size of 300×300 for SSD, we insert a differentiable interpolation

module (3002→416
2) between the input with size of 300×300 and YOLO.
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Figure 9. Visualization of failure cases. Example challenging cases include images with small objects and visually confusing classes.

transferred attack DAG [57] RAP [23] average

SSD+ResNet50 49.3 49.4 49.4

SSD+DarkNet53 49.2 49.4 49.3

RFB+ResNet50 49.1 49.3 49.2

FSSD+DarkNet53 49.3 49.2 49.3

YOLO+DarkNet53 49.5 49.5 49.5
Table 5. Performance of our model (SSD+VGG16) against attacks

transferred from different backbones and detector architectures.

proposed model is robust against transferred attacks gener-

ated with different algorithms and architectures. It is also

observed that the attacks have a certain level of robustness

can be transferred across detectors with different backbones

or structures. This reconfirms the results from [57, 23].

5.8. Results on MS­COCO

We further conduct experiments on MS-COCO [27],

which is more challenging both for the standard detector

as well as the defense due to its increased number of classes

and data variations. The results of different models under

RAP attack [23] with attack budget 8 and PGD step 20

are summarized in Table 6. The standard model achieves

a very low accuracy in the presence of attack (compared

with ∼40% on clean images). Our proposed models im-

proves over the standard model significantly and performs

generally well across different backbones and detection ar-

chitectures. This further demonstrates the effectiveness of

the proposed approach on improving model robustness.

5.9. Failure Case Analysis

We visualize in Figure 9 some example cases that are

challenging to our current model. Images with small objects

that are challenging for the standard detectors [29, 40] re-

main to be one category of challenging examples for robust

detectors. Better detector architectures might be necessary

to address this challenge. Another challenging category is

objects with visually confusing appearance, which naturally

leads to low confidence predictions. This is more related to

the classification task of the detector and can benefit from

advances in classification [58]. There are also cases where

the predictions are inaccurate or completely wrong, which

reveals the remaining challenges in robust detector training.

model architec. backbone clean attack

standard SSD VGG16 39.8 2.8

ours

SSD VGG16 27.8 16.5

SSD DarkNet53 20.9 18.8

SSD ResNet50 18.0 16.4

RFB ResNet50 24.7 21.6

FSSD DarkNet53 23.5 20.9

YOLO DarkNet53 24.0 21.5
Table 6. Comparison of standard and robust models on MS-COCO

under RAP attack [23] with attack budget 8 and 20 PGD steps.

6. Conclusions

We have presented an approach for improving the robust-

ness object detectors against adversarial attacks. From a

multi-task view of object detection, we systematically ana-

lyzed existing attacks for object detectors and the impacts

of individual task component on model robustness. An ad-

versarial training method for robust object detection is de-

veloped based on these analyses. Extensive experiments

have been conducted on PASCAL-VOC and MS-COCO

datasets and experimental results have demonstrated the ef-

ficacy of the proposed approach on improving model ro-

bustness compared with the standard model, across differ-

ent attacks, datasets, detector backbones and architectures.

This work serves as an initial step towards adversarially

robust detector training with promising results. More efforts

need to be devoted in this direction to address the remain-

ing challenges. New advances on object detection can be

used to further improve the model performance, e.g., bet-

ter loss function for approximating the true objective [26]

and different architectures for addressing small object is-

sues [7, 13]. Similarly, as a component task of object detec-

tion, any advances on classification task could be potentially

transferred as well [58]. There is also a trade-off between

accuracy on clean image and robustness for object detection

as in the classification case [51]. How to leverage this trade-

off better is another future work. Furthermore, by viewing

object detection as an instance of multi-task learning task,

this work could serve as an example on robustness improve-

ment for other multi-task learning problems as well [20, 59].
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