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Abstract

We propose a framework for recognizing human actions

from skeleton data by modeling the underlying dynamic pro-

cess that generates the motion pattern. We capture three

major factors that contribute to the complexity of the motion

pattern including spatial dependencies among body joints,

temporal dependencies of body poses, and variation among

subjects in action execution. We utilize graph convolution

to extract structure-aware feature representation from pose

data by exploiting the skeleton anatomy. Long short-term

memory (LSTM) network is then used to capture the tem-

poral dynamics of the data. Finally, the whole model is

extended under the Bayesian framework to a probabilistic

model in order to better capture the stochasticity and vari-

ation in the data. An adversarial prior is developed to reg-

ularize the model parameters to improve the generalization

of the model. A Bayesian inference problem is formulated to

solve the classification task. We demonstrate the benefit of

this framework in several benchmark datasets with recogni-

tion under various generalization conditions.

1. Introduction

In recent years, skeleton based action recognition attracts

an increasing attention as the quality of 2D/3D pose estima-

tion methods improve [56, 48, 8]. Derived from RGB or

depth videos, skeleton data provides a succinct and infor-

mative representation for the action execution. Pure skele-

ton based action recognition can achieve quite good results

[17, 57] despite being a much lower dimensional represen-

tation. These results make skeleton an attractive modality

for action recognition. However, recognizing actions from

skeleton data remains challenging partially due to the com-

plex nature of human motion dynamics.

In particular, there are three major factors that contribute

to the complex dynamics. First, human motion often in-

volves coordination of different body parts, which intro-

duces spatio-temporal dependencies among body parts. For

example, to complete a bowling action, the four limbs need

to move in a particular way to complete the action of throw-
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Figure 1. Overview of our framework. The red and blue arrows

show the flow of training and testing data, respectively. Details of

each component are discussed in Section 3.

ing the ball, while keeping the balance of the whole body.

Furthermore, the kinematics of a motion pattern can be non-

linear and complex, e.g., boxing and dancing. Second, there

exists long-term dependency in motion pattern. The body

pose of different actions may be similar at certain time.

However, the cause of such pose and its specific meaning

in the context depend on the motion in the past. Finally,

there exists significant subject-dependent variation due to

different habits. Different subjects may perform the same

action differently in terms of the extent and speed of the

movement. In a word, the coupling of spatial, temporal and

subject factors increases the challenge of recognizing ac-

tions from skeleton data.

In this paper, we propose an end-to-end trainable frame-

work that combines neural networks with probabilistic

modeling to simultaneously handle the three factors con-

tributing to the complex dynamics. More specifically, we

propose a Bayesian neural network (BNN) model. Our

model is first built on a combination of graph convolution

with long short-term memory (LSTM) network, in which

graph convolution is used to capture the spatial dependency

among different body joints and LSTM is used to capture

temporal dependency of pose change over time. The neural

network model is further extended to a probabilistic model

following the Bayesian modeling framework by treating

model parameters as random variables. This extension al-

lows the model to better handle randomness in the motion

data. To further increase the capability of generalization

to unseen data, we introduce an adversarial prior, inspired

by adversarial learning to regularize the model parameters.

We formulate the classification task as a Bayesian inference

problem in order to fully exploit the proposed probabilistic
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model, which allows us to reduce overfitting. Our specific

contributions are summarized as follows.

• Propose a BNN model that combines graph convolu-

tion and LSTM to model complex dynamics in the

skeleton data.

• Introduce an adversarial prior to regularize the model

parameters.

• Develop a Bayesian inference framework that exploits

the distribution of parameters in order to improve ro-

bustness and generalization.

2. Related Work

Skeleton based action recognition: There is abundant

literature on recognizing human actions from skeleton data

[52, 75]. Conventional approaches either focus on develop-

ing hand-crafted features [66, 51, 35, 16, 63] or classifica-

tion models [26, 49, 44, 76, 71, 24, 77]. More recently, neu-

ral networks based approaches become the dominate frame-

work due to end-to-end learning of feature representation

and classifier [17, 78, 46, 58, 64, 65, 60, 70, 73]. In partic-

ular, graph convolution based approaches become popular.

Graph convolution extends convolution to arbitrary graph

structured data such as skeleton, which has been modeled

by graph in prior work [17, 68]. Existing efforts on graph

convolution can be divided into two categories [6]. The first

type of approach operates in the spatial domain [54, 18, 50].

For each node, a subgraph is constructed based on its con-

nections with other nodes. Then convolution is performed

by aggregating the values of each node in the subgraph.

The challenge of this approach is the proper choice of or-

dering of nodes and the handling of cardinality difference

among the subgraphs. The second type of approach oper-

ates in the spectral domain [31, 15, 39]. This approach is

built on the spectral graph theory [30], which provides a

spectral domain representation of the graph data. We adopt

the spectral-based approach for its flexibility in constructing

convolution filters that allow parameter sharing. Further-

more, the construction allows easy extension to deep neural

networks. In both types of approaches, the graph structure is

often assumed fixed. Several recent work [42, 55] proposed

to learn the graph structure from data in order to capture

implicit dependencies among joints. Our approach is or-

thogonal to this effort by leveraging Bayesian framework,

which uses a distribution of parameters for inference to bet-

ter capture the variation in skeleton dynamics.

Modeling complex dynamics: Previous work in model-

ing complex dynamics can be divided into two major cate-

gories, namely probabilistic graphical models (PGM) based

approaches and recurrent neural networks (RNN) based ap-

proaches. Recently, there is an increasing interest in com-

bining PGM with RNN models to obtain the benefits of both

frameworks, namely modeling of stochasticity and auto-

matic feature representation learning. Existing work in this

direction can be divided into three main categories. The first

category focuses on combining two separate models. For

example, CNN or MLP is used to perform automatic feature

extraction and PGM such as hidden Markov model (HMM)

is used to model dynamics [3, 72, 38]. Another example is

using RNN to model dynamics and using PGM to capture

structured dependencies in data such as [4, 36, 41, 69]. The

second major category focuses on extending RNN and its

variants into a probabilistic model. One strategy is to add

additional stochastic nodes to RNN to allow the modeling

of randomness in dynamic data [2, 29, 13, 20]. Another

strategy is extending RNN following the Bayesian frame-

work [21, 22, 19]. The third major category directly con-

verts PGM into an end-to-end trainable model by param-

eterizing the conditional distribution using NN such as in

[40, 14, 9]. Our work focuses on extending RNN based

model to a probabilistic model by leveraging Bayesian mod-

eling framework, which treats the parameters of model as

random variables with designated prior distribution. In or-

der to capture the interdependencies among body joints, we

utilize graph convolution for its capability of simultane-

ously capturing structured dependency and automatic rep-

resentation learning. We formulate the classification as a

Bayesian inference problem, in which we take both data

and model uncertainty into consideration. This allows the

model to better generalize to unseen data.

Domain adaptation: Our work is related to generalizing

model to different domains such as different groups of sub-

jects. Various approaches have been proposed to reduce

the domain shift, for example, by minimizing the maximum

mean discrepancy [62] or the correlation distance [59]. In

[23, 5, 61], the authors adopted the idea of adversarial learn-

ing by introducing additional domain classifier to differenti-

ate samples from the source to the target domain. The idea

is to promote features that are domain-invariant such that

data from different domains are indistinguishable by the do-

main classifier. However, these approaches are mainly de-

signed for non-sequential data. In this work, we incorporate

adversarial learning into our Bayesian inference framework

and formulate it as a prior, which helps regularizing the pa-

rameter distribution. Overall, the proposed Bayesian graph

convolution LSTM can capture complex dynamics as well

as generalizing across subjects and datasets.

3. Methods

We first describe the details of applying graph convolu-

tion to skeleton data to extract a structure-aware represen-

tation. Then we describe the proposed Bayesian GC-LSTM

model and the adversarial prior, followed by the Bayesian

inference formulation.
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3.1. Representation Learning from Skeletons

Skeleton graph is defined by a set of nodes and a set of

edges that connect different nodes. The nodes correspond

to different body joints. The edges represent the connec-

tion among nodes and they are often determined based on

anatomy structure. For example, the elbow joint is con-

nected with the shoulder joint. Artificial connections can

also be introduced. For example, Liu et al. [46] constructed

the edges based on a tree traversal order of the skeleton.

Tang et al. [60] added additional edges among limbs such

as hands and feet, whose motions are highly correlated. In

this work, we follow the common design of graph based

on anatomy. Specifically, we define an undirected graph at

each time step Gt = {Xt,Et}. Xt = {Xt1, Xt2, ..., XtN}
is the set of nodes at time t, where each node represents

a body joint and N is the total number of joints. Et =
{(Xti, Xtj) : Xti, Xtj ∈ Xt, Xti ∼ Xtj} is the set of

edges in the graph, where Xti ∼ Xtj means the node i and

node j are connected with an undirected edge. An exam-

ple of the skeleton graph is depicted in Figure 2. Et can be

specified by the adjacency matrix At ∈ R
N×N .

At(i, j) =

{

1, if (Xti, Xtj) ∈ Et

0, otherwise
(1)

For each node Xti, the associated observations are 3D joint

position and speed. The speed is obtained by comput-

ing the change of position between consecutive time steps.

Therefore, each node has a 6-dimensional observations and

Xt ∈ R
N×6. Similar representation is also used in [67, 70].

Position and speed are complementary to each other in rep-

resenting the motion since they capture the first and the sec-

ond order kinematics of the motion, respectively. The graph

provides a concise way to specify the dependency among

different joints. We assume the graph structure does not

change over time, i.e., Gt remains the same for all t.
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Figure 2. Skeleton graph, consisting of body joints and edges con-

necting two joints. Left: local graph. Right: global graph.

Graph convolution defines a convolution operation on

data that are specified with an arbitrary graph structure.

A special case of graph convolution is applied to images,

which can be viewed as a graph with grid structure. Per-

forming convolution on images is straightforward due to the

regularity of grid, which provides a homogeneous connec-

tion structure for each node. The invariance of structure al-

lows parameter-sharing where the same convolution kernel

can be used for different nodes.

One way to perform general graph convolution is derived

from spectral graph theory [30], which allows the graph

convolution to be carried out in the spectral domain. The

key operation is computing the graph Fourier transform,

which is equivalent to computing an expansion of the graph

with respect to the eigenfunctions of the graph Laplacian.

Defferrard et al. [15] proposed to use an efficient approxi-

mation to compute the graph Fourier transform based on the

K th-order Chebyshev polynomial. Kipf and Welling [39]

further reduces K to 1, resulting a linear approximation of

graph convolution, where the convolution only depends on

the neighboring nodes that are directly connected to the tar-

get node. The operation of one graph convolutional layer is

defined as follows.

H(l+1) = σ(

K
∑

k=1

FkH
(l)W

(l)
k + b

(l)
k ) (2)

where H(l) ∈ R
N×dl and H(l+1) ∈ R

N×dl+1 are the input

and output of lth layer of graph convolution with feature di-

mension dl and dl+1, respectively. Fk = D̃
−

1
2

k ÃkD̃
−

1
2

k ∈

R
N×N is the graph kernel, where Ãk = Ak + I is the

augmented adjacency matrix that contains additional self-

connection for each node. D̃k is the diagonal degree

matrix of Ãk with D̃k(i, i) =
∑

j Ãk(i, j). W
(l)
k ∈

R
dl×dl+1 , b

(l)
k ∈ R

dl+1 are the kernel weights and bias. K is

the total number of graph kernels. The use of multiple graph

kernels allows the model to capture different dependency

structures. Two examples of graph are shown in Figure 2. σ

is a nonlinear activation function.

Notice that Fk is a symmetric matrix, Eq. (2) implicitly

assumes a symmetric contribution within each graph kernel

on the convolution results. To further increase the effective-

ness of the convolution, we multiply Fk by a learnable mask

Mk ∈ R
N×N , resulting in the following operation.

H(l+1) = σ(

K
∑

k=1

(Mk ⊙ Fk)H
(l)W

(l)
k + b

(l)
k ) (3)

By stacking multiple graph convolutional layers with

H(0) = Xt, we can extract useful representation which en-

codes the dependency specified by the graph.

3.2. Bayesian GCLSTM

GC-LSTM: We first briefly describe LSTM [32], which

is a variant of RNN with a special design on the recurrent
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state computation. LSTM helps overcome the insufficiency

of RNN in learning long-term dependencies. Suppose we

have a sequence of observations Xt ∈ R
D, t = 1, ..., T ,

and D is the dimension of each Xt. The corresponding hid-

den states of LSTM are Zt ∈ R
Q, t = 1, ..., T , and Q is the

dimension of each Zt. At each time t, an LSTM cell is used

to compute Zt given Xt and Zt−1. The parameterization

of an LSTM cell is referred to [28]. Intuitively speaking,

LSTM cell introduces additional nodes with learnable pa-

rameters to retain the memory from the past and combine

the present input to update the hidden state. We use the out-

put of the last graph convolutional layer at each time t as

the input of LSTM, resulting a dynamic model as shown in

Figure 3. We call this model GC-LSTM.

𝑃 𝑦′ 𝐗′, 𝒟, 𝛼 = ∫ 𝑃 𝑦 𝐗′, 𝜃 𝑃 𝜃 𝒟, 𝛼 𝑑𝜃
Figure 3. GC-LSTM model architecture.

Bayesian extension: We propose to extend the proposed

GC-LSTM into a probabilistic model following Bayesian

framework by treating the parameters of GC-LSTM as ran-

dom variables. Such extension allows the model to bet-

ter capture the randomness and variation in dynamic data.

It has been shown in the literatures that adding stochastic

modeling in RNN is beneficial in modeling variability in

structured data [2, 13]. Furthermore, the use of Bayesian

inference allows us to improve the generalization ability of

the model. Bayesian RNN has been proposed in [22, 19]

for NLP and image captioning tasks. Our extension also

includes a Bayesian treatment of graph convolutional net-

works, which allows us to further capture the structural de-

pendencies in sequential data.

Suppose X and y are random variables representing the

observed motion sequence and the corresponding class la-

bel, respectively. Bayesian GC-LSTM model defines a con-

ditional likelihood P (y|X, θ), which specifies the probabil-

ity of X being class y. θ includes all the parameters of graph

convolutional networks and LSTM. In practice, P (y|X, θ)
is obtained by feeding the output of the last LSTM cell into

a fully connected layer with softmax activation function.

Different from non-Bayesian approach, θ is treated as a ran-

dom variable whose prior distribution P (θ|α) is specified

by hyperparameter α. We treat α as a fixed number follow-

ing the empirical Bayesian approach [25]. We use standard

Gaussian as prior, i.e., P (θ|α) = N (0, I).
Classification using Bayesian GC-LSTM can be formu-

lated as a Bayesian inference problem. Given a set of train-

ing data D = {Xi, yi} and a query of testing data X
′, the

objective of Bayesian inference is to compute the condi-

tional posterior distribution of target variable y′ as follows.

P (y′|X′,D, α) =

∫

θ

P (y′|X′, θ)P (θ|D, α)dθ (4)

≈
1

M

M
∑

m=1

P (y′|X′, θm), θm ∼ P (θ|D, α)

Eq. (4) uses Monte Carlo estimation to approximate the in-

tegration over θ, which is computationally intractable due

to complex model specification. Then the classification cri-

terion is as follows.

y∗ = argmax
y′

1

M

M
∑

m=1

P (y′|X′, θm) (5)

where M is the total number of samples of parameters. De-

tails of performing Bayesian inference is discussed in Sec-

tion 3.3.

Adversarial prior: The prior distribution P (θ|α) used in

Bayesian extension can be viewed as a regularization that

prevents the model parameters to overfit to training data.

In particular, the model may overfit to variation caused

by subjects. However, the choice of hyperparameter α is

determined by heuristic. Inspired by adversarial learning

[27], we develop an additional prior to further regularize the

model in order to improve the generalization across differ-

ent subjects. The intuition is that we prefer a feature repre-

sentation extracted by GC-LSTM to be invariant of subject

so that the model will not overfit to the nuisance caused by

subject-dependent variation.

Specifically, we introduce a discriminator φ that can dif-

ferentiate whether the feature produced by GC-LSTM share

the same subset of subjects. We implement the discrimina-

tor as another fully connected layer whose input is the same

as the classification layer of GC-LSTM. Let {X+} ⊂ D be

a training mini-batch with label {y+} and {X−} ⊂ D be

a validation mini-batch with subjects different from {X+}.

We have the following posterior distribution for θ.

logP (θ|D, φ, αθ) = logP (y+|X+, θ) + logP (θ|αθ)

+ logPD(G(X−; θ)|φ) + C (6)

where G(X; θ) represents the output of GC-LSTM before

classification layer. PD(·|φ) ∈ [0, 1] represents the proba-

bility of belonging to training subjects. C is an unknown

normalization constant for the posterior distribution. We

see in Eq. (6) that φ adds additional regularization to the
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posterior of θ in the sense that θ not only needs to im-

prove the classification on labeled training mini-batch but

also needs to fool φ to produce high likelihood on validation

mini-batch. For φ, we have the following posterior, where

a higher likelihood indicates better differentiation between

{X+} and {X−}.

logP (φ|D, θ, αφ) = logPD(G(X+; θ)|φ) + logP (φ|αφ)

+ log(1− PD(G(X−; θ)|φ)) + C ′ (7)

where C ′ is an unknown normalization constant. Com-

paring Eq. (6) and Eq. (7), we see θ and φ are competing

against each other. The overall framework is illustrated in

Figure 1.

3.3. Bayesian Inference

The key to perform Bayesian inference is generating

samples of parameters θ̃ from the posterior distribution

P (θ̃|D, α̃). Here θ̃ = [θ, φ] and α̃ = [αθ, αφ]. For Bayesian

GC-LSTM, the likelihood is a complex nonlinear function

of θ̃, resulting in intractable posterior of θ̃. Therefore, ap-

proximate inference method such as MCMC and variational

method is needed. In this work we use stochastic gradi-

ent Hamiltonian Monte Carlo (SGHMC) [11]. HMC can

explore the parameter space more efficiently compared to

Metropolis-Hastings and Gibbs sampling due to the use of

gradient information. Furthermore, the stochastic exten-

sion proposed in [11] maintains the convergence property

of HMC while allowing the method to scale up to large

datasets. One step of SGHMC update is defined as follows.

θ̃(t+1) = θ̃(t) + v(t+1) (8)

v(t+1) = (1− r)v(t) + η∇L(θ̃) + ǫ, ǫ ∼ N (0, 2rηI)

where r ∈ (0, 1) is the momentum coefficient and L(θ̃)
is the unnormalized log posterior defined in Eq. (6) and

Eq. (7). Therefore, Eq. (8) essentially converts sampling

into an optimization process of performing momentum-

based stochastic gradient ascent, which allows us to use ex-

isting implementation frameworks of deep neural networks.

We use SGHMC instead of variational method in our exper-

iment as it approximates the exact posterior distribution and

better computational efficiency. The overall Bayesian infer-

ence algorithm is summarized in Algorithm 1. Notice that

the same set of samples of parameters is used for inference

of all testing data.

4. Experiments

We discuss the experimental evaluation in this sec-

tion, starting with a description of the datasets and pre-

processing. After discussing the implementation, we per-

form an ablation study and a generalization experiment. Fi-

nally, we compare with state-of-the-art on selected bench-

mark datasets.

Algorithm 1 Bayesian inference of GC-LSTM

Input: D = {X, y}: training data. D′ = {X′}: testing data.

r: momentum coefficient. Tb: burn-in iterations. Tg: gap

iterations between two samples. η: initial learning rate.

Output: {y′}: predicted labels

1: Initialization: θ̃(0) ∼ N(0, I), v(0) = t = m = 0
2: repeat

3: Select a mini-batch of {X+, y+,X−} from D
4: Update θ̃(t) using Eq. (8) with specified r and η

5: t← t+ 1
6: if t ≥ Tb and mod(t, Tg) == 0 then

7: θm = θ(t) // Collect as a sample of θ

8: m← m+ 1
9: end if

10: until collect enough samples

11: for Each X
′

j ∈ D
′ do

12: Compute P (y′|X′

j , θm), ∀m using GC-LSTM

13: Solve for y′

j using Eq. (5)

14: end for

15: return {y′}

4.1. Datasets

MSR Action3D [43] is one of the earliest multi-modal

action recognition dataset. There are 20 actions performed

by 10 subjects with a total number of 557 sequences. UTD

MHAD [10] is another multi-modal human action dataset

collected via Kinect and wearable sensors. There is a to-

tal number of 861 sequences, which contains 27 actions

performed by 8 subjects. SYSU [34] is a human activity

dataset collected from 40 different subjects on 12 activi-

ties, which involve manipulating objects such as phone and

chair. There are 480 videos in total. NTU RGB-D [53] is

currently one of the largest human action/activity datasets.

It contains 60 categories, which are collected from 40 dif-

ferent subjects. The total number of sequences is 56,880.

We only use the skeleton data in each dataset for all the ex-

periments.

Pre-processing: We normalize the data by subtracting

the torso joint position from each joint so that the skeleton is

translation invariant. We further resize the bone length to a

fixed reference length while maintaining the same joint an-

gle so that the skeleton is scale invariant. The same process-

ing is applied for each dataset and used by different variants

of our model. In case two people involved in one action, the

skeleton with active motion is used.

4.2. Implementation

We implement the model using Tensorflow [1]. A graph

convolutional unit (GCU) is implemented by matrix multi-

plication as defined in Eq. (3). The convolution is followed

by a batch normalization and an activation function, which

we use ReLU. We stack multiple GCUs together where the

output of lower level is the input of the next higher level. In
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experiment, we found 4 GCUs perform the best. We also

add a skip connection between every two GCUs. At each

time step t, the raw skeleton representation Xt is fed into

the same shared GCU stack. The number of output chan-

nels for each GCU is 64 for NTU and 8 for other datasets.

The output of the last GCU is then flattened and fed into

the LSTM cell of current time, which unrolls to form a dy-

namic model. We use state size of 256 for NTU and 128

for all other datasets. Dropout is applied to the input and

output of LSTM to further prevent overfitting. The output

of the last time step of LSTM is used as the final repre-

sentation of the motion sequence. We feed it into a fully

connected layer with softmax activation function to gener-

ate class-wise probability vector, i.e., P (y|X, θ). The same

representation is fed into a single unit with sigmoid activa-

tion function to generate the subject discriminative proba-

bility, i.e., PD(·|φ). We use momentum-based gradient as-

cent. The initial learning rate is 0.001. We decay the rate by

0.9 every 100 epochs. A batch size of 256 is used for NTU

and 32 for all other datasets with an equal split of samples

of training and validation in a mini-batch.

4.3. Ablation Study

We perform an ablation study using UTD dataset. We

evaluate how different components of the model affect the

final performance.

First, we evaluate how graph convolution contributes

to the final performance. We consider two baseline ap-

proaches. The first one (no graph) directly feeds all the

joint data at each time step to LSTM input gate. The second

one (mean-field graph) defines a graph with an empty edge

set, i.e., all the nodes in the graph are isolated without any

connections. In such case, graph convolution reduces to a

1 × 1 convolution that operates along different channels of

each node. For our proposed approach, we evaluate three

variants. The first one (local graph) defines the graph based

on skeleton anatomy. The second one (global graph) only

adds edges between limbs and head, while treating all other

joints as independent. Finally, joint graph combines previ-

ous two graphs by computing the sum of the output of both

local and global graphs, i.e., two graph kernels. The two

graph structures are shown in Figure 2.

In this set of experiments, we only vary the configuration

of graph convolution, while fixing other part of the model

such as LSTM state size and optimization scheme. We re-

peat experiment under each setting five times and report the

average to account for random initializations. The results

are shown in Table 1.

The results have following indications. First, we see that

local graph outperforms the variants without graph con-

volution. This indicates the effectiveness of capturing the

dependencies among different joints. Global graph by it-

self does not perform well as it ignores the local depen-

Table 1. Effect of graph convolution.

Configuration # of edges Accuracy

No graph N/A 85.0

Mean-field 0 82.2

Local graph 19 87.2

Global graph 10 81.5

Joint graph 29 92.1

dencies. Combining the two graphs achieves the best per-

formance indicates that local graph and global graph con-

tains complementary information to each other. Second, no

graph setting achieves better performance compared to sim-

ple mean-field graph. This indicates that a proper construc-

tion of the graph is important and learning a representation

based on independent structure should be avoided.

For the next set of experiments, we evaluate differ-

ent choices of dynamic modeling architectures including

vanilla RNN, GRU [12], LSTM, bi-directional LSTM and

stacked LSTM. We use joint graph for convolution. Among

all the variants, vanilla RNN has the worst performance,

which demonstrates the necessity of modeling long-term

temporal dynamics. GRU is close to LSTM. Different vari-

ations of LSTM achieves comparable performance with the

best configuration being a single LSTM layer. We use one-

layer LSTM for the remaining experiments and leave a thor-

ough exploration of LSTM architectures as future work.

Table 2. Effect of RNN architecture.
Architecture Accuracy

Vanilla RNN 66.4

GRU 89.7

LSTM 92.1

2-stacked LSTM 92.0

Bi-directional LSTM 90.8

For the next set of experiments, we evaluate the effect

of Bayesian inference by comparing against point estima-

tion approach. Joint graph and single-layer LSTM are used

to construct the model. For point estimation approach, we

consider two different methods, namely maximum likeli-

hood (ML) and maximum a posterior (MAP). For Bayesian

inference approach, we consider the case with and without

using adversarial prior (AP) during posterior sampling. To

further demonstrate the benefit of using Bayesian inference,

we create additional testing data which add perturbation to

the original testing data. We consider two types of perturba-

tion. The first one is applying random rotation to the origi-

nal testing data to mimic the variation in camera view. The

second one is adding Gaussian random noise to the joint

position to mimic poor estimation of pose. The results are

shown in Table 3.

From the results we see that Bayesian inference method
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Table 3. Effect of Bayesian inference under rotation (R) and addi-

tive noise (N).

Perturbation Clean Only R Only N R + N

ML 86.2 62.8 77.7 65.1

MAP 85.2 78.1 86.1 77.9

Bayesian 87.4 78.8 86.9 82.8

Bayesian + AP 92.1 86.1 87.5 85.9

outperforms both point estimation methods. We also ob-

serve that MAP outperforms ML in perturbed testing data,

which indicates that it is beneficial to place a prior distribu-

tion on the parameters to improve the robustness. Bayesian

inference with adversarial prior achieves the best results

among all variants, which demonstrates the effectiveness

of adversarial prior in helping the model to adapt to new

data. Comparing the results between clean data and per-

turbed data, we observe that Bayesian inference approaches

yield smaller decrease in performance. This shows the ben-

efit of using different sets of parameters increase the robust-

ness of the model.

To evaluate the number of samples needed for Bayesian

inference, we plot the accuracy versus the number of sam-

ples under clean testing data case and the result is shown

in Figure 4. We observe that the performance becomes sat-

urate after about 50 samples. We use 100 samples for the

remaining experiments.

Figure 4. Bayesian inference results under different number of

samples of parameters.

4.4. Generalization

We demonstrate the capability of the proposed frame-

work in generalization by performing a cross-dataset exper-

iment, where the training and testing data come from dif-

ferent datasets. Therefore, there exist significant variations

between training and testing data. In the first experiment we

use MSR and UTD datasets, which share 10 actions in com-

mon1. Figure 5 shows examples of the same actions from

two different datasets. We observe not only substantial vari-

ations in the action executed by different subjects but also

1MSR and UTD: wave, catch, throw, draw x, draw circle, clap, jog,

tennis swing, tennis serve, pick up & throw.

different subject postures caused by different data collec-

tion settings. Our baseline is Bayesian inference without

adversarial prior. We also compare with three state-of-the-

art methods. R3DG [63] uses sophisticated hand-crafted

features and SVM classifier. DLSTM [78] is a deep learn-

ing based approach. [73] is a graph convolution based ap-

proach. The results are shown in Table 4. We observe sub-

stantial improvement by using AP in our method, which

demonstrates the effectiveness of the adaptation.

Table 4. Generalization across different datasets.
Train MSR UTD NTU

Avg.
Test UTD MSR UTD MSR

R3DG [63] 66.5 59.9 69.8 64.5 65.2

DLSTM [78] 66.8 50.0 61.0 62.6 60.1

STGCN [73] 59.2 63.0 66.1 77.5 66.5

Ours w/o AP 77.4 51.8 67.7 66.3 65.8

Ours w/ AP 82.5 70.0 70.1 76.3 74.7

In the second experiment we train our model on NTU

dataset and test on MSR and UTD, which share 6 and 8

actions with NTU, respectively2. We only consider adap-

tation from NTU, which has a much large number of in-

stances than MSR and UTD. The results are shown in Table

4. Similar to the first experiment, we observe consistent

improvements by using AP in both datasets. The adapta-

tion results are superior than the other three methods, which

again shows the strength of Bayesian inference with AP.

Figure 5. Examples of clapping. The first row is from a subject in

UTD dataset. The second row is from a subject in MSR dataset.

4.5. Comparison with Stateoftheart

We compare the performance of action recognition with

other state-of-the-art methods on the selected benchmark

datasets. Despite being one of the earliest 3D action

datasets, MSR Action 3D remains challenging due to noisy

position caused by occlusion. There are many different

evaluation protocols proposed in literatures. We use the

cross-subject test, where the odd numbered subjects are

used for training and the even numbered subjects are used

2NTU and MSR: throw, clap, cheer up, wave, kick, point. NTU and

UTD: throw, sit down, stand up, clap, wave, point, cross hand, walk.
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for testing. According to Table 5, we outperform hand-

crafted features based approaches [37]. We are also better

than probabilistic model based approach [44], which im-

proves the performance by combining hand-crafted features

with probabilistic modeling. Our performance is compara-

ble with recent deep learning based approaches [17, 45],

despite using a much simpler design of RNN architecture.

Table 5. Classification results on MSR Action3D dataset.
Method Accuracy

SC [37] 88.3

HBRNN [17] 94.5

Composition [44] 93.0

ST-LSTM [45] 94.8

Ours 94.5

For UTD dataset, we also use the odd/even split of the

subjects for training and testing as suggested by the dataset

authors. UTD includes several actions whose differences

are subtle such as drawing circle, drawing triangle and

drawing x. In Table 6, our approach outperforms both

hand-crafted features based approaches [10, 7, 74] and deep

learning based approach [33] by at least 5.1%, which shows

the advantage of the proposed framework.

Table 6. Classification results on UTD dataset.
Method Accuracy

Sensor Fusion [10] 79.1

DMM-LBP [7] 84.2

3DHoT-MBC [74] 84.4

SOS-CNN [33] 87.0

Ours 92.1

For SYSU dataset, we use the same cross-subject evalu-

ation protocol as provided by the authors, where all the sub-

jects are randomly and evenly split into training and testing

set. SYSU is challenging due to the large number of sub-

jects and each subject only performs each activity once, re-

sulting large variations. The average number of frames per

sequence is 203, which is also the longest among bench-

marks we experimented with. From the results in Table 7,

we show advantage over [45, 57] by better modeling of in-

terdependencies among body joints through graph convo-

lution. We are also better than [60], which selects a fixed

size of subset of frames using reinforcement learning. Such

strategy may alter the original dynamics of the action.

Table 7. Classification results on SYSU dataset.
Method Accuracy

D-Skeleton [34] 75.5

ST-LSTM [45] 76.5

DPRL [60] 76.9

SR-TSL [57] 80.7

Ours 82.0

Finally, for NTU dataset, there are two different experi-

ment settings. The first one is cross subject, where training

and testing data contains different subjects without over-

lap. The second one is cross view, where training and

testing data have different camera views. All the methods

are NN based approaches due to their advantages on han-

dling large-scale datasets. Compared to [17, 53, 47, 64], we

show advantage due to two factors, the first is capturing de-

pendencies among body parts and the second is improved

generalization using adversarial prior. [73] also uses graph

convolution, which treats time as another dimension of the

graph. This strategy avoids using dynamic model such as

RNN. But it requires a fixed length sequence. With a com-

parable performance, our model is more flexible in han-

dling sequences with varied length. [60, 57] outperforms

our approach, where [60] used a more sophisticated train-

ing scheme and [57] has a more sophisticated design of dy-

namic model. We believe our approach remains competitive

given a simpler design of the dynamic model and strength

in robustness and generalization.

Table 8. Classification results on NTU dataset.
Method X-Subject X-View

HBRNN [17] 59.1 64.0

PLSTM [53] 62.9 70.3

GLSTM [47] 74.4 82.8

2Stream-RNN [64] 71.3 79.5

ST-GCN [73] 81.5 88.3

DPRL [60] 83.5 89.8

ST-TSL [57] 84.8 92.4

Ours 81.8 89.0

5. Conclusion

In this paper, we address the challenge of modeling com-

plex dynamics manifest in human motion data. We explic-

itly consider three sources of complexity including the in-

terdependency among body joints during the motion, long-

term temporal dependency among poses over the course of

action, and subject-dependent variation. We propose a solu-

tion that combines graph convolution and LSTM to model

spatio-temporal dynamics. The whole model is further ex-

tended to a probabilistic model following Bayesian frame-

work with a novel adversarial prior. A Bayesian inference

problem is formulated for classification in order to improve

the robustness and generalization ability. Ablation study

and evaluation on benchmark datasets show the effective-

ness of the proposed framework.
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