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Abstract

Fully convolutional neural networks (FCNs) have shown

their advantages in the salient object detection task. How-

ever, most existing FCNs-based methods still suffer from

coarse object boundaries. In this paper, to solve this prob-

lem, we focus on the complementarity between salient edge

information and salient object information. Accordingly,

we present an edge guidance network (EGNet) for salient

object detection with three steps to simultaneously model

these two kinds of complementary information in a single

network. In the first step, we extract the salient object

features by a progressive fusion way. In the second step,

we integrate the local edge information and global loca-

tion information to obtain the salient edge features. Fi-

nally, to sufficiently leverage these complementary features,

we couple the same salient edge features with salient ob-

ject features at various resolutions. Benefiting from the

rich edge information and location information in salient

edge features, the fused features can help locate salient

objects, especially their boundaries more accurately. Ex-

perimental results demonstrate that the proposed method

performs favorably against the state-of-the-art methods on

six widely used datasets without any pre-processing and

post-processing. The source code is available at http:

//mmcheng.net/egnet/.

1. Introduction

The goal of salient object detection (SOD) is to find the

most visually distinctive objects in an image. It has received

widespread attention recently and been widely used in many

vision and image processing related areas, such as content-

aware image editing [6], object recognition [42], photo-

synth [4], non-photo-realist rendering [41], weakly super-

vised semantic segmentation [19] and image retrieval [15].

Besides, there are many works focusing on video salient

object detection [12, 54] and RGB-D salient object detec-

tion [11, 66].

Inspired by cognitive studies of visual attention [7, 21,

*M.M. Cheng (cmm@nankai.edu.cn) is the corresponding author.

Source Baseline Ours GT

Figure 1. Visual examples of our method. After we model and fuse

the salient edge information, the salient object boundaries become

clearer.

39], early works are mainly based on the fact that contrast

plays the most important role in saliency detection. These

methods benefit mostly from either global or local contrast

cues and their learned fusion weights. Unfortunately, these

hand-crafted features though can locate the most salient

objects sometimes, the produced saliency maps are with

irregular shapes because of the undesirable segmentation

methods and unreliable when the contrast between the fore-

ground and the background is inadequate.

Recently, convolutional neural networks (CNNs) [25]

have successfully broken the limits of traditional hand-

crafted features, especially after the emerging of Fully Con-

volutional Neural Networks (FCNs) [34]. These CNN-

based methods have greatly refreshed the leaderboards on

almost all the widely used benchmarks and are gradually

replacing conventional salient object detection methods be-

cause of the efficiency as well as high performance. In SOD

approaches based on CNNs architecture, the majority of

them which regard the image patches [64, 65] as input use

the multi-scale or multi-context information to obtain the

final saliency map. Since the fully convolutional network

is proposed for pixel labeling problems, several end-to-end

deep architectures [17, 18, 23, 28, 31, 50, 60, 67] for salient

object detection appear. The basic unit of output saliency

map becomes per pixel from the image region. On the one

hand, the result highlights the details because each pixel has

its saliency value. However, on the other hand, it ignores the

structure information which is important for SOD.
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With the increase of the network receptive field, the po-

sitioning of salient objects becomes more and more accu-

rate. However, at the same time, spatial coherence is also

ignored. Recently, to obtain the fine edge details, some

SOD U-Net [40] based works [32, 33, 59, 61] used a bi-

directional or recursive way to refine the high-level features

with the local information. However, the boundaries of

salient objects are still not explicitly modeled. The comple-

mentarity between the salient edge information and salient

object information has not been noticed. Besides, there

are some methods using pre-processing (Superpixel) [20]

or post-processing (CRF) [17, 28, 33] to preserve the object

boundaries. The main inconvenience with these approaches

is their low inference speed.

In this paper, we focus on the complementarity between

salient edge information and salient object information. We

aim to leverage the salient edge features to help the salient

object features locate objects, especially their boundaries

more accurately. In summary, this paper makes three major

contributions:

• We propose an EGNet to explicitly model complemen-

tary salient object information and salient edge infor-

mation within the network to preserve the salient ob-

ject boundaries. At the same time, the salient edge fea-

tures are also helpful for localization.

• Our model jointly optimizes these two complementary

tasks by allowing them to mutually help each other,

which significantly improves the predicted saliency

maps.

• We compare the proposed methods with 15 state-of-

the-art approaches on six widely used datasets. With-

out bells and whistles, our method achieves the best

performance under three evaluation metrics.

2. Related Works

Over the past years, some methods were proposed to de-

tect the salient objects in an image. Early methods pre-

dicted the saliency map using a bottom-up pattern by the

hand-craft feature, such as contrast [5], boundary back-

ground [57, 68], center prior [24, 44] and so on [22, 44, 51].

More details are introduced in [1, 2, 9].

Recently, Convolutional neural networks (CNNs) per-

form their advantages and refresh the state-of-the-art

records in many fields of computer vision.

Li et al. [27] resized the image regions to three differ-

ent scales to extract the multi-scale features and then aggre-

gated these multiple saliency maps to obtain the final pre-

diction map. Wang et al. [45] designed a neural network to

extract the local estimation for the input patches and inte-

grated these features with the global contrast and geometric

information to describe the image patches. However, the

result is limited by the performance of image patches in

these methods. In [34], long et al. firstly proposed a net-

work (FCN) to predict the semantic label for each pixel.

Inspired by FCN, more and more pixel-wise saliency detec-

tion methods were proposed. Wang et al. [47] proposed

a recurrent FCN architecture for salient object detection.

Hou et al. proposed a short connection [17, 18] based on

HED [55] to integrate the low-level features and high-level

features to solve the scale-space problem. In [62], Zhang et

al. introduced a reformulated dropout and an effective hy-

brid upsampling to learn deep uncertain convolutional fea-

tures to encourage robustness and accuracy. In [61], Zhang

et al. explicitly aggregated the multi-level features into mul-

tiple resolutions and then combined these feature maps by

a bidirectional aggregation method. Zhang et al. [59] pro-

posed a bi-directional message-passing model to integrate

multi-level features for salient object detection. Wang et

al. [53] leveraged the fixation maps to help the model to

locate the salient object more accurately. In [35], Luo et

al. proposed a U-Net based architecture which contains an

IOU edge loss to leverage the edge cues to detect the salient

objects. In other saliency-related tasks, some methods of

using edge cues have appeared. In [26], li et al. generated

the contour of the object to obtain the salient instance seg-

mentation results. In [29], li et al. leveraged the well-trained

contour detection models to generate the saliency masks to

overcome the limitation caused by manual annotations.

Compared with most of the SOD U-Net based methods

[32,33,59,61], we explicitly model edge information within

the network to leverage the edge cues. Compared with the

methods which use the edge cues [14,58,69], the major dif-

ferences are that we use a single base network and jointly

optimize the salient edge detection and the salient object de-

tection, allowing them to help each other mutually. which

results in better performance. Compared with NLDF [35],

they implemented a loss function inspired by the Mumford-

Shah function [38] to penalize errors on the edges. Since

the salient edges are derived from salient objects through

a fixed sober operator, this penalty essentially only affects

the gradient in the neighborhood of salient edges on feature

maps. In this way, the edge details are optimized to some

extent, but the complementarity between salient edge detec-

tion and salient object detection is not sufficiently utilized.

In our method, we design two modules to extract these two

kinds of features independently. Then we fuse these com-

plementary features by a one-to-one guidance module. In

this way, the salient edge information can not only improve

the quality of edges but also make the localization more ac-

curate. The experimental part verifies our statement.

3. Salient Edge Guidance Network

The overall architecture is shown in Fig. 2. In this sec-

tion, we begin by describing the motivations in Sec. 3.1,

then introduce the adopted salient object feature extraction
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Figure 2. The pipeline of the proposed approach. We use brown thick lines to represent information flows between the scales. PSFEM:

progressive salient object features extraction module. NLSEM: non-local salient edge features extraction module. O2OGM : one-to-one

guidance module. FF: feature fusion. Spv.: supervision.

module and the proposed non-local salient edge features ex-

traction module in Sec. 3.2, and finally introduce the pro-

posed one-to-one guidance module in Sec. 3.3.

3.1. Motivation

The pixel-wise salient object detection methods have

shown their advantages compared with region-based meth-

ods. However, they ignored the spatial coherence in the

images, resulting in the unsatisfied salient object bound-

aries. Most methods [17,18,31,33,59,61] hope to solve this

problem by fusing multi-scale information. Some meth-

ods [17, 28, 33] used the post-processing such as CRF to

refine the salient object boundaries. In NLDF [35], they

proposed an IOU loss to affect the gradient of the location

around the edge. None of them pay attention to the com-

plementarity between salient edge detection and salient ob-

ject detection. A good salient edge detection result can help

salient object detection task in both segmentation and local-

ization, and vice versa. Based on this idea, we proposed an

EGNet to model and fuse the complementary salient edge

information and salient object information within a single

network in an end-to-end manner.

3.2. Complementary information modeling

Our proposed network is independent of the backbone

network. Here we use the VGG network suggested by other

deep learning based methods [17, 35] to describe the pro-

posed method. First, we truncate the last three fully con-

nected layers. Following DSS [17, 18], we connect another

side path to the last pooling layer in VGG. Thus from the

backbone network, we obtain six side features Conv1-2,

Conv2-2, Conv3-3, Conv4-3, Conv5-3, Conv6-3. Because

the Conv1-2 is too close to the input and the receptive field

is too small, we throw away this side path S(1). There are

five side paths S(2), S(3), S(4), S(5), S(6) remaining in our

method. For simplicity, these five features could be denoted

by a backbone features set C:

C = {C(2), C(3), C(4), C(5), C(6)}, (1)

where C(2) denotes the Conv2-2 features and so on. Conv2-

2 preserves better edge information [61]. Thus we leverage

the S(2) to extract the edge features and other side paths to

extract the salient object features.

3.2.1 Progressive salient object features extraction

As shown in PSFEM of Fig. 2, to obtain richer con-

text features, we leverage the widely used architecture U-

Net [40] to generate the multi-resolution features. Differ-

ent from the original U-Net, in order to obtain more robust

salient object features, We add three convolutional layers

(Conv in Fig. 2) on each side path, and after each convo-

lutional layer, a ReLU layer is added to ensure the nonlin-

earity. To illustrate simply, we use the T (Tab. 1) to denote

these convolutional layers and ReLU layers. Besides, deep

supervision is used on each side path. We adopt a convolu-

tional layer to convert the feature maps to the single-channel

prediction mask and use D (Tab. 1) to denote it. The details

of the convolutional layers could be found in Tab. 1.

3.2.2 Non-local salient edge features extraction

In this module, we aim to model the salient edge in-

formation and extract the salient edge features. As men-

tioned above, the Conv2-2 preserves better edge informa-

tion. Hence we extract local edge information from Conv2-

2. However, in order to get salient edge features, only local

information is not enough. High-level semantic information

or location information is also needed. When information
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S T1 T2 T3 D

2 3 1 128 3 1 128 3 1 128 3 1 1

3 3 1 256 3 1 256 3 1 256 3 1 1

4 5 2 512 5 2 512 5 2 512 3 1 1

5 5 2 512 5 2 512 5 2 512 3 1 1

6 7 3 512 7 3 512 7 3 512 3 1 1

Table 1. Details of each side output. T denotes the feature enhance

module (Conv shown in Fig. 2). Each T contains three convolu-

tional layers: T1, T2, T3 and three followed ReLu layers. We show

the kernel size, padding and channel number of each convolutional

layer. For example, 3, 1, 128 denote a convolutional layer whose

kernel size is 3, padding is 1, channel number is 128. D denotes

the transition layer which converts the multi-channel feature map

to one-channel activation map. S denotes the side path.

is progressively returned from the top level to the low level

like the U-Net architecture, the high-level location informa-

tion is gradually diluted. Besides, the receptive field of the

top-level is the largest, and the location is the most accurate.

Thus we design a top-down location propagation to propa-

gate the top-level location information to the side path S(2)

to restrain the non-salient edge. The fused features C̄(2)

could be denoted as:

C̄(2) = C(2) + Up(φ(Trans(F̂ (6); θ));C(2)), (2)

where Trans(∗; θ) is a convolutional layer with param-

eter θ, which aims to change the number of chan-

nels of the feature, and φ() denotes a ReLU activa-

tion function. Up(∗;C(2)) is bilinear interpolation op-

eration which aims to up-sample * to the same size as

C(2). On the right of the equation, the second term

denotes the features from the higher side path. To il-

lustrate clearly, we use UpT (F̂ (i); θ,C (j )) to represent

Up(φ(Trans(F̂ (i); θ));C(j)). F̂ (6) denotes the enhanced

features in side path S(6). The enhanced features F̂ (6) could

be represented as f(C(6);W
(6)
T ), and the enhanced features

in S(3), S(4), S(5) could be computed as:

F̂ (i) = f(C(i) + UpT (F̂ (i+1); θ, C(i));W
(i)
T ), (3)

where W
(i)
T denotes the parameters in T (i) and f(∗;W

(i)
T )

denotes a series of convolutional and non-linear operations

with parameters W
(i)
T .

After obtaining the guided features C̄(2), similar with

other side paths, we add a series convolutional layers to en-

hance the guided feature, then the final salient edge features

FE in S(2) could be computed as f(C̄(2);W
(2)
T ). The con-

figuration details could be found in Tab. 1. To model the

salient edge feature explicitly, we add an extra salient edge

supervision to supervise the salient edge features. We use

the cross-entropy loss which could be defined as:

L(2)(FE ;W
(2)
D ) = −

∑

j∈Z+

logPr(yj = 1|FE ;W
(2)
D )

−
∑

j∈Z−

logPr(yj = 0|FE ;W
(2)
D ), (4)

where Z+ and Z− denote the salient edge pixels set and

background pixels set, respectively. WD denotes the pa-

rameters of the transition layer as shown in Tab. 1. Pr(yj =

1|FE ;W
(2)
D ) is the prediction map in which each value de-

notes the salient edge confidence for the pixel. In addition,

the supervision added on the salient object detection side

path can be represented as:

L(i)(F̂ (i);W
(i)
D ) = −

∑

j∈Y+

logPr(yj = 1| ˆF (i);W
(i)
D )

−
∑

j∈Y−

logPr(yj = 0|F̂ (i);W
(i)
D ), i ∈ [3, 6], (5)

where Y+ and Y− denote the salient region pixels set and

non-salient pixels set, respectively. Thus the total loss L in

the complementary information modeling could be denoted

as:

L = L(2)(FE ;W
(2)
D ) +

6∑

i=3

L(i)(F̂ (i);W
(i)
D ). (6)

3.3. Onetoone guidance module

After obtaining the complementary salient edge features

and salient object features, we aim to leverage the salient

edge features to guide the salient object features to perform

better on both segmentation and localization. The simple

way is to fuse the FE and the F̂ (3). It will be better to suffi-

ciently leverage the multi-resolution salient object features.

However, the disadvantage of fusing the salient edge fea-

tures and multi-resolution salient object features progres-

sively from down to top is that salient edge features are di-

luted when salient object features are fused. Besides, the

goal is to fuse salient object features and salient edge fea-

tures to utilize complementary information to obtain better

prediction results. Hence, we propose a one-to-one guid-

ance module. Moreover, experimental parts validate our

view.

Specifically, we add sub-side paths for S(3), S(4), S(5),

S(6). In each sub-side path, by fusing the salient edge fea-

tures into enhanced salient object features, we make the lo-

cation of high-level predictions more accurate, and more

importantly, the segmentation details become better. The

salient edge guidance features (s-features) could be denoted

as:
G(i) = UpT (F̂ (i); θ, FE) + FE , i ∈ [3, 6]. (7)

Then similar to the PSFEM, we adopt a series of convo-

lutional layers T in each sub-side path to further enhance

the s-features and a transition layer D to convert the multi-

channel feature map to one-channel prediction map. Here

in order to illustrate clearly, we denote the T and D as T ′

and D′ in this module. By Eq. (3), we obtain the enhanced

s-features Ĝ(i).
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Here we also add deep supervision for these enhanced s-

features. For each sub-side output prediction map, the loss

can be calculated as:

L(i)′(Ĝ(i);W
(i)
D′ ) = −

∑

j∈Y+

logPr(yj = 1|Ĝ(i);W
(i)
D′ )

−
∑

j∈Y−

logPr(yj = 0|Ĝ(i);W
(i)
D′ ), i ∈ [3, 6]. (8)

Then we fuse the multi-scale refined prediction maps to ob-

tain a fused map. The loss function for the fused map can

be denoted as:

L′
f (Ĝ;WD′) = σ(Y,

6∑

i=3

βif(Ĝ
(i);W

(i)
D′ )), (9)

where the σ(∗, ∗) represents the cross-entropy loss between

prediction map and saliency ground-truth, which has the

same form to Eq. (5). Thus the loss for this part and the

total for the proposed network could be expressed as:

L
′ = L′

f (Ĝ;WD′) +
i=6∑

i=3

L(i)′(Ĝ(i);W
(i)
D′ )

Lt = L+ L
′.

(10)

4. Experiments

4.1. Implementation Details

We train our model on DUTS [46] dataset followed by

[33,49,59,63]. For a fair comparison, we use VGG [43] and

ResNet [16] as backbone networks, respectively. Our model

is implemented in PyTorch. All the weights of newly added

convolution layers are initialized randomly with a truncated

normal (σ = 0.01), and the biases are initialized to 0. The

hyper-parameters are set as followed: learning rate = 5e-

5, weight decay = 0.0005, momentum = 0.9, loss weight

for each side output is equal to 1. A back propagation is

processing for each of the ten images. We do not use the

validation dataset during training. We train our model 24

epochs and divide the learning rate by 10 after 15 epochs.

During inference, we are able to obtain a predicted salient

edge map and a set of saliency maps. In our method, we

directly use the fused prediction map as the final saliency

map.

4.2. Datasets and Evaluation Metric

We have evaluated the proposed architecture on six

widely used public benchmark datasets: ECSSD [56],

PASCAL-S [30], DUT-OMRON [57], SOD [36, 44], HKU-

IS [27], DUTS [46]. ECSSD [56] contains 1000 meaningful

semantic images with various complex scenes. PASCAL-

S [30] contains 850 images which are chosen from the vali-

dation set of the PASCAL VOC segmentation dataset [8].

DUT-OMRON [57] contains 5168 high-quality but chal-

lenging images. Images in this dataset contain one or more

salient objects with a relatively complex background. SOD

[36] contains 300 images and is proposed for image seg-

mentation. Pixel-wise annotations of salient objects are

generated by [44]. It is one of the most challenging datasets

currently. HKU-IS [27] contains 4447 images with high-

quality annotations, many of which have multiple discon-

nected salient objects. This dataset is split into 2500 train-

ing images, 500 validation images and 2000 test images.

DUTS [46] is the largest salient object detection bench-

mark. It contains 10553 images for training and 5019 im-

ages for testing. Most images are challenging with var-

ious locations and scales. Following most recent works

[33, 49, 52], we use the DUTS dataset to train the proposed

model.

We use three widely used and standard metrics, F-

measure, mean absolute error (MAE) [2], and a recently

proposed structure-based metric, namely S-measure [10],

to evaluate our model and other state-of-the-art models. F-

measure is a harmonic mean of average precision and aver-

age recall, formulated as:

Fβ =
(1 + β2)Precision×Recall

β2 × Precision+Recall
, (11)

we set β2 = 0.3 to weigh precision more than recall as

suggested in [5]. Precision denotes the ratio of detected

salient pixels in the predicted saliency map. Recall denotes

the ratio of detected salient pixels in the ground-truth map.

Precision and recall are computed on binary images. Thus

we should threshold the prediction map to binary map first.

There are different precision and recall of different thresh-

olds. We could plot the precision-recall curve at different

thresholds. Here we use the code provided by [17, 18] for

evaluation. Following most salient object detection meth-

ods [17,18,32,59], we report the maximum F-measure from

all precision-recall pairs.

MAE is a metric which evaluates the average difference

between prediction map and ground-truth map. Let P and

Y denote the saliency map and the ground truth that is nor-

malized to [0, 1]. We compute the MAE score by:

ε =
1

W ×H

W∑

x=1

H∑

y=1

|P (x, y)− Y (x, y)|, (12)

where W and H are the width and height of images, respec-

tively.

S-measure focuses on evaluating the structural informa-

tion of saliency maps, which is closer to the human visual

system than F-measure. Thus we include S-measure for a

more comprehensive evaluation. S-measure could be com-

puted as:
S = γSo + (1− γ)Sr, (13)
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ECSSD [56] PASCAL-S [30] DUT-O [57] HKU-IS [27] SOD [36, 37] DUTS-TE [46]

MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑

VGG-based

DCL∗ [28] 0.896 0.080 0.863 0.805 0.115 0.791 0.733 0.094 0.743 0.893 0.063 0.859 0.831 0.131 0.748 0.786 0.081 0.785

DSS∗ [17, 18] 0.906 0.064 0.882 0.821 0.101 0.796 0.760 0.074 0.765 0.900 0.050 0.878 0.834 0.125 0.744 0.813 0.065 0.812

MSR [26] 0.903 0.059 0.875 0.839 0.083 0.802 0.790 0.073 0.767 0.907 0.043 0.852 0.841 0.111 0.757 0.824 0.062 0.809

NLDF [35] 0.903 0.065 0.875 0.822 0.098 0.803 0.753 0.079 0.750 0.902 0.048 0.878 0.837 0.123 0.756 0.816 0.065 0.805

RAS [3] 0.915 0.060 0.886 0.830 0.102 0.798 0.784 0.063 0.792 0.910 0.047 0.884 0.844 0.130 0.760 0.800 0.060 0.827

ELD∗ [13] 0.865 0.082 0.839 0.772 0.122 0.757 0.738 0.093 0.743 0.843 0.072 0.823 0.762 0.154 0.705 0.747 0.092 0.749

DHS [32] 0.905 0.062 0.884 0.825 0.092 0.807 - - - 0.892 0.052 0.869 0.823 0.128 0.750 0.815 0.065 0.809

RFCN∗ [48] 0.898 0.097 0852 0.827 0.118 0.799 0.747 0.094 0.752 0.895 0.079 0.860 0.805 0.161 0.730 0.786 0.090 0.784

UCF [62] 0.908 0.080 0.884 0.820 0.127 0.806 0.735 0.131 0.748 0.888 0.073 0.874 0.798 0.164 0.762 0.771 0.116 0.777

Amulet [61] 0.911 0.062 0.894 0.826 0.092 0.820 0.737 0.083 0.771 0.889 0.052 0.886 0.799 0.146 0.753 0.773 0.075 0.796

C2S [29] 0.909 0.057 0.891 0.845 0.081 0.839 0.759 0.072 0.783 0.897 0.047 0.886 0.821 0.122 0.763 0.811 0.062 0.822

PAGR [63] 0.924 0.064 0.889 0.847 0.089 0.818 0.771 0.071 0.751 0.919 0.047 0.889 0.841 0.146 0.716 0.854 0.055 0.825

Ours 0.941 0.044 0.913 0.863 0.076 0.848 0.826 0.056 0.813 0.929 0.034 0.910 0.869 0.110 0.788 0.880 0.043 0.866

ResNet-based

SRM∗ [49] 0.916 0.056 0.895 0.838 0.084 0.832 0.769 0.069 0.777 0.906 0.046 0.887 0.840 0.126 0.742 0.826 0.058 0.824

DGRL [52] 0.921 0.043 0.906 0.844 0.075 0.839 0.774 0.062 0.791 0.910 0.036 0.896 0.843 0.103 0.774 0.828 0.049 0.836

PiCANet∗ [33] 0.932 0.048 0.914 0.864 0.077 0.850 0.820 0.064 0.808 0.920 0.044 0.905 0.861 0.103 0.790 0.863 0.050 0.850

Ours 0.943 0.041 0.918 0.869 0.074 0.852 0.842 0.052 0.818 0.937 0.031 0.918 0.890 0.097 0.807 0.893 0.039 0.875

Table 2. Quantitative comparison including max F-measure, MAE, and S-measure over six widely used datasets. ‘-’ denotes that corre-

sponding methods are trained on that dataset. ↑ & ↓ denote larger and smaller is better, respectively. ∗ means methods using pre-processing

or post-processing. The best three results are marked in red, blue, and green, respectively. Our method achieves the state-of-the-art on

these six widely used datasets under three evaluation metrics.

Model
SOD DUTS

MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑

1. B .851 .116 .780 .855 .060 .844

2. B + edge PROG .873 .105 .799 .872 .051 .851

3. B + edge TDLP .882 .100 .807 .879 .044 .866

4. B + edge NLDF .857 .112 .794 .866 .053 .860

5. B + edge TDLP + MRF PROG .882 .106 .796 .880 .046 .869

6. B + edge TDLP + MRF OTO .890 .097 .807 .893 .039 .875

Table 3. Ablation analyses on SOD [36] and DUTS-TE [46].

Here, B denotes the baseline model. edge PROG, edge TDLF,

edge NLDF, MRF PROG, MRF OTO are introduced in the

Sec. 4.3.

where So and Sr denotes the region-aware and object-aware

structural similarity and γ is set as 0.5 by default. More

details can be found in [10].

4.3. Ablation Experiments and Analyses

In this section, with the DUTS-TR [46] as the training

set, we explore the effect of different components in the pro-

posed network over the relatively difficult dataset SOD [36]

and the recently proposed big dataset DUTS-TE [46].

4.3.1 The complementary information modeling

In this subsection, we explore the role of salient edge in-

formation, which is also our basic idea. The baseline is the

U-Net architecture which integrates the multi-scale features

(From Conv2-2 to Conv6-3) in the way as PSFEM (Fig. 2).

We remove the side path S(2) in the baseline and then fuse

the final saliency features F̂ (3) (side path from Conv3-3)

and the local Conv2-2 features to obtain the salient edge

features. Finally, we integrate salient edge features and the

salient object features F̂ (3) to get the prediction mask. We

denote this strategy of using edges as edge PROG. The re-

sult is shown in the second row of Tab. 3. It proves that the

salient edge information is very useful for the salient object

detection task.

4.3.2 Top-down location propagation

In this subsection, we explore the role of top-down loca-

tion propagation. Compared with edge PROG mentioned

in the previous subsection Sec. 4.3.1, we leverage the top-

down location propagation to extract more accurate location

information from top-level instead of side path S(3). We

call this strategy of using edges as edge TDLP. By com-

paring the second and third rows of Tab. 3, the effect of

top-down location propagation could be proved. Besides,

comparing the first row and the third row of Tab. 3, we can

find that through our explicit modeling of these two kinds

of complementary information within the network, the per-

formance is greatly improved on the datasets (3.1%, 2.4%

under F-measure) without additional time and space con-

sumption.

4.3.3 Mechanism of using edge cues

To demonstrate the advantages over NLDF [35], in which

an IOU loss is added to the end of the network to punish

the errors of edges. We add the same IOU loss to the base-

line. This strategy is called edge NLDF. The performance is

shown in the 4th row of Tab. 3. Compared with the baseline

model, the improvement is limited. This also demonstrates

that the proposed method of using edge information is more
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(a) DUTS-TE [46] (b) DUT-OMRON [57] (c) HKU-IS [27]

Figure 3. Precision (vertical axis) recall (horizontal axis) curves on three popular salient object datasets. It can be seen that the proposed

method performs favorably against state-of-the-arts.

Source B B+edge NLDF B+edge TDLP GT

Figure 4. Visual examples before and after adding edge cues. B

denotes the baseline model. edge NLDF and edge TDLP repre-

sent the edges penalty used in NLDF [35] and the edge modeling

method proposed in this paper. The details are introduced in the

Sec. 4.3.

effective. The visualization results are shown in Fig. 4.

Compared with the baseline model without edge constraint,

after we add the edge penalty used in NLDF [35], edge in-

formation can only help refine the boundaries. In particular,

this penalty can not help to remove the redundant parts in

saliency prediction mask, nor can it make up for the missing

parts. In contrast, the proposed complementary information

modeling method considers the complementarity between

salient edge information and salient object information, and

performs better on both segmentation and localization.

Besides, in order to further prove that salient edge de-

tection and salient object detection are mutually helpful and

complementary. We compare the salient edges generated

by NLDF with the salient edges generated by us. The pre-

trained model and code are both provided by the authors.

As shown in Tab. 4, it could be found that the salient edge

generated by our method is much better, especially under

the recall and F-measure metrics. It proves that the edges

are more accurate in our methods.

Model
SOD DUTS

Recall ↑ Precision ↑ MaxF ↑ Recall ↑ Precision ↑ MaxF ↑

NLDF 0.513 0.541 0.527 0.318 0.659 0.429

Ours 0.637 0.534 0.581 0.446 0.680 0.539

Table 4. Comparisons on the salient edge generated by the NLDF

and ours.

4.3.4 The complementary features fusion

After we obtain the salient edge features and multi-

resolution salient object features. We aim to fuse these com-

plementary features. Here we compare three fusion meth-

ods. The first way is the default way, which integrates the

salient edge features (FE) and the salient object features

F̂ (3) which is on the top of U-Net architecture. The sec-

ond way is to fuse the multi-resolution features F̂ (3), F̂ (4),

F̂ (5), F̂ (6) progressively, which is called MRF PROG. The

third way is the proposed one-to-one guidance, which is de-

noted MRF OTO. Here MRF denotes the multi-resolution

fusion. The results are shown in the third, fifth, sixth rows

of Tab. 3, respectively. It can be seen that our proposed

one-to-one guidance method is most suitable for our whole

architecture.

4.4. Comparison with the Stateoftheart

In this section, we compare our proposed EGNet with

15 previous state-of-the-art methods, including DCL [28],

DSS [17, 18], NLDF [35], MSR [26], ELD [13], DHS [32],

RFCN [48], UCF [62], Amulet [61], PAGR [63], Pi-

CANet [33], SRM [49], DGRL [52], RAS [3] and C2S [29].

Note that all the saliency maps of the above methods are

produced by running source codes or pre-computed by the

authors. The evaluation codes are provided in [10, 17, 18].

F-measure, MAE, and S-measure. We evaluate and

compare our proposed method with other salient object de-

tection methods in term of F-measure, MAE, and S-measure

as shown in Tab. 2. We could see that different methods
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Image GT Ours PiCANet [33] PAGR [63] DGRL [52] SRM [49] UCF [62] Amulet [61] DSS [17, 18] DHS [32]

Figure 5. Qualitative comparisons with state-of-the-arts.

may use different backbone net. Here for a fair compari-

son, we train our model on the VGG [43] and ResNet [16],

respectively. It can be seen that our model performs favor-

ably against the state-of-the-art methods under all evalua-

tion metrics on all the compared datasets especially on the

relative challenging dataset SOD [36, 44] (2.9% and 1.7%

improvements in F-measure and S-measure) and the largest

dataset DUTS [46] (3.0% and 2.5%). Specifically, Com-

pared with the current best approach [33], the average F-

measure improvement on six datasets is 1.9%. Note that this

is achieved without any pre-processing and post-processing.

Precision-recall curves. Besides the numerical compar-

isons shown in Tab. 2, we plot the precision-recall curves

of all compared methods over three datasets Fig. 3. As can

be seen that the solid red line which denotes the proposed

method outperforms all other methods at most thresholds.

Due to the help of the complementary salient edge informa-

tion, the results yield sharp edge information and accurate

localization, which results in a better PR curve.

Visual comparison. In Fig. 5, we show some visualiza-

tion results. It could be seen that our method performs better

on salient object segmentation and localization. It is worth

mentioning that thank to the salient edge features, our result

could not only highlight the salient region but also produce

coherent edges. For instance, for the first sample, due to the

influence of the complex scene, other methods are not capa-

ble of localizing and segmenting salient objects accurately.

However, benefiting from the complementary salient edge

features, our method performs better. For the second sam-

ple, in which the salient object is relatively small, our result

is still very close to the ground-truth.

5. Conclusion

In this paper, we aim to preserve salient object bound-

aries well. Different from other methods which integrate the

multi-scale features or leverage the post-processing, we fo-

cus on the complementarity between salient edge informa-

tion and salient object information. Based on this idea, we

propose the EGNet to model these complementary features

within the network. First, we extract the multi-resolution

salient object features based on U-Net. Then, we propose

a non-local salient edge features extraction module which

integrates the local edge information and global location in-

formation to get the salient edge features. Finally, we adopt

a one-to-one guidance module to fuse these complementary

features. The salient object boundaries and localization are

improved under the help of salient edge features. Our model

performs favorably against the state-of-the-art methods on

six widely used datasets without any pre-processing or post-

processing. We also provide analyses of the effectiveness of

the EGNet.
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[25] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[26] Guanbin Li, Yuan Xie, Liang Lin, and Yizhou Yu. Instance-

level salient object segmentation. In CVPR, 2017.

[27] Guanbin Li and Yizhou Yu. Visual saliency based on multi-

scale deep features. In CVPR, pages 5455–5463, 2015.

[28] Guanbin Li and Yizhou Yu. Deep contrast learning for salient

object detection. In CVPR, 2016.

[29] Xin Li, Fan Yang, Hong Cheng, Wei Liu, and Dinggang

Shen. Contour knowledge transfer for salient object detec-

tion. In ECCV, pages 355–370, 2018.

[30] Yin Li, Xiaodi Hou, Christof Koch, James M Rehg, and

Alan L Yuille. The secrets of salient object segmentation.

In CVPR, pages 280–287, 2014.

[31] Zun Li, Congyan Lang, Yunpeng Chen, Junhao Liew, and

Jiashi Feng. Deep reasoning with multi-scale context for

salient object detection. arXiv preprint arXiv:1901.08362,

2019.

[32] Nian Liu and Junwei Han. Dhsnet: Deep hierarchical

saliency network for salient object detection. In CVPR, pages

678–686, 2016.

[33] Nian Liu, Junwei Han, and Ming-Hsuan Yang. Picanet:

Learning pixel-wise contextual attention for saliency detec-

tion. In CVPR, pages 3089–3098, 2018.

[34] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In

CVPR, pages 3431–3440, 2015.

[35] Zhiming Luo, Akshaya Kumar Mishra, Andrew Achkar,

Justin A Eichel, Shaozi Li, and Pierre-Marc Jodoin. Non-

local deep features for salient object detection. In CVPR,

2017.

8787



[36] David Martin, Charless Fowlkes, Doron Tal, and Jitendra

Malik. A database of human segmented natural images and

its application to evaluating segmentation algorithms and

measuring ecological statistics. In ICCV, volume 2, pages

416–423, 2001.

[37] Vida Movahedi and James H Elder. Design and perceptual

validation of performance measures for salient object seg-

mentation. In IEEE CVPRW, pages 49–56. IEEE, 2010.

[38] David Mumford and Jayant Shah. Optimal approximations

by piecewise smooth functions and associated variational

problems. CPAM, 42(5):577–685, 1989.

[39] Derrick Parkhurst, Klinton Law, and Ernst Niebur. Modeling

the role of salience in the allocation of overt visual attention.

Vision research, 42(1):107–123, 2002.

[40] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.

Springer, 2015.

[41] Paul L Rosin and Yu-Kun Lai. Artistic minimal rendering

with lines and blocks. Graphical Models, 75(4):208–229,

2013.

[42] Ueli Rutishauser, Dirk Walther, Christof Koch, and Pietro

Perona. Is bottom-up attention useful for object recognition?

In CVPR, 2004.

[43] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

2015.

[44] Jingdong Wang, Huaizu Jiang, Zejian Yuan, Ming-Ming

Cheng, Xiaowei Hu, and Nanning Zheng. Salient object

detection: A discriminative regional feature integration ap-

proach. IJCV, 123(2):251–268, 2017.

[45] Lijun Wang, Huchuan Lu, Xiang Ruan, and Ming-Hsuan

Yang. Deep networks for saliency detection via local esti-

mation and global search. In ICCV, pages 3183–3192, 2015.

[46] Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng,

Dong Wang, Baocai Yin, and Xiang Ruan. Learning to de-

tect salient objects with image-level supervision. In CVPR,

pages 136–145, 2017.

[47] Linzhao Wang, Lijun Wang, Huchuan Lu, Pingping Zhang,

and Xiang Ruan. Saliency detection with recurrent fully con-

volutional networks. In ECCV, pages 825–841. Springer,

2016.

[48] Linzhao Wang, Lijun Wang, Huchuan Lu, Pingping Zhang,

and Xiang Ruan. Saliency detection with recurrent fully con-

volutional networks. In ECCV, 2016.

[49] Tiantian Wang, Ali Borji, Lihe Zhang, Pingping Zhang, and

Huchuan Lu. A stagewise refinement model for detecting

salient objects in images. In ICCV, pages 4019–4028, 2017.

[50] Tiantian Wang, Yongri Piao, Li Xiao, Lihe Zhang, and

Huchuan Lu. Deep learning for light field saliency detec-

tion. In ICCV, 2019.

[51] Tiantian Wang, Lihe Zhang, Huchuan Lu, Chong Sun, and

Jinqing Qi. Kernelized subspace ranking for saliency detec-

tion. In ECCV, pages 450–466, 2016.

[52] Tiantian Wang, Lihe Zhang, Shuo Wang, Huchuan Lu, Gang

Yang, Xiang Ruan, and Ali Borji. Detect globally, refine

locally: A novel approach to saliency detection. In CVPR,

pages 3127–3135, 2018.

[53] Wenguan Wang, Jianbing Shen, Xingping Dong, and Ali

Borji. Salient object detection driven by fixation prediction.

In ICCV, pages 1711–1720, 2018.

[54] Ziqin Wang, Jun Xu, Li Liu, Fan Zhu, and Ling Shao. Ranet:

Ranking attention network for fast video object segmenta-

tion. In ICCV, Oct 2019.

[55] Saining Xie and Zhuowen Tu. Holistically-nested edge de-

tection. In ICCV, pages 1395–1403, 2015.

[56] Qiong Yan, Li Xu, Jianping Shi, and Jiaya Jia. Hierarchical

saliency detection. In CVPR, pages 1155–1162, 2013.

[57] Chuan Yang, Lihe Zhang, Huchuan Lu, Xiang Ruan, and

Ming-Hsuan Yang. Saliency detection via graph-based man-

ifold ranking. In CVPR, pages 3166–3173, 2013.

[58] Jing Zhang, Yuchao Dai, Fatih Porikli, and Mingyi He.

Deep edge-aware saliency detection. arXiv preprint

arXiv:1708.04366, 2017.

[59] Lu Zhang, Ju Dai, Huchuan Lu, You He, and Gang Wang. A

bi-directional message passing model for salient object de-

tection. In ICCV, pages 1741–1750, 2018.

[60] Pingping Zhang, Wei Liu, Huchuan Lu, and Chunhua Shen.

Salient object detection with lossless feature reflection and

weighted structural loss. IEEE TIP, 2019.

[61] Pingping Zhang, Dong Wang, Huchuan Lu, Hongyu Wang,

and Xiang Ruan. Amulet: Aggregating multi-level convolu-

tional features for salient object detection. In ICCV, pages

202–211, 2017.

[62] Pingping Zhang, Dong Wang, Huchuan Lu, Hongyu Wang,

and Baocai Yin. Learning uncertain convolutional features

for accurate saliency detection. In ICCV, pages 212–221.

IEEE, 2017.

[63] Xiaoning Zhang, Tiantian Wang, Jinqing Qi, Huchuan Lu,

and Gang Wang. Progressive attention guided recurrent net-

work for salient object detection. In CVPR, pages 714–722,

2018.

[64] Jiaxing Zhao, Ren Bo, Qibin Hou, Ming-Ming Cheng, and

Paul Rosin. Flic: Fast linear iterative clustering with active

search. CVM, 4(4):333–348, Dec 2018.

[65] Jiaxing Zhao, Bo Ren, Qibin Hou, and Ming-Ming Cheng.

Flic: Fast linear iterative clustering with active search. In

AAAI, 2018.

[66] Jia-Xing Zhao, Yang Cao, Deng-Ping Fan, Ming-Ming

Cheng, Xuan-Yi Li, and Le Zhang. Contrast prior and fluid

pyramid integration for rgbd salient object detection. In

CVPR, 2019.

[67] Kai Zhao, Shanghua Gao, Wenguan Wang, and Ming-Ming

Cheng. Optimizing the f-measure for threshold-free salient

object detection. In ICCV, Oct 2019.

[68] Wangjiang Zhu, Shuang Liang, Yichen Wei, and Jian Sun.

Saliency optimization from robust background detection. In

CVPR, pages 2814–2821, 2014.

[69] Yunzhi Zhuge, Gang Yang, Pingping Zhang, and Huchuan

Lu. Boundary-guided feature aggregation network for salient

object detection. IEEE SPL, 25(12):1800–1804, 2018.

8788


