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We propose a learning-based method to remove perspective distortion. We show input photos (b) (e), our undistortion results (c) (f), and

reference images (d) (g) captured simultaneously using a beam splitter rig (a). Our approach handles even extreme perspective distortions.

Abstract

Near-range portrait photographs often contain perspec-

tive distortion artifacts that bias human perception and

challenge both facial recognition and reconstruction tech-

niques. We present the first deep learning based approach

to remove such artifacts from unconstrained portraits. In

contrast to the previous state-of-the-art approach [23], our

method handles even portraits with extreme perspective dis-

tortion, as we avoid the inaccurate and error-prone step of

first fitting a 3D face model. Instead, we predict a distor-

tion correction flow map that encodes a per-pixel displace-

ment that removes distortion artifacts when applied to the

input image. Our method also automatically infers missing

facial features, i.e. occluded ears caused by strong perspec-

tive distortion, with coherent details. We demonstrate that

our approach significantly outperforms the previous state-

of-the-art [23] both qualitatively and quantitatively, partic-

ularly for portraits with extreme perspective distortion or

facial expressions. We further show that our technique ben-

efits a number of fundamental tasks, significantly improving

the accuracy of both face recognition and 3D reconstruc-

tion and enables a novel camera calibration technique from

a single portrait. Moreover, we also build the first perspec-

tive portrait database with a large diversity in identities,

expression and poses.

1. Introduction

Perspective distortion artifacts are often observed in

portrait photographs, in part due to the popularity of the

“selfie” image captured at a near-range distance. The

inset images, where a person is photographed from dis-

tances of 160cm and 25cm, demonstrate these artifacts.

@160CM @25CM

When the object-to-

camera distance is

comparable to the size of

a human head, as in the

25cm distance example,

there is a large propor-

tional difference between

the camera-to-nose and

camera-to-ear distances.

This difference creates

a face with unusual proportions, with nose and eyes

appearing larger and ears vanishing all together [56].

Perspective distortion in portraits not only influences the

way humans perceive one another [9], but also greatly im-

pairs a number of computer vision-based tasks, such as face

verification and landmark detection. Prior research [39, 40]

has demonstrated that face recognition is strongly compro-

mised by the perspective distortion of facial features. Ad-

ditionally, 3D face reconstruction from such portraits is

highly inaccurate, as geometry fitting starts from biased fa-

cial landmarks and distorted textures.
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Correcting perspective distortion in portrait photography

is a largely unstudied topic. Recently, Fried et al. [23] in-

vestigated a related problem, aiming to manipulate the rel-

ative pose and distance between a camera and a subject in a

given portrait. Towards this goal, they fit a full perspective

camera and parametric 3D head model to the input image

and performed 2D warping according to the desired change

in 3D. However, the technique relies on a potentially inac-

curate 3D reconstruction from facial landmarks biased by

perspective distortion. Furthermore, if the 3D face model

fitting step failed, as it could for extreme perspective distor-

tion or dramatic facial expressions, so would their broader

pose manipulation method. In contrast, our approach does

not rely on model fitting from distorted inputs and thus can

handle even these challenging inputs. Our GAN-based syn-

thesis approach also enables high-fidelity inference of any

occluded features, not considered by Fried et al. [23].

In our approach, we propose a cascaded network that

maps a near-range portrait with perspective distortion to its

distortion-free counterpart at a canonical distance of 1.6m
(although any distance between 1.4m ∼ 2m could be used

as the target distance for good portraits). Our cascaded net-

work includes a distortion correction flow network and a

completion network. Our distortion correction flow method

encodes a per-pixel displacement, maintaining the origi-

nal image’s resolution and its high frequency details in the

output. However, as near-range portraits often suffer from

significant perspective occlusions, flowing individual pixels

often does not yield a complete final image. Thus, the com-

pletion network inpaints any missing features. A final tex-

ture blending step combines the face from the completion

network and the warped output from the distortion correc-

tion network. As the possible range of per-pixel flow values

vary by camera distance, we first train a camera distance

prediction network, and feed this prediction to the distor-

tion correction network.

Training our proposed networks requires a large corpus

of paired portraits with and without perspective distortion.

However, to the best of our knowledge, no previously ex-

isting dataset is suited for this task. As such, we construct

the first portrait dataset rendered from 3D head models with

large variations in camera distance, head pose, subject iden-

tity, and illumination. To visually and numerically evalu-

ate the effectiveness of our approach on real portrait pho-

tographs, we also design a beam-splitter photography sys-

tem to capture portrait pairs of real subjects simultaneously

on the same optical axis, eliminating differences in poses,

expressions and lighting conditions.

Experimental results demonstrate that our approach re-

moves a wide range of perspective distortion artifacts (e.g.,

increased nose size, squeezed face, etc), and even restores

missing facial features like ears or the rim of the face. We

show that our approach significantly outperforms Fried et

al. [23] both qualitatively and quantitatively for a synthetic

dataset, constrained portraits, and unconstrained portraits

from the Internet. We also show that, when applied as a pre-

processing step, our approach improves a wide range of fun-

damental tasks in computer vision and computer graphics,

including face recognition/verification, landmark detection

on near-range portraits (such as head mounted cameras in

visual effects), and 3D face model reconstruction for avatar

creation and 3D photos generation(Section 6.3). Addition-

ally, our novel camera distance prediction provides accurate

camera calibration from a single portrait.

Our main contributions can be summarized as follows:

• The first deep learning based method to automatically

remove perspective distortion from an unconstrained

near-range portrait, benefiting a wide range of funda-

mental tasks in computer vision and graphics.

• A novel and accurate camera calibration approach that

only requires a single near-range portrait as input.

• A new perspective portrait database for face undistor-

tion with a wide range of subject identities, head poses,

camera distances, and lighting conditions.

2. Related Work

Face Modeling. We refer the reader to [43] for a com-

prehensive overview and introduction to the modeling of

digital faces. With advances in 3D scanning and sens-

ing technologies, sophisticated laboratory capture systems

[5, 6, 8, 21, 24, 38, 41, 57] have been developed for high-

quality face reconstruction. However, 3D face geometry

reconstruction from a single unconstrained image remains

challenging. The seminal work of Blanz and Vetter [7] pro-

posed a PCA-based morphable model, which laid the foun-

dation for modern image-based 3D face modeling and in-

spired numerous extensions including face modeling from

internet pictures [33], multi-view stereo [2], and reconstruc-

tion based on shading cues [34]. To better capture a vari-

ety of identities and facial expressions, the multi-linear face

models [55] and the FACS-based blendshapes [11] were

later proposed. When reconstructing a 3D face from im-

ages, sparse 2D facial landmarks [18, 19, 49, 60] are widely

used for a robust initialization. Shape regressions have

been exploited in the state-of-the-art landmark detection ap-

proaches [12, 32, 45] to achieve impressive accuracy.

Due to the low dimensionality and effectiveness of mor-

phable models in representing facial geometry, there have

been significant recent advances in single-view face recon-

struction [52, 46, 36, 51, 28]. However, for near-range por-

trait photos, the perspective distortion of facial features may

lead to erroneous reconstructions even when using the state-

of-the-art techniques. Therefore, portrait perspective undis-

tortion must be considered as a part of a pipeline for accu-

rately modeling facial geometry.
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Face Normalization. Unconstrained photographs often

include occlusions, non-frontal views, perspective distor-

tion, and even extreme poses, which introduce a myriad of

challenges for face recognition and reconstruction. How-

ever, many prior works [25, 62, 47, 29] only focused on

normalizing head pose. Hassner et al. [25] “frontalized” a

face from an input image by estimating the intrinsic camera

matrix given a fixed 3D template model. Cole et al. [15] in-

troduced a neural network that mapped an unconstrained fa-

cial image to a front-facing image with a neutral expression.

Huang et al. [29] used a generative model to synthesize an

identity-preserving frontal view from a profile. Bas et al. [4]

proposed an approach for fitting a 3D morphable model to

2D landmarks or contours under either orthographic or per-

spective projection.

Psychological research suggests a direct connection be-

tween camera distance and human portrait perception.

Bryan et al. [9] showed that there is an “optimal distance” at

which portraits should be taken. Cooper et al. [17] showed

that the 50mm lens is most suitable for photographing an

undistorted facial image. Valente et al. [54] proposed to

model perspective distortion as a one-parameter family of

warping functions with known focal length. Most related

to our work, Fried et al. [23] investigated the problem of

editing the facial appearance by manipulating the distance

between a virtual camera and a reconstructed head model.

Though this technique corrected some mild perspective dis-

tortion, it was not designed to handle extreme distortions,

as it relied on a 3D face fitting step.

Image-based Camera Calibration. Camera calibration

is an essential prerequisite for extracting precise and re-

liable 3D metric information from images. We refer the

reader to [44, 48, 42] for a survey of such techniques. The

state-of-the-art calibration methods mainly require a phys-

ical target such as checkerboard pattern [53, 64] or circu-

lar control points [14, 16, 26, 31, 20], used for locating

point correspondences. Flores et al. [22] proposed the first

method to infer camera-to-subject distance from a single

image with a calibrated camera. Burgos-Artizzu et al. [10]

built the Caltech Multi-Distance Portraits Dataset (CMDP)

of portraits of a variety of subjects captured from seven dis-

tances. Many recent works directly estimate camera param-

eters using deep neural networks. PoseNet [35] proposed

an end-to-end solution for 6-DOF camera pose localization.

Others [58, 59, 27] proposed to extract camera parameters

using vanishing points from a single scene photos with hori-

zontal lines. To the best of our knowledge, our method is the

first to estimate camera parameters from a single portrait.

3. Overview

The overview of our system is shown in Fig. 1. We

pre-process the input portraits with background segmenta-

tion, scaling, and spatial alignment (see appendix), and then

feed them to a camera distance prediction network to esti-

mates camera-to-subject distance. The estimated distance

and the portrait are fed into our cascaded network including

FlowNet, which predicts a distortion correction flow map,

and CompletionNet, which inpaints any missing facial fea-

tures caused by perspective distortion. Perspective undis-

tortion is not a typical image-to-image translation problem,

because the input and output pixels are not spatially corre-

sponded. Thus, we factor this challenging problem into two

sub tasks: first finding a per-pixel undistortion flow map,

and then image completion via inpainting. In particular,

the vectorized flow representation undistorts an input image

at its original resolution, preserving its high frequency de-

tails, which would be challenging if using only generative

image synthesis techniques. In our cascaded architecture

(Fig. 1 middle), CompletionNet is fed the warping result

of FlowNet. We provide details of FlowNet and Comple-

tionNet in Sec. 4. Finally, we combined the results of the

two cascaded networks using the Laplacian blending [1] to

synthesize a complete undistorted image with inference of

missing features while keeping the high-resolution details

as shown in Fig. 2.

4. Portrait Undistortion

4.1. Camera Distance Prediction Network

Rather than regress directly from the input image to

the camera distance D, which is known to be challeng-

ing to train, we use a distance classifier. We check if the

camera-to-subject distance of the input is larger than an

query distance d ǫ (17.4cm, 130cm)1. Our strategy learns

a continuous mapping from input images to the target dis-

tances. Given any query distance D and input image pair

(input,D), the output is a floating point number in the

range of 0 ∼ 1, which indicates the probability that the dis-

tance of the input image is greater than the query distance

D. As shown in Fig. 3, the vertical axis indicates the out-

put of our distance prediction network while the horizontal

axis is the query distance. To predict the distance, we lo-

cate the query distance with a network output of 0.5. With

our network denoted as φ, our network holds the transitivity

property that if d1 > d2, φ(input, d1) > φ(input, d2).

To train the camera distance network, we append the

value of log2 d as an additional channel of the input im-

age and extract features from the input images using the

VGG-11 network [50], followed by a classic classifier con-

sisting of fully connected layers. As training data, for

each of the training image with ground truth distance d, we

sample a set of log2 d using normal distribution log2 d ∼
N (log2 D, 0.52).

117.4cm and 130cm camera-to-subject distances correspond to

14mm and 105mm, respectively, in 35mm equivalent focal length
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Figure 1: The pipeline workflow and applications of our approach. The input portrait is first segmented and scaled in the preprocessing

stage and then fed to a network consisting of three cascaded components. The FlowNet rectifies the distorted artifacts in the visible regions

of input by predicting a distortion correction flow map. The CompletionNet inpaints the missing facial features due to the strong perspective

distortions and obtains the completed image. The outcomes of two networks are then scaled back to the original resolution and blended

with high-fidelity mean texture to restore fine details.

(a) (b) (c) (d)

Figure 2: Illustration of blending. (a) Input; (b) is the result of

FlowNet with interpolation; (c) is the result of CompletionNet; (d)

is the final result with blending (b) and (c). Green box shows the

close-up of facial details.

0

1

Distances

0.5

d1 d2 a b

Figure 3: Illustration of Camera Distance Prediction Classifier.

Green Curve and Red Curve are the response curves of input a

and b; d1 and d2 are the predicted distances of input a and input b.

4.2. FlowNet

The FlowNet operates on the normalized input image

(512 × 512) A and estimates a correction forward flow F
that rectifies the facial distortions. However, due to the im-

mense range of possible perspective distortions, the correc-

tion displacement for portraits taken at different distances

will exhibit different distributions. Directly predicting such

high-dimensional per-pixel displacement is highly under-

constrained and often leads to inferior results (Fig. 11). To

ensure more efficient learning, we propose to attach the es-

timated distance to the input of FlowNet in the similar way

as in Section 4.1. Instead of directly attaching the predicted

number, we propose to classify these distances into eight

intervals2 and use the class label as the input to FlowNet.

The use of label will decrease the risk of accumulation er-

ror from camera distance prediction network, because the

2The eight distance intervals are [23, 26), [26, 30), [30, 35), [35, 43),
[43, 62), [62, 105), [105, 168) and [168,+∞), measured in centimeters.

accuracy of predicting a label is higher than floating num-

ber.

FlowNet takes A and distance label L as input, and it will

predict a forward flow map FAB, which can be used to ob-

tain undistorted output B when applied to A. For each pixel

(x, y) of A, FAB encodes the translation vector (∆x,∆y).
Denote the correspondence of (x, y) on B as (x′, y′), then

(x′, y′) = (x, y)+(∆x,∆y). In FlowNet, we denote gener-

ator and discriminator as G and D separately. Then L1 loss

of flow is as below:

LG = ‖y −FAB‖1 (1)

In which y is the ground truth flow. For the discriminator

loss, as forward flow FAB is per-pixel correspondence to A
but not B, thus B will have holes, seams and discontinuities

which is hard to used in discriminator. To make the problem

more tractable, instead of applying discriminator on B, we

use the FAB to map B to A′ and use A and A′ as pairs for

discriminator on the condition of L.

LD = min
G

max
D

E
x∼pdata(x)

[

log D(A,L)
]

+

E
z∼pz(z)

[

log (1−D(A′,L))
]

.
(2)

where pdata(x) and pz(z) represent the distributions of

real data x(input image A domain) and noise variables z in

the domain of A respectively. The discriminator will penal-

ize the joint configuration in the space of A, which leads to

shaper results.

4.3. CompletionNet

The distortion-free result will then be fed into the Com-

pletionNet, which focuses on inpainting missing features

and filling the holes. Note that as trained on a vast number

of paired examples with large variations of camera distance,

CompletionNet has learned an adaptive mapping regarding

to varying distortion magnitude inputs.
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4.4. Network Architecture

We employ a U-net structure with skip connections simi-

lar to [30] to both FlowNet and CompletionNet. There is not

direct correspondence between each pixel in the input and

those in the output. In the FlowNet, the L1 and GAN dis-

criminator loss are only computed within the segmentation

mask, leading the network to focus on correcting details that

only will be used in the final output. In the CompletionNet,

as the output tends to cover more pixels than the input, dur-

ing training, we compute a new mask that denotes the novel

region compared to input and assign higher L1 loss weight

to this region. In implementation, we set the weight ratio of

losses computed inside and outside the mask as 5 : 1 for the

CompletionNet. We found that this modifications leads to

better inference performance while producing results with

more details.

Implementation Details. We train FlowNet and Com-

pletionNet separately using the Adam optimizer [37] with

learning rate 0.0002. All training was performed on an

NVIDIA GTX 1080 Ti graphics card. As shown in Fig. 1

middle, the generator in both networks uses the mirrored

structure, in which both encoder and decoder use 8-layer

convolutional network. ReLU activation and batch normal-

ization are used in all layers except the input and output

layers. The discriminator consists of four convolutional

layers and one fully connected layer. For input image of

512 × 512, the run times are: 73ms (distance prediction),

330ms (FlowNet), and 340ms (CompletionNet).

5. Data Preparation

Training Data Acquisition and Rendering. As there is

no database of paired portraits with only perspective chang-

ing. We therefore generate a novel training dataset where

we can control the subject-to-camera distance, head pose,

illumination and ensure that the image differences are only

caused only by perspective distortion. Our synthetic train-

ing corpus is rendered from 3D head models acquired by

two scanning system. The first is a light-stage[24, 41] scan-

ning system which produces pore-level 3D head models for

photo-real rendering. Limited by the post-processing time,

cost and number of individuals that can be rapidly captured,

we also employ a second capture system engineered for

rapid throughput. In total, we captured 15 subjects with

well defined expressions in the high-fidelity system, gener-

ating 307 individual meshes, and 200 additional subjects in

the rapid-throughput system.

We rendered synthetic portraits using a variety of camera

distances, head poses, and incident illumination conditions.

We sample distances distributed from 23cm to 160cm with

corresponding 35mm equivalent focal length from 18mm

to 128mm to ensure the same framing. We also randomly

sample candidate head poses in the range of -45◦ to +45◦

Figure 4: Training dataset. The left side triplet are the syn-

thetic images generated from BU-4DFE dataset[61]. From the

left to the right, the camera-to-subject distances are: 24cm, 30cm,

52cm, 160cm. The right side triplet are the synthetic images ren-

dered from high-resolution 3D model. From left to the right, the

camera-to-subject distances are: 22cm, 30cm, 53cm, 160cm.

in pitch, yaw, and roll. We used 107 different image-based

environment for global illumination combined with point

lights. With the random combination of camera distances,

head poses, and illuminations, we totally generate 35,654

pairs of distroted/ undistored portraits along with forward

flow.

17,000 additional portrait pairs warped from BU-4DFE

dataset [61](38 females and 25 males subjects for training

while 20 females and 17 males for testing) are used to ex-

pand diversity of identities.

Test Data Acquisition. To demonstrate that our system

scales well to real-world portraits, we also devised a two-

camera beam splitter capture system that would enable si-

multaneous photography of a subject at two different dis-

tances. As shown in Teaser left, we setup a beam-splitter

(50% reflection, 50% transmission) at 45◦ along a metal

rail, such that a first DSLR camera was set at the canoni-

cal fixed distance of 1.6m from the subject, with a 180mm

prime lens to image the subject directly, while a second

DSLR camera was set at a variable distance of 23cm -

1.37m, to image the subject’s reflection off the beam-

splitter with a 28mm zoom lens. With carefully geome-

try and color calibration, the two hardware-synced cameras

were able to capture nearly ground truth portraits pairs of

real subjects both with and without perspective distortions.

(More details can be found in the appendix).

6. Results and Experiments

6.1. Evaluations

Face Image Undistortion. In Fig. 5, Fig. 6 and Fig. 7 we

show the undistortion results of ours compared to Fried et

al.[23]. To better visualize the reconstruction error, we also

show the error map compared to groundtruth or references

in Fig. 5 and Fig. 6. We perform histogram equalization

before computing the error maps. Our results are visually

more accurate than Fried et al.[23] especially on the face

boundaries. To numerically evaluate our undistortion ac-

curacy, we compare with Fried et al.[23] the average error

over 1000 synthetic pair from BU-4DFE dataset. With an

average intensity error of 0.39 we significantly outperform

Fried et al.[23] which has an average intensity error of 1.28.

In Fig. 7, as we do not have references or ground truth, to
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Figure 5: Undistortion results of beam splitter system compared

to Fried et al. [23]. From left to the right : inputs, results of Fried

et al. [23], error maps of Fried et al. [23] compared to references,

ours results, error map of our results compared to references, ref-

erence.

Figure 6: Undistortion results of synthetic data generated from

BU-4DFE dataset compared to Fried et al. [23]. From left to the

right : inputs, results of Fried et al. [23], error map of Fried et

al. [23] compared to ground truth, ours results, error map of our

results compared to ground truth, ground truth.

better visualize the motion of before-after undistortion, we

replace the g channel of input with g channel of result image

to amplify the difference.

Camera Parameter Estimation. Under the assumption

of same framing(keeping the head size in the same scale for

all the photos), the distance is equivalent to focal length by

multiplying a scalar. The scalar of converting distances to

focal length is s = 0.8, which means when taking photo

at 160cm camera-to-subject distance, to achieve the desired

framing in this paper, a 128mm focal length should be used.

Thus, as long as we can predict accurate distances of the in-

put photo, we can directly get the 35mm equivalent focal

length of that photo. We numerically evaluate the accuracy

of our Camera Distance Prediction network by testing with

1000 synthetic distorted portraits generated from BU-4DFE

dataset. The mean error of distance prediction is 8.2% with

a standard deviation of 0.083. We also evaluate the accu-

racy of labeling. As the intervals mentioned in Section 4.2

(a) (b) (c) (d) (e)

Figure 7: Evaluation and comparisons with Fried et al. [23] on

a variety of datasets with in the wild database. (a). inputs; (b).

Fried et al. [23]; (c). Ours; (d). The Mixture of (a) and (b) for

better visualization of undistortion; (e). The Mixture of (a) and

(c); Shaded portraits indicate the failure of Fried et al. [23].

are successive, some of the images may lie on the fence of

two neighboring intervals. So we regard label prediction as

correct within its one step neighbor. Under this assumption,

the accuracy of labeling is 96.9% which insures input reli-

ability for the cascade networks. Fig. 8 shows the distance

prediction probability curve of three images. For each of

them we densely sampled query distances along the whole

distance range and and the classifier results are monotoni-

cally changing. We tested on 1000 images and found that
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Figure 8: Distance prediction probability curve of three differ-

ent input portraits with query distance sampled densely along the

whole range.

(a) (f)(c) (e)(d)(b) (g) (h)

Figure 9: Results of different labels. (a) Inputs; (b) ∼ (h): Net-

work outputs given labels from 1 to 7. Green box is the label

predicted by the network.

Figure 10: Ablation analysis on cascade network. In each triplet,

from left to the right: inputs, results of single image-to-image net-

work similar to [30], results of using cascade network including

FlowNet and CompletionNet.

on average the transitivity holds 98.83%.

Evaluation on Interval Selection. In the Camera Dis-

tance Prediction network, some of the images might lie on

the fence of neighboring intervals. To demonstrate the sta-

bility of our pipeline, we show several undistortion results

for the same inputs using different distance labels in Fig. 9,

with the network predicted label outlined in green. Visually,

each outlined image and its left and right neighbors appear

very similar, suggesting the results are not highly sensitive

to adjacent interval categorization.

6.2. Ablation Study

In Fig. 10, we compare the single network and proposed

cascade network. The results show that with a FlowNet

as prior, the recovered texture will be sharper especially

on boundaries. Large holes and missing textures are more

likely to be inpainted properly. Fig. 11 demonstrates the ef-

fectiveness of our label channel introduced in FlowNet. The

results without label channel are more distorted compared

Figure 11: Ablation analysis on attach label as a input to

FlowNet. In each triplet, from left to the right: inputs, results

from the network without label channel, results of our proposed

network.

(a) (b)

Figure 12: (a). Receiver operating characteristic (ROC) curve for

face verification performance on raw input and undistorted input

using our method. Raw input (A,B) compares to undistorted in-

put (N(A),B); (b). Cumulative error curve for facial landmark

detection performance given unnormalized image and image nor-

malized by our method. Metric is measured in normalized mean

error (NME).

to the ones with label as inputs, especially the proportions

of noses, mouth regions and the face rims.

6.3. Applications

(a) (b) (c) (d)

Figure 13: Comparing 3D face reconstruction from portraits,

without and with our undistortion technique. (a) and (c) are heav-

ily distorted portraits and the 3D mesh fitted using the landmarks

of the portraits. (b) and (d) are undistorted results of (a) and (c)

with 3D reconstruction based on them. Gray meshes show recon-

structed facial geometry and color-coded meshes show reconstruc-

tion error.

Face Verification. Our facial undistortion technique can

improve the performance of face verification, which we test

using the common face recognition system OpenFace [3].

We synthesized 6,976 positive (same identity) and 6,980

negative (different identity) pairs from BU-4DFE dataset

[61] as test data. We rendered one image A in a pair of
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Input mean std

Raw input (A,B) 0.9137 0.0090

Undistorted input (N(A), B) 0.9473 0.0067

Table 1: Comparison of face verification accuracy for images

with and without our undistortion as pre-processing. Accuracy is

reported on random 10-folds of test data with mean and standard

deviation.

images (A,B) as a near-distance portrait with perspective

distortion; while we rendered B at the canonical distance

of 1.6m to minimize the distortion. This is the setting of

most face verification security system, which retrieves the

database for the nearest neighbor. We evaluated face verifi-

cation performance on raw data (A,B) and data (N (A), B)
and (N (A),N (B)) in which perspective distortion was re-

moved using our method. Verification accuracy and receiver

operating characteristic (ROC) comparisons are shown in

Table 1 and Fig. 12a.

Landmark Detection Enhancement. We use the state-

of-the-art facial landmark tracker OpenPose [13] on 6,539

renderings from the BU-4DFE dataset [61] as previously

described, where each input image is rendered at a short

camera-to-object distance with significant perspective dis-

tortion. We either directly apply the landmark detection to

the raw image, or the undistorted image using our network

and then locate the landmark on the raw input using the

flow from our network. Landmark detection gives a 100%

performance based on our pre-processed images, on which

domain alignments are applied while fails on 9.0% origi-

nal perspective-distorted portraits. For quantitative compar-

isons, we evaluate the landmark accuracy using a standard

metric, Normalized Mean Error (NME) [63]. Given the

ground truth 3D facial geometry, we can find the ground

truth 2D landmark locations of the inputs. For images

with successful detection for both the raw and undistorted

portraits, our method produces lower landmark error, with

mean NME = 4.4% (undistorted images), compared to 4.9%

(raw images). Fig. 12b shows the cumulative error curves,

showing an obvious improvement for facial landmark de-

tection for portraits undistorted using our approach.

Face Reconstruction. One difficulty of reconstructing

highly distorted faces is that the boundaries can be severely

self-occluded (e.g., disappearing ears or occlusion by the

hair), which is a common problem in 3D face reconstruc-

tion methods regardless if the method is based on 2D land-

marks or texture. Fig. 13 shows that processing a near-

range portrait input using our method in advance can sig-

nificantly improves 3D face reconstruction. The 3D facial

geometry is obtained by fitting a morphable model (Face-

Warehouse [11]) to 2D facial landmarks. Using the origi-

nal perspective-distorted image as input, the reconstructed

geometry appears distortion, while applying our technique

as a pre-processing step retains both identity and geomet-

ric details. We show error map of 3D geometry compared

to ground truth, demonstrating that our method applied as a

pre-processing step improves reconstruction accuracy, com-

pared with the baseline approach without any perspective-

distortion correction.

7. Conclusion

We have presented the first automatic approach that cor-

rects the perspective distortion of unconstrained near-range

portraits. Our approach even handles extreme distortions.

We proposed a novel cascade network including camera pa-

rameter prediction network, forward flow prediction net-

work and feature inpainting network. We also built the

first database of perspective portraits pairs with a large vari-

ations on identities, expressions, illuminations and head

poses. Furthermore, we designed a novel duo-camera sys-

tem to capture testing images pairs of real human. Our

approach significantly outperforms the state-of-the-art ap-

proach [23] on the task of perspective undistortion with an

accurate camera parameter prediction. Our approach also

boosts the performance of fundamental tasks like face veri-

fication, landmark detection and 3D face reconstruction.

Limitations and Future Work. One limitation of our

work is that the proposed approach does not generalize to

lens distortions, as our synthetic training dataset rendered

with an ideal perspective camera does not include this arti-

fact. Similarly, our current method is not explicitly trained

to handle portraits with large occlusions and head poses.

We plan to resolve both of the limitations in future work by

augmenting training examples with lens distortions, large

facial occlusions and head poses. Another future avenue is

to investigate end-to-end training of the cascaded network,

which could further boost the performance of our approach,

but would require fully-differentiable image warping.
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