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Abstract

Recognizing actions from limited preliminary video ob-

servations has seen considerable recent progress. Typi-

cally, however, such progress has been had without explic-

itly modeling fine-grained motion evolution as a potentially

valuable information source. In this study, we address this

task by investigating how action patterns evolve over time in

a spatial feature space. There are three key components to

our system. First, we work with intermediate-layer ConvNet

features, which allow for abstraction from raw data, while

retaining spatial layout, which is sacrificed in approaches

that rely on vectorized global representations. Second, in-

stead of propagating features per se, we propagate their

residuals across time, which allows for a compact repre-

sentation that reduces redundancy while retaining essential

information about evolution over time. Third, we employ a

Kalman filter to combat error build-up and unify across pre-

diction start times. Extensive experimental results on the

JHMDB21, UCF101 and BIT datasets show that our ap-

proach leads to a new state-of-the-art in action prediction.

1. Introduction

The human visual system is capable of both recogniz-

ing complete actions as well as anticipating future outcomes

based on preliminary observations. For example, high per-

formance athletes in multi-player sports respond to the ac-

tions of their opponents before they complete their execu-

tions [47]. In contrast, computational modeling of vision-

based action prediction has received far less attention than

action recognition. Action prediction shares many chal-

lenges with action recognition, e.g. the need to deal with

viewpoint and execution variations as well as the fact that

the evolution of actions across a video tends to be entangled

with distracting information, e.g. clutter, camera motion,

occlusion and motion blur. Additional challenges present

themselves for the case of prediction, e.g. certain action

categories share similar sub-components at different stages

(e.g. pushing and patting both start with stretching of arms),

which makes distinctions especially difficult when only par-

tial information is available. More generally, incomplete
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Figure 1: Overview of Proposed Feature Residual Prop-

agation Approach to Action Prediction. Intermedi-

ate layer ConvNet features are extracted from an ini-

tial set of input frames; in the depicted example, these

are given as [Xt, Xt+1, Xt+2]; subsequent frames (e.g.

[Xt+3, . . . , Xt+7] are not seen by the system during test-

ing (although they are during training) and are shown here

merely for context. Inital feature residuals, CNN Residu-

als, are extracted via pointwise differencing of temporally

adjacent feature maps. A generative model, Residual Gen-

erator Network (RGN), then recursively estimates future

residuals, P-Residuals. Predicted features, P-Features,

are recovered via addition of residuals to the initial refer-

ence feature map. A Kalman Filter serves to minimize

error accumulation across time. The Kalman Filter oper-

ates across an entire video sequence during training, but

only across the initially observed partial sequence during

testing. Final action classification (not shown in figure) is

performed with reference to both the initially observed and

predicted features.

executions resulting from lack of extended temporal con-

text can lead to data that is not discriminitive enough for

ready classification.

Traditionally, the problem of action prediction is formu-

lated by transferring between full video information and

partial observations. These approaches often overlook the

rich motion patterns contained in videos, which has been

demonstrated to play a pivotal role in action recognition

[33, 3, 25, 21]. With the recent success of deep networks
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on action recognition (e.g. [48, 9, 10, 4, 44]) deep represen-

tation learning based approaches offer more possibilities.

For example, one can design a temporally adaptive objec-

tive function that encourages the model to produce the cor-

rect label as early as possible [35, 19]. Alternatively, one

can adopt a recurrent neural network to infer recursively the

next features conditioned on previous observations [37, 46].

However, the fact that such approaches depend on the acti-

vation of fully-connected layers may compromise perfor-

mance, as the vectorized feature format collapses local in-

formation and contains much more noise [43].

In response to the aforementioned challeges, we fo-

cus on exploring the subtle changes among spatial features

across time and propose a feature Residual Generator Net-

work (RGN) to propagate into the future. We choose in-

termediate level activations of a pretrained deep network

for propagation (e.g. final ConvLayer output, c.f . [51]),

because features at such layers capture rich spatial struc-

tures [50]. Rather than propagate the features per se, we

propagate feature residuals as they lead to a compact rep-

resentation that still captures essentials of how features

change over time. To ameliorate error accumulation over

time, we incorporate a Kalman filter mechanism. Empir-

ical evaluation shows that our approach yields new state-

of-the-art performance on three popular action prediction

datasets. Figure 1 provides a pictorial overview. Code

is available at https://github.com/JoeHEZHAO/

Spatiotemporal-Residual-Propagation.

2. Related work

Early work on video-based action prediction concen-

trated on use of handcrafted features to build temporally

regularized discriminative models [34]. Other work along

these lines developed a dynamic bag of words to infer a

global action label [33]. An alternative approach solved

a posterior maximization on sparse feature encodings [3].

Still other work focused on enforcing consistency between

features computed across multiple temporal scales [21].

More recent work has focused on deep learning. Some

such work has based prediction on action tubes over deep

detectors [39, 38]; these approaches rely on success with

the unsolved problem of early action detection and are cor-

respondingly limited. In other work, a ConvNet with an

LSTM was used to define a temporally adaptive objective

function to assign labels as early as possible [35]. An al-

ternative approach learned mappings between semantic fea-

tures of full and partial videos [22, 23], which was extended

with an LSTM to handle hard samples for improved per-

formance [19]. By concentrating on relatively high-level

semantic features, these approaches tend to overlook more

temporally local information. To compensate for this po-

tential shortcoming, yet other work has generated sequential

features based on current observations [37, 46]. A limitation

of these approaches is their reliance on a network’s penul-

timate layers, which because of vectorization sacrifices po-

tentially useful spatial structure.

Recent work in action recognition has shown benefits of

explicitly exploiting intermediate layer features. As exam-

ples: Intermediate features have been used for local frame

aggregation [26], building compact feature correlations via

bilinear operations [7], spatial warping for real-time recog-

nition [51] and recovering images from various deep ab-

straction stages [8]. The positive results these approaches

have yielded may be explained by the fact that in compar-

ison to fully-connected layers, intermediate layers preserve

more spatial structure and thereby support finer distinctions

(e.g. in motion layout) as well as have fewer parameters and

thereby combat overfitting. For these reasons, we build on

intermediate layer features in our work on action prediction.

Residual information can play an important role in pro-

cessing of redundant data even while capturing important

subtle differences in an efficient fashion. MPEG-4 com-

pression is a well established outstanding example of such

processing [12], as is more general coarse-to-fine motion

estimation (e.g. [1]). Recent work that exploits residual

processing has considered optical-flow estimation [31], im-

age denoising [17], video artifact removal [27] and action

recognition [49]. Our appoach to action prediction provides

a novel use of residual processing.

Arguably, the most similar works to ours are Deep Fea-

ture Flow [51] and CoViAR [49]. The former applies es-

timated optical flow to propagate deep spatial features for

real-time video recognition. However, optical flow esti-

mates beyond observed frames are not available, which

makes application to prediction ill-defined. The latter ex-

plores the residual property of raw video data and develops

a deep network for action recognition in the compressed do-

main; however, it has not addressed temporal extrapolation.

Indeed, it seems that no previous approach has based ac-

tion prediction on recursive generation of residuals across

intermediate level features and shown that such an approach

leads to state-of-the-art performance.

3. Technical approach

3.1. Overview

We seek to predict the correct action label, y, given the

initial portion of a partially observed video, X1:k, where

k represents the kth frame of a video that in total has

K frames. The key ingredient in support of our goal is

an effective approach for propagating the information con-

tained in initially observed consecutive frames X1:k to un-

observed Xk+1:K . The video action label, y, is then recov-

ered via classification of the entire concatenated sequence

X1:K = Cat{X1:k, Xk+1:K}. Follow existing methods,

we define the term observation ratio, g, as the fraction

7004



of the observed frame set, X1:k, to the full set, X1:K . We

present results from experiments with g ∈ [0.1, 1.0].
Rather than predict future frames per se, we instead pre-

dict intermediate layer features of a ConvNet trained for ac-

tion recognition. We are particularly interested in interme-

diate layer features, because features at such layers enjoy a

level of abstraction from the raw data that focuses on action

relevant components, even while preserving spatial layout

to capture relations between action components as well as

scene context.

We decouple the prediction process into two steps: fea-

ture residual propagation and feature reconstruction. As

discussed in Sec. 2, feature residual information previously

has been used as a convenient proxy for full data observa-

tions as it retains salient changes to objects and motions,

even while reducing redundancy entailed in explicit repre-

sentation of non-changing portions of observed data. Here,

we advance the application of residual extraction and pro-

cessing in the domain of ConvNet features to yield a novel

framework for action prediction.

For illustrative purposes, we use the TSN architecture for

initial feature extraction and final classification, because of

its generally strong performance on action recognition [48].

While we use the TSN features and classifier, our prediction

framework does not rely on the specifics of that approach

and therefore should be more widely applicable to action

prediction.

3.2. Feature residuals

Given a partially observed video with a set of frames

X1:k, let (mid-level) features extracted at time t be denoted

as dt ∈ ℜC×W×H , with C the number of feature channels,

W the feature map width and H the feature map height.

Temporal feature residuals at time t are then calculated via

pointwise differencing along each channel

rt

∣

∣

c
= dt

∣

∣

c
− dt−1

∣

∣

c
, 2 ≤ t ≤ k, 1 ≤ c ≤ C (1)

where
∣

∣

c
indicates application to channel c, i.e. the value

at spatial position (w, h) in channel c at time t − 1 is sub-

tracted from the value at time t and assigned to the residual,

rt ∈ ℜC×W×H , at the same spatial position and channel.

Owing to the differencing operation, the cardinality of the

set of calculated residuals, {r2:k}, is one less than the set of

features, {d1:k}.

From the limited feature set {d1:k} and their residuals

set {r2:k}, we seek to recover the feature representation of

{dk+1:K}. To achieve this result, we proceed in two steps.

First, we recursively generate feature residuals {rk+1:K}
via appeal to a feature Residual Generator Network (RGN).

Second, we sequentially add the residuals to the features

that have been observed or generated so far to reconstruct

features into the future according to

dt+1 = dt + rt+1, k ≤ t ≤ K − 1. (2)
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Figure 2: Temporal Extrapolation Residual Generator Net-

work (RGN) for Predicting Next Time Step Residual. Our

model recursively generates motion kernels, Kn, using a

ConvNet, G, based on a short historical temporal window,

m = 3, and performs transformations in a convolutional

fashion on the most recent residual. The newly generated

residual joins the ongoing prediction sequence until the end

of the desired sequence. Subscripts n specify kernel size

(i.e. n × n). Convolutions on the residuals are performed

on a channel-by-channel basis; so, multiple kernels are de-

picted for each n.

In Fig. 1, P-Residuals and P-Features are used to dis-

tinguish predicted residuals and features, resp. In the next

subsection, we define our feature residual generator.

3.3. Residual Generator Network (RGN)

Our Residual Generator Network (RGN) is schematized

in Fig. 2. At its core is a kernel motion transformation, G.

Given a set of stacked temporal observations, G produces a

set of kernels, {Kn}, that can be convolved with the most

recent residual input to predict the next (unobserved) re-

sult. We choose the kernel motion transformation because

it has proven useful in synthesis of future intensity frames

[11, 32], can be applied with various kernel sizes, n × n,

to capture multiple motion scales and has lower complexity

than its deep regression counterpart [46].

We generate motion kernels for each channel, c, with

multiple sizes, n× n, according to

Kn = G(rt, rt−1, . . . , rt−m | rt−m−1, . . . , r2; θf )
∣

∣

c
, (3)

where G is a ConvNet with learnable parameters, θf , that

inputs residuals over its current observation window, m,

but through its recurrent application depends on the entire

history of residuals and thereby follows the Markov-Chain

conditional distribution. The architecture of G is depicted

in Fig. 2, with implementation details provided in Sec. 4.2.

Subsequent to kernel generation, for each channel, c, we

apply the kernels to the current residual rt and average the
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Figure 3: Depiction of Kalman Update Procedure. Prior

estimation of feature d̂
−
t is updated with Kalman gain Γt.

The transition of Γt is modeled by a ConvNet with LSTM

(Γt-LSTM) across time. At each time step, Γt corrects d̂−
t

with observed measurement Zt and produces posterior d̂+
t

for next time step inference.

results to predict the next time step residual

rt+1

∣

∣

c
=

1

N

N
∑

n=1

Kn ∗ rt
∣

∣

c
, (4)

where ∗ stands for convolution. Based on preliminary ex-

periments we use N = 3, with n ∈ {3, 5, 7}.

3.4. Kalman filter correction

Recent approaches to sequential feature generation pre-

fer decomposing multi-step prediction into single-step pre-

diction for training and apply the same model recursively

for testing. Owing to error accumulation, such approaches

often lead to quality degeneration as the sequence becomes

longer. Current time-series optimization methods (e.g.

BackPropagation Through Time (BPTT)) lack the ability to

inject mid-stage supervision during optimization; thus, er-

rors in initial stages negatively impact the following results.

To avoid such scenarios, we incorporate a Kalman filter [18]

into our approach, c.f . [6, 27]; see Fig. 3.

The Kalman filter recursively estimates an internal state

from a time series of measurements via alternating Predict

and Update steps along the temporal axis. In our case, the

internal state corresponds to the features recovered from the

predicted residuals according to (2), while Predict is formu-

lated as the RGN defined in Sec. 3.3 and Update is formu-

lated as

d̂
+
t = d̂

−
t + Γt(Zt − d̂

−
t ), (5)

where ˆ is used to distinguish estimated as opposed to

groundtruth values, Zt is the observed measurement at time

t (groundtruth framewise feature), d−
t is the prior estimate,

(2), and Γt is the Kalman Gain defined as

Γt = ψ(Zt−1, d̂
+
t−1; θz). (6)

The Update corrects the current prediction by balancing

the observed measurement, Zt, and prior estimation, d̂−
t .

Initially, Γt is estimated from the error covariance matrix

and subsequently updated with a transition function, ψ. We

realize ψ as a ConvNet with an LSTM and learnable param-

eters, θz , c.f . [6]. The architecture is depicted in Fig. 3, with

implementation details provided in Sec. 4.2.

We explicitly incorporate the Kalman filter Update step

into the training of the RGN, where correction happens af-

ter the estimate of d̂−
t is obtained, as depicted in Fig. 3. The

corrected feature d̂
+
t is subsequently used for t+ 1 predic-

tion and loss computation thereafter. During training, the

Kalman filter has access to true observations, Zt through-

out the video. In testing, however, the Kalman filter only

has access to true observations up through the final input

partial observation, Xk, and is only applied through that

point, as detailed in Sec. 3.6. We find that the instanta-

neous correction offered by the Kalman filter helps stablize

long-term inference, as documented in Sec. 4.4.

3.5. Learning scheme

In our approach, there are two sets of trainable param-

eters, θf and θz , that are associated with the kernel mo-

tion generator, G, of the residual generative network and

the Kalman gain transition, ψ, resp. Both sets of parame-

ters are trained using backpropagation to minimze loss ob-

jective functions. We adopt a two stage training strategy

that initially learns the θf values and subsequently learns

the θz values, while also refining the θf values. We first

train θf because it is more central to our overall approach in

performing the essential prediction, rather than the correc-

tion. This design choice conforms to the standard Kalman

filter paradigm that presupposes a sane transition module

and a corrective module built on rational prior estimations

[18]. Nevertheless, ultimately the prediction and correction

must work together; so, θf and θz are jointly trained in our

second stage.

The parameters θf are optimized with respect to four

losses. The first loss pertains to the residuals

Lres
2 (θf ) = ||rt −RGN(rt−1, rt−2, ..., rt−m; θf )||

2
2 (7)

where m is the temporal window size. (In (7), note that

G is embedded in RGN , but here we suppress the recur-

sive dependence on all previous residuals beyond the cur-

rent observation window that was given in (3) for the sake

of compactness of notation.) The second loss pertains to the

features

Lfeat
2 (θf ) = ||Zt − d̂

−
t ||

2
2 = ||dt − (d̂t−1 + r̂t)||

2
2. (8)

As reported elsewhere [29, 45, 2], L2 works under the Gaus-

sian assumption that data is draw from a single parame-

terized Gaussian distribution and thus produces blurry out-

comes. To counter this shortcoming, we include an addi-

tional two losses by applying the Gradient Difference Loss
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[29], which emphasizes high frequency content, on both the

features and residuals to yield

Lres
gdl(θf ) = ||

∂

∂x
(rt − r̂t) ||

2
2 + ||

∂

∂y
(rt − r̂t) ||

2
2 (9)

and

Lfeat
gdl (θf ) = ||

∂

∂x

(

Zt − d̂
−
t

)

||22 + ||
∂

∂y

(

Zt − d̂
−
t

)

||22.

(10)

The overall objective function for G is defined as

LG
2 (θf ) = λ1L

res
2 + λ2L

feat
2 + λ3L

res
gdl + λ4L

feat
gdl , (11)

with the λi scalar weighting factors. Note that during the

first stage of training, the Kalman filter would not be oper-

ating, as it has yet to be trained.

After training the RGN parameters, θf , the Kalman gain

parameters, θz , are trained, while the θf parameters values

are refined to yield a joint optimization. Now, there are only

two losses, both pertaining to the features, d, because that is

where the Kalman filter operates. The losses are analagous

to (8) and (10), except that they are calculated on the up-

dated posterior d̂+
t according to

L2(θf , θz) = αLfeat
2 (d̂+

t ; θf , θz) + βLfeat
gdl (d̂+

t ; θf , θz),
(12)

with α and β scalar weighting factors.

3.6. Unified model for all observation ratios

Learning a separate model for each observation ratio is

not applicable in the real world. To overcome this difficulty,

we design a unified training and testing strategy, as follows.

Training. The RGN begins by inputting the very first

batch of residuals [rm, rm−1, . . . , r2] and recursively pro-

duces all the rest. In other words, our model is trained for

predicting the whole sequence from the same starting point,

thus entirely ignoring observation ratios.

Testing. Our testing also is invariant to observation ratio

by switching modes of the Kalman filter operation so that

it only corrects the estimates while data observations are

available according to g. For example, when g = 0.6, the

proposed approach still starts from the beginning observa-

tions and propagates to the end, but in two modes: While the

observation ratio is not yet reached, i.e. g ∈ [0.1, 0.6], we

update predictions via reference to the observed true data

by using the Kalman filter update step, (5). After entering

g ∈ [0.7, 1.0], only prediction is performed, (4).

This procedure resembles tracking objects under a

Kalman filter: When objects are observed, the system cor-

rects its estimated coordinates based on true observation

measurements; however, while objects are occluded, the

system extrapolates possible locations based on “up-to-

now” system parameter values, i.e. only the prediction step

is performed.

4. Empirical evaluation

4.1. Datasets and experiment protocol

To evaluate our approach, we choose three widely exam-

ined datasets, UCF101 [42], JHMDB21 [16] and BIT [20].

UCF101 consists of 13,320 videos of 101 action categories

containing a wide range of activities (e.g. sports, music and

others). JHMDB21, a subset of HMDB [24], contains 928

videos of 21 realistic, nuanced human action categories (e.g.

catching, throwing, picking). We use the provided RGB im-

ages rather than body joints of JHMDB-21. BIT consists of

8 classes of human interactions, with 50 videos per class.

Different from the other datasets, BIT has similar behaviors

of people in the initial stage of different actions (e.g. they

tend to be standing still) [23], which leads to challenges

from limited discriminatory information.

For all datasets, we use their standard train/test splits:

UCF101 and JHMDB21 come with multiple train/test splits

and we average over the results in our reporting, unless oth-

erwise noted; BIT has a single train/test split, with the first

34 videos in each class for training and the rest for testing.

We present action classification accuracy as a function of

observation ratio, g, which is the ratio of observed to total

frames in a video, as used elsewhere [21]. Classification is

always based on the concatenation of features derived from

the observed frames and those that are predicted. For mid-

layer features, which are the subject our propagation, we

use the intermediate output of two convolutional layers and

two max-poolings ∈ ℜ28×28×192, unless otherwise noted.

This layer is selected because empirical comparison to oth-

ers generally yielded superior performance; see Sec. 4.5.

Beyond the results presented in this section, additional de-

tailed results are provided in the supplement.

4.2. Implementation details

To examine the propagation module with minimal in-

fluence from other factors, classifiers for chosen datasets

are obtained beforehand. While a pretrained TSN model is

available for UCF101 [48], models for JHMDB21 and BIT

are not available. To adapt the TSN model to the JHMDB21

and BIT datasets, we append a simple two layer MLP clas-

sifier consisting of two hidden layers to TSN pretrained for

HMDB-RGB and UCF101-Flow. For JHMDB21, two hid-

den layers have 32 and 21 activations. For BIT, two hid-

den layers have 64 and 8 activations. Softmax is used for

final probability generation in all cases. During the train-

ing process all pretrained weights are frozen. For training

of weights added for adaptation to JHMDB21 and BIT, we

randomly select 3 RGB samples or 3 Optical Flow samples

(each sample has 5 frames) from the videos and get video

labels by segment consensus. We employ a learning rate of

0.0001, batch size of 64, Stochastic Gradient Descent and

the Adam optimizer. Data augmentation is the same as for
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Figure 4: Action Prediction Results on the UCF101 and BIT Datasets at all Observation Ratios g ∈ [0.1, 1].

the original TSN [48].

Network configurations. For the kernel generator of the

RGN, G, stacked residuals are first convolved with a 1 × 1
kernel that reduces the feature dimension. Then, two resid-

ual convolutional blocks [14] with kernel size 3× 3, bottle-

neck dimension 48 and stride 2 are used to capture temporal

evolution. Subsequently, with batch and channel axis fixed,

flattened spatial features are individually processed with 3

FC layers to produce 3× 3, 5× 5 and 7× 7 kernels. So the

shape of feature map is (28, 28, 192*m)-(28, 28, 192)-(28,

28, 192)-(28, 28, 192)-(9, 192), (25, 192) and (49, 192),

with m as the empirically selected temporal window size.

Convolution is performed on each channel.

For Kalman Gain, Γt, a set of convolutional layers with

kernel size 3x3 and stride 2 are used to capture the covari-

ance. Each layer is appended with a ReLU layer [13]. The

shape of feature map is (28, 28, 128)-(28, 28, 64)-(28, 28,

32)-(28, 28, 1). Subsequently, the flattened feature is taken

as input by Γt-LSTM to produce Kalman gain, Γt ∈ ℜwh,

which then is reshaped to Γt ∈ ℜw×h, corresponding to fea-

ture map spatial dimensions. The hidden state of the LSTM

has the same size with input feature (784). The gain is then

applied according to the update, (5).

Training strategy. We train our model with 4 NIVDIA

TITAN X GPUs, under Pytorch [30]. Training of the spa-

tiotemporal feature residual generative network (RGN) em-

ploys the Adam optimizer and a learning rate 0.005 with

β1 = 0.9 and β2 = 0.99 to minimize the loss (11). Em-

pirically, we set λ1, λ2, λ3, λ4 with ratios of 1:1:5:5, which

places more emphasis on the spatial gradient rather than raw

mean square values. The batch size is set to 56. Following

initial training of the RGN, we fine-tune it together with the

Kalman gain transition ConvNet with LSTM, ψ, to min-

imze the loss (12). Mini-batch-Stochastic Gradient Descent

is used with a learning rate of 2e−4 and exponential decay

of 1e−5. α and β are set empirically with a ratio of 1:5.

For training on UCF101, we sample 30 frames from each

video and use the first 3 to initialize our entire prediction

system. For BIT and JHMDB21, we sample 25 frames

from each video and use the first 3 to initialize our system.

TSN architecture [48] serves to provide feature extraction

and classification. We apply our system to the RGB stream

for JHMDB21, flow stream for BIT and both streams for

UCF101. We make these choices following typical state-of-

the-art practice on JHMDB21 (e.g. RGB features previously

yielded top performance [35, 37]), BIT (e.g. flow features

greatly outperform spatial features [20, 22]) and UCF101

(e.g. two-stream previously yielded top performance [23]).

Once features are generated, no additional modifications

to TSN are needed to yield action labels. Generated features

are inserted into the selected TSN mid-layer and processed

up through the network tower until the MLPs produce prob-

ability scores. Video level labeling is gathered by averaging

scores from each frame.

4.3. Overall prediction results

UCF-101 dataset. Figure 4 (a) shows comparative re-

sults for our algorihm RGN-KF vs. various alternatives on

UCF101. It is seen that RGN-KF outperforms all others at

all observation ratios, improving accuracy by ≈3-4% on av-

erage. The performance improvement is especially striking

at lower observation ratios, e.g. g = 0.1, where we outper-

form the second best (AAPnet) by 83.3% vs. 59.85%.

Notably, AAPnet also builds on TSN; however, it appar-

ently does so less effectively than our approach does. There

are likely two reasons for this state of affairs. First, AAPnet

is not trained exclusively for inferring action labels, but also

for adversarial learning, which might lessen its optimization

for action prediction. Second, AAPnet more radically mod-

ifies the TSN architecture in aggregating across all frames at

a given state of progress, which underlines the fact that our

approach may be more adaptable to various architectures as
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Table 1: Action Prediction Results on JHMDB21. Follow-

ing the standard protocol, accuracy results are shown only

for the case where initial observations are limited to the first

20% of frames, i.e. g = 0.2.

Method Accuracy (%)

ELSTM [35] 55

Within-class Loss [28] 33

DP-SVM [41] 5

S-SVM [41] 5

Where/What [40] 10

Context-fusion [15] 28

RBF-RNN [37] 73

Ours 78

Baseline 74

it has less impact on their native operations.

BIT. Figure 4 (b) shows comparative results for our al-

gorithm vs. various alternatives on BIT. It is seen that our

results are equal to or better than all others, except at the

lowest observation ratio, g = 0.1. For example, compared

with AAPnet, our approach achieves 67.96% accuracy at

g = 0.3, which is 3.13% higher.

In interpreting the results on BIT it is important to recall

that the beginning and ending portions of the videos tend be

very similar in appearance (e.g. two people standing facing

one another), so that the most discriminatory information

largely is limited to the intermediate portions. Correspond-

ingly, there is a tendency for rapid performance rises after

the initial portion, which levels out in the final portion. In

our case, a peak performance of 92.28% at g = 0.7 in-

creases that at the previous ratio by 4%, whereas AAPnet

achieves no significant increase (0.78%) at the same stage.

Given that we train a modified TSN architecture in adapt-

ing TSN to BIT, Sec. 4.2, we compare how well that mod-

ified architecture works when forced to classify on just the

initially provided frames without propagation into the fu-

ture. These results are shown as Baseline in Fig. 4 b. It

is seen that by propagating into the future our approach ex-

ceeds the baseline by large margins when g ∈ [0.1, 0.4].
For higher observation ratios, as the discriminating parts of

the input videos become available to the baseline (as well

as our full approach), performance becomes on par.

JHMDB21. The standard reporting protocol on JH-

MDB21 is to report recognition accuracy only when the ini-

tial 20% of the videos are observed, i.e. g = 0.2, which we

show in Table 1. It is seen that our algorithm once again

is the top performer, e.g. exceeding the second best by 5%.

We also provide a baseline comparison, where we compare

to classification made purely on the basis of adapting the

TSN architecture to the JHMDB21 dataset, analogous to the

baseline comparison provided on BIT. Once again, it is seen

that our full propagation approach adds considerably to the

performance of the baseline alone.

Table 2: Accuracy results for different temporal propaga-

tion approaches on JHMDB21 split 1. Org denotes apply-

ing motion kernel transformation on original features, Res

denotes residual propagation and KF denotes inclusion of

the Kalman filter. For ConvLSTM, (3x3), 128 & 192 repre-

sent kernel, hidden state & feature dimension, resp.

Temporal Propagation Approach Accuracy (%)

ConvLSTM(3x3)-128-192-Org 71.1

ConvLSTM(3x3)-128-192-Org-KF 73.4

ConvLSTM(3x3)-128-192-Res 76.8

ConvLSTM(3x3)-128-192-Res-KF 77.1

RGN-Org 70.9

RGN-Org-KF 74.4

RGN-Res 77.4

RGN-Res-KF 78.3

4.4. Influence of temporal model

In this section, we examine the influence of different

temporal modeling approaches to feature propagation us-

ing JHMDB21, with ConvLSTM as an extra baseline, cf.

[36, 2]; see Table 2. For both scenarios, we find that prop-

agation on residuals is superior to propagation on raw fea-

tures and the Kalman filter provides further benefits. Per-

formance of ConvLSTM is on par with our RGN approach

applied to the original features without the Kalman filter;

however, for all other configurations our RGN approach

performs better. Overall, we find that our full approach to

temporal modeling (mid-layer convolutional feature residu-

als, RGN propagation and Kalman filtering) yields best per-

formance.

4.5. Influence of feature layers

We now examine the influence of different intermediate

feature spaces on prediction. We consider layers that yield

feature maps of [56, 56, 64], [28, 28, 192], [14, 14, 512] and

[7, 7, 1024], where [w, h, c] indicate the width, height and

number of channels, resp. Table 3 shows the results. For

JHMDB21 and BIT, the [28, 28, 192] feature stage almost

always achieves best results. Moreover, deeper layers, [14,

14, 512] and [7, 7, 1024], are more useful than the shal-

lower layer [56, 56, 64]. This pattern of results may be ex-

plained by the earliest layer not providing adequate abstrac-

tion from the raw input, while the highest layers have lost

too much distinguishing detail. Interestingly, for UCF101

different feature stages have less impact on accuracy. This

may be due to the fact that UCF101 is generally less difficult

than the other datasets, as indicated by the fact that for any

given observation ratio, g, in Table 3 the results on UCF101

are always better than for the others; correspondingly, the

specifics of feature selection are less important. More gen-

erally, however, the results of Table 3 support our use of

intermediate layer features, especially as the prediction task

becomes more difficult.
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Table 3: Prediction Accuracy (%) at Various Intermediate Feature Stages with RGN-KF, Ordered by Decreasing Spatial

Receptive Field Size. Observation ratio g ∈ {0.2, 0.4, 0.6, 0.8} for UCF101 and BIT datasets. Set g = 0.2 for JHMDB21.

UCF-101 BIT JHMDB-21

observation ratio 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2

56x56x64 85.16 88.64 91.10 92.10 35.94 49.22 75.78 84.38 75.74

28x28x192 85.16 90.78 92.03 93.19 46.09 75.78 88.28 88.82 78.30

14x14x576 85.09 90.32 92.12 93.06 40.62 76.65 85.94 87.50 77.43

7x7x1024 84.94 90.07 91.60 92.77 42.06 75.78 87.50 87.50 77.03

4.6. Visualization of feature residuals

To understand further why intermediate layer features

and their residuals are especially useful for action predic-

tion, we show comparative visualizations as well as associ-

ated statistics. Figure 5 provides an example derived from

the action baseball-swing. It is seen that the earliest layer

feature map concentrates on low-level features (e.g. lines

and edges) that may be too closely tied to a specific ex-

ample, rather than the action class. In contrast, the latest

layer feature map tends to lose too much distinguishing de-

tail (e.g. merely a blob in the vicinity of the actor at the

top-layer). Comparatively, the mid-layer features tend to

concentrate on the actor, but also delineate details of the ac-

tors parts. In comparing the raw features to their residuals,

it is seen that the residuals concentrate more on temporal

changes, which are good for propagating variations into the

future without redundant information. Thus, intermediate

layer residuals appear to capture information that is espe-

cially useful for action prediction.

The provided visualization, Fig. 5, suggests that the

residuals provide a more sparse (and hence compact) rep-

resentation compared to the features per se. To quantify

this observation, we define feature sparsity as the percent-

age of near-zero points (absolute value < 0.01) vs. total

points. Fig. 6 shows comparative results for original fea-

tures and their residuals. It is seen that the residuals have

approximately five times the sparsity of the originals, which

quantitatively confirms the relative sparsity of the residuals.

Overall, both the visualizations and the quantitative anal-

ysis confirm that mid-layer feature residuals are especially

information laden for action prediction.

5. Conclusions

In this paper, we have presented a novel spatiotempo-

ral feature residual propagation approach to predicting the

action label of a video before action execution ends. Our

approach learns to propagate framewise residuals in fea-

ture space to complete partial observations. The approach

enjoys the advantages of the spatial structure preservation

of mid-layer ConvNet features, compact representation that

captures essential information via residual processing and

long-term stability via instaneous Kalman filter corrections.

The approach has been evaluated on the UCF101, JH-

MDB21 and BIT-Interaction datasets, where it sets a new

T = 2

T = 6

Conv, 56x56, 

64

Conv, 28x28, 

192

Conv, 14x14, 

576

Conv, 7x7, 

1024

Figure 5: Visualization of Features and Residuals. The ex-

ample shows a sequence of frames for the action baseball-

swing along the left hand side. Example feature maps ex-

tracted at various layers are shown along the upper/bottom

row, while their residuals are shown along the middle row.

Figure 6: Sparsity Comparison of Features and Residuals.

The top row shows frames from a video of a kicking ac-

tion. The bottom row shows sparsity as the ratio of near-

zero value points (absolute value < 0.01) to total points

over time. On average, residual and original feaure points

are 65% and 14% sparse, resp.

state-of-the-art in comparison to a variety of alternative ap-

proaches. Our methodology has potential to be extended

for application to other video-based computer vision tasks,

which will be studied in the future.
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