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Abstract

We propose DeepHuman, an image-guided volume-to-

volume translation CNN for 3D human reconstruction from

a single RGB image. To reduce the ambiguities associated

with the surface geometry reconstruction, even for the re-

construction of invisible areas, we propose and leverage a

dense semantic representation generated from SMPL model

as an additional input. One key feature of our network

is that it fuses different scales of image features into the

3D space through volumetric feature transformation, which

helps to recover accurate surface geometry. The visible sur-

face details are further refined through a normal refinement

network, which can be concatenated with the volume gen-

eration network using our proposed volumetric normal pro-

jection layer. We also contribute THuman, a 3D real-world

human model dataset containing about 7000 models. The

network is trained using training data generated from the

dataset. Overall, due to the specific design of our network

and the diversity in our dataset, our method enables 3D hu-

man model estimation given only a single image and out-

performs state-of-the-art approaches.

1. Introduction

Image-based reconstruction of a human body is an im-

portant research topic for VR/AR content creation [7], im-

age and video editing and re-enactment [19, 43], holopor-

tation [40] and virtual dressing [42]. To perform full-body

3D reconstruction, currently available methods require the

fusion of multiview images [8, 25, 20] or multiple temporal

images [3, 2, 1] of the target. Recovering a human model

from a single RGB image remains a challenging task that

has so far attracted little attention. Using only a single im-

age, available human parsing studies have covered popular

topics starting from 2D pose detection [41, 6, 39], advanc-

ing to 3D pose detection [33, 44, 64], and finally expanding

to body shape capture [27] using a human statistic template

such as SMPL [32]. However, the statistic template can cap-

ture only the shape and pose of a minimally clothed body

and lack the ability to represent a 3D human model under

a normal clothing layer. Although the most recent work,

Figure 1: Given only a single RGB image, our method automati-

cally reconstructs the surface geometry of clothed human body.

BodyNet[52], has pioneered research towards this goal, it

only generates nearly undressed body reconstruction results

with occasionally broken body parts. We believe that 3D

human reconstruction under normal clothing from a single

image, which needs to be further studied, will soon be the

next hot research topic.

Technically, human reconstruction from a single RGB

image is extremely challenging, not only because of the re-

quirement to predict the shape of invisible parts but also due

to the need for the geometry recovery for visible surface.

Therefore, a method capable of accomplishing such a task

should meet two requirements: first, the degrees of freedom

of the output space should be constrained to avoid unrea-

sonable artifacts (e.g., broken body parts) in invisible areas;

second, the method should be able to efficiently extract ge-

ometric information from the input image, such as clothing

styles and wrinkles, and fuse them into the 3D space.

In this paper, we propose DeepHuman, a deep learning-

based framework aiming to address these challenges.

Specifically, to provide a reasonable initialization for the

network and constrain the degrees of freedom of the output

space, we propose to leverage parametric body models by

generating a 3D semantic volume and a corresponding 2D

semantic map as a dense representation after estimating the

shape and pose parameters of a parametric body template

(e.g., SMPL[32]) for the input image. Note that the require-

ment of inferring a corresponding SMPL model for an im-

age is not strict; rather, several accurate methods are avail-

able for SMPL prediction from a single image[5, 27]. The
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input image and the semantic volume&map are fed into an

image-guided volume-to-volume translation CNN for sur-

face reconstruction. To accurately recover surface geometry

like the hairstyle or cloth contours to the maximum possible

extent, we propose a multi-scale volumetric feature trans-

formation so that those different scales of image guidance

information can be fused into the 3D volumes. Finally, we

introduce a volumetric normal projection layer to further re-

fine and enrich visible surface details according to the input

image. This layer is designed to concatenate the volume

generation network and the normal refinement network and

enables end-to-end training. In summary, we perform 3D

human reconstruction in a coarse-to-fine manner by decom-

posing this task into three subtasks: a) parametric body esti-

mation from the input image, b) surface reconstruction from

the image and the estimated body, and c) visible surface de-

tail refinement according to the image.

The available 3D human dataset [53] used for network

training in BodyNet [52] is essentially a set of synthe-

sized images textured over SMPL models [32]. No large-

scale human 3D dataset with surface geometry under nor-

mal clothing is publicly available. To fill in this gap, we

present the THuman dataset. We leverage the state-of-the-

art DoubleFusion [63] technique for real-time human mesh

reconstruction and propose a capture pipeline for fast and

efficient capture of outer geometry of human bodies wear-

ing casual clothes with medium-level surface detail and tex-

ture. Based on this pipeline, we perform capture and recon-

struction of the THuman dataset, which contains about 7000

human meshes with approximately 230 kinds of clothes un-

der randomly sampled poses.

Our network learns from the training corpus synthesized

from our THuman dataset. Benefiting from the data diver-

sity of the dataset, the network generalizes well to natu-

ral images and provides satisfactory reconstruction given

only a single image. We demonstrate improved efficiency

and quality compared to current state-of-the-art approaches.

We also show the capability and robustness of our method

through an extended application on monocular videos.

2. Related Work

Human Models from Multiview Images. Previous

studies focused on using multiview images for human

model reconstruction [26, 47, 30]. Shape cues like sil-

houette, stereo and shading cues have been integrated to

improve the reconstruction performance[47, 30, 58, 57,

55]. State-of-the-art real-time [11, 10] and extremely high-

quality [8] reconstruction results have also been demon-

strated with tens or even hundreds of cameras using binoc-

ular [12] or multiview stereo matching [13] algorithms. To

capture detailed motions of multiple interacting characters,

more than six hundred cameras have been used to over-

come the occlusion challenges [24, 25]. However, all these

systems require complicated environment setups including

camera calibration, synchronization and lighting control.

To reduce the difficulty of system setup, human model

reconstruction from extremely sparse camera views has re-

cently been investigated by using CNNs for learning silhou-

ette cues [15] and stereo cues [20]. These systems require

about 4 camera views for a coarse-level surface detail cap-

ture. Note also that although temporal deformation systems

using lightweight camera setups [54, 9, 14] have been devel-

oped for dynamic human model reconstruction using skele-

ton tracking [54, 31] or human mesh template deformation

[9], these systems assume a pre-scanned subject-specific

human template as a key model for deformation.

Human Models from Temporal Images. To explore

low-cost and convenient human model capture, many stud-

ies try to capture a human using only a single RGB or

RGBD camera by aggregating information from multiple

temporal frames. For RGBD images, DynamicFusion [38]

breaks the static scene assumption and deforms the non-

rigid target for TSDF fusion on a canonical static model.

BodyFusion [62] have tried to improve the robustness by

adding articulated prior. DoubleFusion [63] introduced a

human shape prior into the fusion pipeline and achieved

state-of-the-art real-time efficiency, robustness, and loop

closure performance for efficient human model reconstruc-

tion even in cases of fast motions. There are also offline

methods for global registration of multiple RGBD images

to obtain a full-body model [29]. To reconstruct a human

body using a single-view RGB camera, methods have been

proposed for rotating the camera while the target remains

as static as possible [65], or keeping the camera static while

the target rotates [3, 2, 1]. Recently, human performance

capture that can reconstruct dynamic human models using

only a single RGB camera has been proposed [59, 18]; how-

ever, similar to the multicamera scenario [54, 9, 14], such

approaches require a pre-scanned human model as input.

Human Parsing from a Single Image. Parsing hu-

man from a single image has recently been a popular topic

in computer vision. The research can be categorized into

sparse 2D parsing (2D skeleton estimation) [6, 39], sparse

3D parsing (3D skeleton estimation) [33, 44, 64, 48, 50, 35,

61], dense 2D parsing [17] and dense 3D parsing (shape

and pose estimation). Dense 3D parsing from a single im-

age has attracted substantial interest recently because of the

emergence of human statistical models like SCAPE [4] and

SMPL [32]. For example, by fitting the SCAPE or SMPL

model to the detected 2D skeleton and other shape cues of

an image [5, 28], or by regressing [27, 49, 51] the SMPL

model using CNNs, the shape and pose parameters can be

automatically obtained from a single image.

Regarding single-view human model reconstruction,

there are only several recent works by Varol et al.[52], Jack-

son et al.[23] and Natsume et al.[36]. In the first study, the

3D human datasets used for network training lacks geome-

try details, leading to SMPL-like voxel geometries in their
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outputs. The second study shows the ability to output high-

quality details, but their training set is highly constrained,

leading to difficulty in generalization, e.g., to different hu-

man poses. The concurrent work by Natsume et al.[36] pre-

dicts multiview 2D silhouettes to reconstruct the 3D model,

but their reconstruction results have limited pose variation.

3D Human Body Datasets. Most of the available 3D

human datasets are used for 3D pose and skeleton detection.

Both HumanEva [46] and Human3.6M [21] contain multi-

view human video sequences with ground-truth 3D skele-

ton annotation obtained from marker-based motion capture

systems. Because of the need to wear markers or special

suits, both datasets have limited apparel divergence. MPI-

INF-3DHP [34] dataset enriches the cloth appearance by

using a multiview markerless mocap system. However, all

these datasets lack a 3D model of each temporal frame. To

meet the requirement of pose and shape reconstruction from

a single image, the synthesized SURREAL [53] datasets

have been created for this task by rendering SMPL mod-

els with different shape and pose parameters under different

clothing textures. The “Unite the People” dataset [28] pro-

vides real-world human images annotated semi-automatic

with 3D SMPL models. These two datasets, in contrasts to

our dataset, do not contain surface geometry details.

3. Overview

Given an image of a person in casual clothes, denoted by

I, our method aims to reconstruct his/her full-body 3D sur-

face with plausible geometrical details. Directly recovering

a surface model of the subject from the image is very chal-

lenging because of depth ambiguities, body self-occlusions

and the high degree of freedom of the output space. There-

fore, we perform 3D human reconstruction in a coarse-to-

fine manner. Our method starts from parametric body esti-

mation, then performs full-body surface reconstruction and

finally refines the details on the visible areas of the surface.

We exploit the state-of-the-art methods HMR[27] and

SMPLify[5] to estimate a SMPL model from I; see the sup-

plementary document for more details. To feed the SMPL

estimation into the CNN, we predefine a semantic code (a

3-dimensional vector) for each vertex on SMPL according

to its spatial coordinate at rest pose. Given the SMPL esti-

mation, we render the semantic code onto the image plane

to obtain a semantic map Ms and generate a semantic vol-

ume Vs by first voxelizing the SMPL model into the voxel

grid and then propagating the semantic codes into the oc-

cupied voxels. Our dense semantic representation has three

advantages: (1) it encodes information about both the shape

and the pose of the body and thus provides a reasonable ini-

tialization for the network and constrain the degrees of free-

dom of the output space; (2) it provides clues about the cor-

responding relationship between 3D voxels and 2D image

pixels; (3) it is easy to be incorporated into neural networks.

More details are presented in the supplementary document.

Figure 2: Network architecture. Our network is mainly composed

of an image feature encoder (orange), a volume-to-volume trans-

lation network (blue & green) and a normal refinement network

(yellow).

For the surface geometry reconstruction, we adopt an

occupancy volume to represent the surface[52]. Specif-

ically, we define a 3D occupancy voxel grid Vo, where

the voxel values inside the surface are set to 1 and oth-

ers are set to 0. All occupancy volumes have a fixed res-

olution of 128 × 192 × 128, where the resolution of the

y-axis is set to a greater value and it can be automatically

adapted to the major axis of the observed human body. To

reconstruct Vo from Vs with the assistance of I and Ms,

we propose an image-guided volume-to-volume translation

network (Sec.4.1), in which we use multiscale volumetric

feature transformation (Sec.4.1.1) to fuse 2D image guid-

ance information into a 3D volume. Accordingly, the net-

work will take advantage of knowledge from both the 2D

image and the 3D volume.

Due to resolution limitations, a voxel grid always fails to

capture fine details such as clothing wrinkles. To further en-

rich and refine the geometrical details on the visible part of

the surface, we propose to directly project a 2D normal map

N from Vo (Sec.4.1.2) and refine it with a U-net (Sec.4.1).

In other words, we encode the geometrical details of the vis-

ible surface using 2D normal maps and consequently lower

the memory requirement.

To train the network with supervision, we contribute

THuman, a real-world 3D human model dataset (Sec.5).

We synthesize the training corpus from the dataset. Once

the network is trained, it can predict an occupancy volume

and a normal map of the visible surface given an image of a

person and the corresponding SMPL estimation. We obtain

the final reconstruction result by first extracting a triangular

polygon mesh from the occupancy volume using the March-

ing Cube algorithm and then refining the mesh according to

the normal map using the method in [37].

4. Approach

4.1. Network Architecture

Our network consists of 3 components, namely an image

encoder G, a volume-to-volume (vol2vol) translation net-
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Figure 3: Illustration of volumetric feature transformation (VFT)

at level k.

work H and a normal refinement network R, as shown in

Fig.2. The image encoder G aims to extract multi-scale 2D

feature maps M
(k)
f (k = 1, . . . ,K) from the combination of

I and Ms. The vol2vol network is a volumetric U-Net [60],

which takes Vs and M
(k)
f (k = 1, . . . ,K) as input, and

outputs an occupancy volume Vo representing the surface.

Our vol2vol network H fuses multi-scale semantic features

M
(k)
f (k = 1, . . . ,K) into its encoder through a multi-scale

volumetric feature transformer. After generating Vo, a nor-

mal refinement U-Net [45] R further refines the normal map

N after calculating it directly from Vo through a volume-to-

normal projection layer. All operations in the network are

differentiable, and therefore, it can be trained or fine-tuned

in an end-to-end manner. Implementation details are pre-

sented in the supplementary document.

4.1.1 Multi-scale Volumetric Feature Transformer

In this work, we extend the Spatial Feature Transformer

(SFT) layer [56] to handle 2D-3D data pairs in the multi-

scale feature pyramid, and propose multi-scale Volumet-

ric Feature Transformer (VFT). SFT was first used in [56]

to perform image super-resolution conditioned on semantic

categorical priors to avoid the regression-to-the-mean prob-

lem. A SFT layer learns to output a modulation parame-

ter pair (α, β) based on the input priors. Then transforma-

tion on the feature map F is carried out as: SFT (F) =
α⊙ F+ β, where ⊙ is Hadamard product.

In our network, at each level k, a feature volume V
(k)
f

(blue cubes in Fig.2) and a feature map M
(k)
f (orange

squares in Fig.2) are provided by previous encoding layers.

Similar to [56], we first map the feature map M
(k)
f to mod-

ulation parameters (αk, βk) through convolution+activation

layers (see the second row of Fig.3). Note that the operation

in SFT (·) cannot be applied directly on V
(k)
f and M

(k)
f be-

cause of dimension inconsistency (V
(k)
f has a z-axis while

(αk, βk) doesn’t.) Therefore, we slice the feature volume

along the z-axis into a series of feature slices, each of which

has a thickness of 1 along the z-axis. Then we apply the

same element-wise affine transformation to each feature z-

Figure 4: Illustration of differentiable depth projection.

slice independently:

VFT
(

V
(k)
f (zi)

)

= αk ⊙V
(k)
f (zi) + βk (1)

where V
(k)
f (zi) is the feature slice on plane z = zi, zi =

1, 2, . . . , Z and Z is the maximal z-axis coordinate. The

output of a VFT layer is the re-combination of transformed

feature slices. Fig.3 is an illustration of VFT.

The superiority of VFT is three-fold. First, compared to

converting feature volumes/maps into latent codes and con-

catenating them at the network bottleneck, it preserves the

shape primitiveness of image/volume feature and thus en-

codes more local information. Second, it is efficient. Using

VFT, feature fusion can be achieved in a single pass of affine

transformation, without requiring extra convolutions or full

connection. Third, it is flexible. VFT can be performed on

either the original image/volume or downsampled feature

maps/volumes, making it possible to fuse different scales of

features and enabling much deeper feature transfer.

In order to integrate image features to the maximum pos-

sible extent, we perform volumetric feature transformation

on the multi-scale feature pyramid; see the blue arrows/lines

in Fig.2 for illustration. We only perform VFT in the en-

coder part of our vol2vol network; however, the transforma-

tion information can be propagated to the decoder through

skip-connections. As discussed in Sec.6.3, the multi-scale

feature transformation helps recover more accurate surface

geometry compared to directly concatenating latent vari-

ables at the network bottleneck.

4.1.2 Volume-to-normal Projection Layer

Our goal is to obtain geometric details (e.g. wrinkles and

cloth boundary) on the visible surface of the human model.

However, a volume-based representation is unable to cap-

ture such fine-grain details due to resolution limitations.

Thus, we encode the visible geometrical details on 2D nor-

mal maps, which can be directly calculated from the oc-

cupancy volume using our differentiable volume-to-normal

projection layer. The layer first projects a depth map di-

rectly from the occupancy volume, transforms the depth

map into a vertex map, and then calculates the normal maps

through a series of mathematical operations.

Fig.4 is a 2D illustration explaining how the layer

projects depth maps. In Fig.4(a), the blue circle is the model

we aim to reconstruct, and the voxels occupied by the circle
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are marked in grey. Consider the pixel p = (xp, yp) on the

image plane as an example. To calculate depth value D(p)
of p according to Vo, a straightforward method is to con-

sider a ray along the z-axis and record the occupancy status

of all voxels along that ray (Fig.4(b)). Afterwards, we can

determine D(p) by finding the nearest occupied voxel. For-

mally, D(p) is obtained according to

D(p) = inf
{

z|V(xpypz)
o = 1

}

(2)

where V
(xpypz)
o denotes the value of the voxel at coordinate

(xp, yp, z). Although this method is straightforward, it is

difficult to incorporate the operation, inf{·} into neural net-

works due to the complexity of differentiating through it.

Therefore, we transform the occupancy volume to a depth

volume Vd by applying a transformation f :

V
(xyz)
d = f(V(xyz)

o ) = M(1−V
(xyz)
o ) + zV(xyz)

o (3)

where M is a sufficiently large constant. Then as illustrated

in Fig.4(c), D(p) can be computed as:

D(p) = min
z

f(V
(xpypz)
d ). (4)

After depth projection, we transform the depth map to a

vertex map Mv by assigning x and y coordinates to depth

pixels according to their positions on the images. Then So-

bel operators are used to calculate the directional deriva-

tive of the vertex map along both the x and y directions:

Gx = Sx ∗ Mv,Gy = Sy ∗ Mv , where Sx and Sy are

Sobel operators. The normal at pixel p = (xp, yp) can be

calculated as:

N
(xpyp) = Gx(p)×Gy(p), (5)

where × denotes cross product. Finally, N is up-sampled

by a factor of 2 and further refined by a U-Net.

4.2. Loss Functions

Our loss functions used to train the network consist of

reconstruction errors for the 3D occupancy field and 2D sil-

houette, as well as the reconstruction loss for normal map

refinement. We use extended Binary Cross-Entropy (BCE)

loss for the reconstruction of occupancy volume [22]:

LV = −
1

∣

∣

∣
V̂o

∣

∣

∣

∑

x,y,z

γV̂(xyz)
o logV(xyz)

o +

(1− γ)
(

1− V̂
(xyz)
o

)

log
(

1−V
(xyz)
o

)

(6)

where V̂o is the ground-truth occupancy volume corre-

sponding to Vo, V
(xyz)
o and V̂

(xyz)
o are voxels in the re-

spective volumes at coordinate (x, y, z), and γ is a weight

used to balance the loss contributions of occupied and un-

occupied voxels. Similar to [52], we use a multi-view re-

projection loss on the silhouette as additional regularization:

LFS = −
1

∣

∣

∣
Ŝfv

∣

∣

∣

∑

x,y

Ŝ
(xy)
fv logS

(xy)
fv +

(

1− Ŝ
(xy)
fv

)

log
(

1− S
(xy)
fv

)

(7)

where LFS denotes the front-view silhouette re-projection

loss, Sfv is the silhouette re-projection of Vo, Ŝfv is the

corresponding ground-truth silhouette, and S
(xy)
fv and Ŝ

(xy)
fv

denote their respective pixel values at coordinate (x, y).
Assuming a weak-perspective camera, we can easily ob-

tain S
(xy)
fv through orthogonal projection [52]: S

(xy)
fv =

maxz V
(xyz)
o . The side-view re-projection loss LSS is de-

fined similarly.

For normal map refinement, we use the cosine distance

to measure the difference between predicted normal maps

and the corresponding ground truth:

LN =
1

∣

∣

∣
N̂

∣

∣

∣

∑

x,y

1−
< N

(xy), N̂(xy) >

|N(xy)| · |N̂(xy)|
(8)

where N(xy) is the refined normal map produced by the nor-

mal refiner, N̂(xy) is the ground-truth map, and similarly

N
(xy) and N̂

(xy) denote their respective pixel values at co-

ordinate (x, y).
Therefore, the combined loss is

L = LV + λFSLFS + λSSLSS + λNLN . (9)

5. THuman: 3D Real-world Human Dataset

Collecting rich 3D human surface model with texture

containing casual clothing, various human body shapes and

natural poses has been a time-consuming and laborious task

as it always relies on either expensive laser scanners or so-

phisticated multiview systems in a controlled environment.

Fortunately, this task becomes easier with the recently intro-

duced DoubleFusion[63], a real-time human performance

capture system using a single depth camera. Based on Dou-

bleFusion, we develop a method to capture a 3D human

mesh models, and collect a 3D real-world human mesh

dataset called “THuman”. THuman has about 7000 data

items; each item contains a textured surface mesh, a RGBD

image from the Kinect sensor, and an accompanying well-

aligned SMPL model. More details about the capture sys-

tem and the dataset are presented in the supplementary doc-

ument.

In this work, we only use the textured surface mesh and

the accompanied SMPL model to generate training data.

The training corpus are synthesized in the following steps:

for each model in our dataset, we first render 4 color im-

ages from 4 random viewpoints using a method similar to
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Method HMR BodyNet Ours

Averaged 3D IOU 41.4% 38.7% 45.7%

Table 1: Quantitative comparison using 3D IOU score.

[53]; after that, we generate the corresponding semantic

maps and volumes, occupancy volumes as well as normal

maps. By enumerating all the models in our dataset, we

finally synthesize ∼28K images for network training.

6. Experiments

6.1. Results

We demonstrate our approach with various human im-

ages in Fig.5. The input images are natural images sam-

pled from the LIP dataset[16]. As shown in Fig.5 our ap-

proach is able to reconstruct both the 3D human models

and surface details like cloth wrinkles, belts and the hem

of a dress. In Fig.6 we show an extended application on

3D human performance capture from a single-view RGB

video. It should be noted that the reconstruction results are

generated by applying our method on each the video frame

independently, without any temporal smoothness involved.

The results demonstrate the ability of our method to tackle

various human poses and its robust performance. Please see

the supplemental materials and video for more results.

6.2. Comparison

In Fig.5 and Fig.7, we qualitatively compare our

work against three state-of-the-art deep learning based

approaches for single view 3D human reconstruction:

HMR[27], BodyNet[52] and SiCloPe[36]. As shown in

Fig.5, our method is able to achieve much more detailed re-

construction than HMR and BodyNet (See Fig.5(a∼f)) and

more robust performance than BodyNet when some body

parts are occluded (See Fig.5(b,g,h)).In Fig.7 we show that

SiCloPe fails on some challenging poses and produces in-

accurate reconstruction on other common poses. Overall,

our method makes a better balance between generality and

accuracy thanks to the coarse-to-fine algorithm design.

The quantitative comparison against HMR[27] and

BodyNet[52] is conducted on the testing set of our synthetic

data, and the results are presented in Tab.1. As shown by the

numerical results, our method achieves the most accurate

reconstruction among all the approaches. BodyNet occa-

sionally produces broken bodies and consequently gets the

lowest score. Please see the supplementary document for

more details and more comparisons.

6.3. Ablation Study

6.3.1 Semantic Volume/Map Representation

Baseline. An alternative representation to our semantic

volume/map is body joint heat volumes/maps that are used

in BodyNet[52]. A joint heat map is a multi-channel 2D im-

age where in each channel a Gaussian with fixed variance

Representation IOU score (%)

Joints Heat Map/Volume 74.16

Semantic Map/Volume 79.14

Table 2: Numerical evaluation of semantic volume/map represen-

tation.

is centered at the image location of the corresponding joint.

By extending the notion of 2D heat maps to 3D, we can also

define the heat volumes for body joints. In order to evaluate

our semantic volume/map representation, we implement a

baseline network that takes body joints’ heat maps and heat

volumes as input and has the identical structure to the net-

work presented in Sec.4. In this experiment we generate

input semantic volumes/maps and joint heat volumes/maps

from the ground-truth SMPL model to eliminate the impact

of inaccurate SMPL estimation.

Results. Fig.8 shows the experimental results. We can

see that compared to sparse joints, a network taking dense

semantic maps/volumes as input is able to learn to recon-

struct the 3D model more accurately. In Tab.2, we also test

these two methods on the testing portion of our synthetic

dataset and measure the reconstruction error using the IoU

score of the network output and the ground-truth volume.

The numerical results also show that taking dense seman-

tic maps/volumes as input helps the network achieve higher

reconstruction accuracy. We think that it is because our

semantic volume/map representation encodes information

about the body shape and pose jointly and provides a good

initialization for the volumetric reconstruction network.

6.3.2 Multi-scale Volumetric Feature Transformation

Baseline. To evaluate our multi-scale VFT component, we

implement 3 baseline networks: Baseline (A) only performs

VFT at the finest scale, while Baseline (B) at the coars-

est scale; different from the original network and Baseline

(A)(B), Baseline (C) first encodes input images/volumes

into latent codes, concatenates the latent code of the image

with that of the volume and then feeds the concatenation

into the volume decoder.

Results. Fig.9 shows the reconstruction loss for different

fusing methods. Here we found that by using multi-scale

VFT, the network outperforms the baseline method in terms

of the reconstruction of the model boundaries (see the sec-

ond plot in Fig.9). The same conclusion can be drawn from

the visual comparison shown in Fig.10. Using coarsest VFT

(Baseline (B)) or latent code concantenation (Baseline (C))

results into over-smooth reconstruction of the girl’s head

due to the lack of higher-scale information (see the last two

results in Fig.9). The result generated by Baseline (A) is

much more accurate but contain noises. With the proposed

multi-scale VFT component, our network is able to recon-

struct the hair bun of the girl (the blue circle in Fig.10).
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Figure 5: Reconstruction results on natural images. In each panel, the input images are presented in the left column, while last five columns

show the results of HMR[27] (in orange), BodyNet[52] (in green) and our method (in blue). For BodyNet and our method we render the

results from two views, i.e., the input camera view and a side view.

Figure 6: 3D reconstruction from monocular videos using our method. The reconstruction results are generated by applying our method

on each individual video frame independently. The last three video clips come from the dataset of MonoPerfCap[59].

6.3.3 Normal Refinement

Baseline. To evaluate our normal refinement module, we

implement a baseline network by removing the volume-to-

normal projection layer and the normal refinement U-Net as

well from the original network.

Results. The evaluation experiment is conducted using

our synthetic dataset and the results are shown in Tab.3

and Fig.11. In Tab.3 we present the prediction error of

surface normal with and without normal refinement. This

numeric comparison shows that the normal refinement net-

work properly refines the surface normal based on the in-

put image. We can also observe that surface details are en-

hanced and enriched after normal refinement in Fig.11.
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Figure 7: Comparison against SiCloPe[36]. Blue: our results;

Green: results by SiCloPe.
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Figure 8: Evaluation of semantic volume/map representation.

We evaluate two different inputs for the image-guided vol2vol

network, and show the combined reconstruction losses (LV +

λFSLFS + λSSLSS). Solid lines show training error and dashed

lines show validation error (they almost overlap with each other).
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Figure 9: Evaluation of multi-scale volumetric feature transfor-

mation (VFT). We evaluate several ways to fuse 2D features into

3D volumes, and show the volumetric loss (LV ) and the silhouette

loss (LFS + LSS) in the figure. For clarity we do not show the

validation loss.

7. Discussion

Limitations. Our method relies on HMR and SMPLify to

estimate a SMPL model for the input image. As a result,

Figure 10: Visual evaluation of multi-scale VFT. From left to

right: input image, head reconstruction result by our method, base-

line(A), baseline(B) and baseline(C).

Error Metric Cosine Distance ℓ2-norm

Without Refinement 0.0941 0.336

With Refinement 0.0583 0.262

Table 3: Numerical normal errors with/without normal refinement.

(a) (b) (c)

Figure 11: Qualitative evaluation of normal refinement. (a) Refer-

ence image and the ground-truth normal. (b) Surface normal and

error map without normal refinement. (c) Refined normal and the

corresponding error map.

we cannot give an accurate reconstruction if the SMPL es-

timation is erroneous. Additionally, the reconstruction of

invisible areas is over-smoothed; using a generative adver-

sarial network may force the network to learn to add real-

istic details to these areas. Due to the limited resolution of

the depth maps, DoubleFusion is unable to reconstruct hand

geometry and thus all hands are clenched in the THuman

dataset. Consequently, our method also fails to recover fine-

scale details such as facial expression and hands’ shape.

This issue can be addressed using methods that focus on

face/hand reconstruction.

Conclusion. In this paper, we have presented a deep-

learning based framework to reconstruct a 3D human model

from a single image. Based on the three-stage task decom-

position, the dense semantic representation, the proposed

network design and the 3D real-world human dataset, our

method is able to estimate a plausible geometry of the target

in the input image. We believe both our dataset and network

will enable convenient VR/AR content creation and inspire

many further researches on 3D vision for humans.
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