
Multinomial Distribution Learning for Effective Neural Architecture Search

Xiawu Zheng 1,2 , Rongrong Ji1,2∗, Lang Tang1,2, Baochang Zhang3, Jianzhuang Liu4, Qi Tian5

1Media Analytics and Computing Lab, Department of Artificial Intelligence,

School of Informatics, Xiamen University, 361005, China,
2Peng Cheng Laboratory, Shenzhen, China, 3Beihang University, China,

4Huawei Noah’s Ark Lab, 5Department of Computer Science, University of Texas at San Antonio

{zhengxiawu,langt}@stu.xmu.edu.cn, rrji@xmu.edu.cn

bczhang@buaa.edu.cn, liu.jianzhuang@huawei.com, qitian@cs.utsa.edu

Abstract

Architectures obtained by Neural Architecture Search

(NAS) have achieved highly competitive performance in

various computer vision tasks. However, the prohibitive

computation demand of forward-backward propagation in

deep neural networks and searching algorithms makes it

difficult to apply NAS in practice. In this paper, we pro-

pose a Multinomial Distribution Learning for extremely ef-

fective NAS, which considers the search space as a joint

multinomial distribution, i.e., the operation between two

nodes is sampled from this distribution, and the optimal

network structure is obtained by the operations with the

most likely probability in this distribution. Therefore, NAS

can be transformed to a multinomial distribution learning

problem, i.e., the distribution is optimized to have high ex-

pectation of the performance. Besides, a hypothesis that

the performance ranking is consistent in every training

epoch is proposed and demonstrated to further accelerate

the learning process. Experiments on CIFAR-10 and Im-

ageNet demonstrate the effectiveness of our method. On

CIFAR-10, the structure searched by our method achieves

2.55% test error, while being 6.0× (only 4 GPU hours on

GTX1080Ti) faster compared with state-of-the-art NAS al-

gorithms. On ImageNet, our model achieves 75.2% top-

1 accuracy under MobileNet settings (MobileNet V1/V2),

while being 1.2× faster with measured GPU latency. Test

code with pre-trained models are available at https:

//github.com/tanglang96/MDENAS

1. Introduction

Given a dataset, Neural architecture search (NAS) aims

to discover high-performance convolution architectures

with a searching algorithm in a tremendous search space.

∗Corresponding Author.

NAS has achieved much success in automated architecture

engineering for various deep learning tasks, such as image

classification [19, 34, 32], language modeling [20, 33] and

semantic segmentation [18, 6]. As mentioned in [9], NAS

methods consist of three parts: search space, search strat-

egy, and performance estimation. A conventional NAS al-

gorithm samples a specific convolutional architecture by a

search strategy and estimates the performance, which can be

regarded as an objective to update the search strategy. De-

spite the remarkable progress, conventional NAS methods

are prohibited by intensive computation and memory costs.

For example, the reinforcement learning (RL) method in

[34] trains and evaluates more than 20,000 neural networks

across 500 GPUs over 4 days. Recent work in [20] improves

the scalability by formulating the task in a differentiable

manner where the search space is relaxed to a continuous

space, so that the architecture can be optimized with the

performance on a validation set by gradient descent. How-

ever, differentiable NAS still suffers from the issued of high

GPU memory consumption, which grows linearly with the

size of the candidate search set.

Indeed, most NAS methods [34, 18] perform the per-

formance estimation using standard training and validation

over each searched architecture, typically, the architecture

has to be trained to converge to get the final evaluation on

validation set, which is computationally expensive and lim-

its the search exploration. However, if the evaluation of

different architectures can be ranked within a few epochs,

why do we need to estimate the performance after the neural

network converges? Consider an example in Fig. 1, we ran-

domly sample different architectures (LeNet [17], AlexNet

[16], ResNet-18 [11] and DenseNet [14]) with different lay-

ers, the performance ranking in the training and testing is

consistent (i.e, the performance ranking is ResNet-18 >
DenseNet-BC > AlexNet > LeNet on different networks

and training epochs). Based on this observation, we state

the following hypothesis for performance ranking:
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Figure 1. We randomly choose widely used LeNet [17], AlexNet [15], ResNet-18[11] and DenseNet-BC(k = 40) [14] to illustrate the

proposed Performance Ranking Hypothesis. The training and testing are conducted on CIFAR-10. We report the top1 error and loss

learning curves on both training and testing set. As we can see in the figure, the ranking of the test loss and accuracy keeps consistent in

every training epoch, i.e., a good architecture tends to have better performance in the whole training process.

Performance Ranking Hypothesis. If Cell A has higher

validation performance than Cell B on a specific network

and a training epoch, Cell A tends to be better than Cell

B on different networks after the trainings of these netwoks

converge.

Here, a cell is a fully convolutional directed acyclic graph

(DAG) that maps an input tensor to an output tensor, and the

final network is obtained through stacking different num-

bers of cells, the details of which are described in Sec. 3.

The hypothesis illustrates a simple yet important rule in

neural architecture search. The comparison of different ar-

chitectures can be finished at early stages, as the ranking

of different architectures is sufficient, whereas the final re-

sults are unnecessary and time-consuming. Based on this

hypothesis, we propose a simple yet effective solution to

neural architecture search, termed as Multinomial distribu-

tion for efficient Neural Architecture Search (MdeNAS),

which directly formulates NAS as a distribution learning

process. Specifically, the probabilities of operation candi-

dates between two nodes are initialized equally, which can

be considered as a multinomial distribution. In the learning

procedure, the parameters of the distribution are updated

through the current performance in every epoch, such that

the probability of a bad operation is transferred to better

operations. With this search strategy, MdeNAS is able to

fast and effectively discover high-performance architectures

with complex graph topologies within a rich search space.

In our experiments, the convolutional cells designed by

MdeNAS achieve strong quantitative results. The searched

model reaches 2.55% test error on CIFAR-10 with less pa-

rameters. On ImageNet, our model achieves 75.2% top-

1 accuracy under MobileNet settings (MobileNet V1/V2

[12, 26]), while being 1.2× faster with measured GPU la-

tency. The contributions of this paper are summarized as

follows:

• We introduce a novel algorithm for network architec-

ture search, which is applicable to various large-scale

datasets as the memory and computation costs are sim-

ilar to common neural network training.

• We propose a performance ranking hypothesis, which

can be incorporated into the existing NAS algorithms

to speed up its search.

• The proposed method achieves remarkable search effi-

ciency, e.g., 2.55% test error on CIFAR-10 in 4 hours

with 1 GTX1080Ti (6.0× faster compared with state-

of-the-art algorithms), which is attributed to using

our distribution learning that is entirely different from

RL-based [2, 34] methods and differentiable methods

[20, 29].

2. Related Work

As first proposed in [33, 34], automatic neural network

search in a predefined architecture space has received sig-

nificant attention in the last few years. To this end, many

search algorithms have been proposed to find optimal archi-

tectures using specific search strategies. Since most hand-

crafted CNNs are built by stacked reduction (i.e., the spatial

dimension of the input is reduced) and norm (i.e. the spatial

dimensionality of the input is preserved) cells [14, 11, 13],

the works in [33, 34] proposed to search networks under

the same setting to reduce the search space. The works in

[33, 34, 2] use reinforcement learning as a meta-controller,

to explore the architecture search space. The works in

[33, 34] employ a recurrent neural network (RNN) as the

policy to sequentially sample a string encoding a specific

neural architecture. The policy network can be trained with

the policy gradient algorithm or the proximal policy opti-

mization. The works in [3, 4, 19] regard the architecture

search space as a tree structure for network transformation,

i.e., the network is generated by a farther network with some

predefined operations, which reduces the search space and
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Figure 2. Searching networks with different scales. (a) A network

consists of stacked cells, and each cell takes the output of two pre-

vious cells as input. (b) A cell contains 7 nodes, two input nodes

I1 and I2, four intermediate nodes B1, B2, B3, B4 that apply sam-

pled operations on the input nodes and upper nodes, and an output

node that concatenates the outputs of the four intermediate nodes.

(c) The edge between two nodes denotes a possible operation ac-

cording to a multinomial distribution in the search space.

speeds up the search. An alternative to RL-based methods

is the evolutionary approach, which optimizes the neural ar-

chitecture by evolutionary algorithms [28, 24].

However, the above architecture search algorithms are

still computation-intensive. Therefore some recent works

are proposed to accelerate NAS by one-shot setting, where

the network is sampled by a hyper representation graph, and

the search process can be accelerated by parameter shar-

ing [23]. For instance, DARTS [20] optimizes the weights

within two node in the hyper-graph jointly with a continu-

ous relaxation. Therefore, the parameters can be updated

via standard gradient descend. However, one-shot meth-

ods suffer from the issue of large GPU memory consump-

tion. To solve this problem, ProxylessNAS [5] explores the

search space without a specific agent with path binarization

[7]. However, since the search procedure of ProxylessNAS

is still within the framework of one-shot methods, it may

have the same complexity, i.e., the benefit gained in Prox-

ylessNAS is a trade-off between exploration and exploita-

tion. That is to say, more epochs are needed in the search

procedure. Moreover, the search algorithm in [5] is similar

to previous work, either differential or RL based methods

[20, 34].

Different from the previous methods, we encode the

path/operation selection as a distribution sampling, and

achieve the optimization of the controller/proxy via dis-

tribution learning. Our learning process further integrates

the proposed hypothesis to estimate the merit of each op-

eration/path, which achieves an extremely efficient NAS

search.

3. Architecture Search Space

In this section, we describe the architecture search space

and the method to build the network. We follow the same

settings as in previous NAS works [20, 19, 34] to keep the

consistency. As illustrated in Fig. 2, the network is defined

in different scales: network, cell, and node.

3.1. Node

Nodes are the fundamental elements that compose cells.

Each node xi is a specific tensor (e.g., a feature map in con-

volutional neural networks) and each directed edge (i, j)
denotes an operation o(i,j) sampled from the operation

search space to transform node xi to another node xj , as

illustrated in Fig. 2(c). There are three types of nodes in a

cell: input node xI , intermediate node xB , and output node

xO. Each cell takes the previous output tensor as an input

node, and generates the intermediate nodes xi
B by apply-

ing sampled operations o(i,j) to the previous nodes (xI and

xj
B , j ∈ [1, i)). The concatenation of all intermediate nodes

is regarded as the final output node.

Following [20] set of possible operations, denoted as O,

consists of the following 8 operations: (1) 3× 3 max pool-

ing. (2) no connection (zero). (3) 3 × 3 average pooling.

(4) skip connection (identity). (5) 3× 3 dilated convolution

with rate 2. (6) 5 × 5 dilated convolution with rate 2. (7)

3×3 depth-wise separable convolution. (8) 5×5 depth-wise

separable convolution.

We simply employ element-wise addition at the input of

a node with multiple operations (edges). For example, in

Fig. 2(b), B2 has three operations, the results of which are

added element-wise and then considered as B2.

3.2. Cell

A cell is defined as a tiny convolutional network mapping

an H ×W ×F tensor to another H ′ ×W ′ ×F ′. There are

two types of cells, norm cell and reduction cell. A norm cell

uses the operations with stride 1, and therefore H ′ = H and

W ′ = W . A reduction cell uses the operations with stride 2,

so H ′ = H/2 and W ′ = W/2. For the numbers of filters F
and F ′, a common heuristic in most human designed convo-

lutional neural networks [11, 14, 16, 27, 10, 31] is to double

F whenever the spatial feature map is halved. Therefore,

F ′ = F for stride 1, and F ′ = 2F for stride 2.

As illustrated in Fig. 2(b), the cell is represented by a

DAG with 7 nodes (two input nodes I1 and I2, four in-

termediate nodes B1, B2, B3, B4 that apply sampled opera-

tions on the input and upper nodes, and an output node that

concatenates the intermediate nodes). The edge between

two nodes denote a possible operation according to a multi-

nomial distribution p(node1,node2) in the search space. In

training, the input of an intermediate node is obtained by

element-wise addition when it has multiple edges (opera-
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Figure 3. The overall search algorithm: (1) Sample one operation in the search space according to the corresponding multinomial distribu-

tion with parameters θ. (2) Train the generated network with one forward and backward propagation. (3) Test the network on the validation

set and record the feedback (epoch and accuracy). (4) Update the distribution parameters according to the proposed distribution learning

algorithm. In the right table, the epoch number of operation 1 is 10, which means that this operation is selected 10 times among all the

epochs.

tions). In testing, we select the top K probabilities to gen-

erate the final cells. Therefore, the size of the whole search

space is 2 × 8|EN |, where EN is the set of possible edges

with N intermediate nodes. In our case with N = 4, the

total number of cell structures is 2 × 82+3+4+5 = 2 × 814,

which is an extremely large space to search, and thus re-

quires efficient optimization methods.

3.3. Network

As illustrated in Fig. 2(a), a network consists of a pre-

defined number of stacked cells, which can be either norm

cells or reduction cells each taking the output of two previ-

ous cells as input. At the top of the network, global average

pooling followed by a softmax layer is used for final output.

Based on the Performance Ranking Hypothesis, we train a

small (e.g., 6 layers) stacked model on the relevant dataset

to search for norm and reduction cells, and then generate a

deeper network (e.g., 20 layers) for evaluation. The overall

CNN construction process and the search space are identi-

cal to [20]. But note that our search algorithm is different.

4. Methodology

In this section, our NAS method is presented. We first

describe how to sample the network mentioned in Sec. 3 to

reduce GPU memory consumption during training. Then,

we present a multinomial distribution learning to effectively

optimize the distribution parameters using the proposed hy-

pothesis.

4.1. Sampling

As mentioned in Sec. 3.1, the diversity of network struc-

tures is generated by different selections of M possible paths

(in this work, M = 8) for every two nodes. Here we initial-

ize the probabilities of these paths as pi =
1
M

in the begin-

ning for exploration. In the sampling stage, we follow the

work in [5] and transform the M real-valued probabilities

{pi} with binary gates {gi}:

g =







[1, 0, ..., 0]
︸ ︷︷ ︸

M

with probability p1

...
[0, 0, ..., 1]
︸ ︷︷ ︸

M

with probability pM

(1)

The final operation between nodes i and j is obtained by:

o(i,j) = o(i,j) ∗ g =







o1 with probability p1
...
oM with probability pM .

(2)

As illustrated in the previous equations, we sample only one

operation at run-time, which effectively reduces the mem-

ory cost compared with [20].

4.2. Multinomial Distribution Learning

Previous NAS methods are time and memory consum-

ing. The use of reinforcement learning further prohibits the

methods with the delay reward in network training, i.e., the

evaluation of a structure is usually finished after the net-

work training converges. On the other hand, as mentioned

in Sec. 1, according to the Performance Ranking Hypothe-

sis, we can perform the evaluation of a cell when training

the network. As illustrated in Fig. 3, the training epochs

and accuracy for every operation in the search space are

recorded. Operations A is better than B, if operation A has

fewer training epochs and higher accuracy.

Formally, for a specific edge between two nodes, we de-

fine the operation probability as p, the training epoch asHe,

and the accuracy as Ha, each of which is a real-valued col-

umn vector of length M = 8. To clearly illustrate our learn-
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ing method, we further define the differential of epoch as:

∆He =





(~1×He
1 −H

e)T

...

(~1×He
M −H

e)T



 , (3)

and the differential of accuracy as:

∆Ha =





(~1×Ha
1 −H

a)T

...

(~1×Ha
M −H

a)T



 , (4)

where~1 is a column vector with length 8 and all its elements

being 1, ∆He and ∆Ha are 8×8 matrices, where ∆He
i,j =

He
i − H

e
j ,∆H

a
i,j = Ha

i − H
a
j . After one epoch training,

the corresponding variables He, Ha, ∆He and ∆Ha are

calculated by the evaluation results. The parameters of the

multinomial distribution can be updated through:

pi ← pi + α ∗ (
∑

j

✶(∆He
i,j < 0,∆Ha

i,j > 0)−

∑

j

✶(∆He
i,j > 0,∆Ha

i,j < 0)),
(5)

where α is a hyper-parameter, and ✶ denotes as the indicator

function that equals to one if its condition is true.

As we can see in Eq. 5, the probability of a specific

operation i is enhanced with fewer epochs (∆He
i,j < 0)

and higher performance (∆Ha
i,j > 0). At the same time,

the probability is reduced with more epochs (∆He
i,j > 0)

and lower performance (∆Ha
i,j < 0). Since Eq. 5 is ap-

plied after every training epoch, the probability in the search

space can be effectively converge and stabilize after a few

epochs. Together with the proposed performance ranking

hypothesis (demonstrated latter in Section 5), our multino-

mial distribution learning algorithm for NAS is extremely

efficient, and achieves a better performance compared with

other state-of-the-art methods under the same settings. Con-

sidering the performance ranking is consisted of different

layers according to the hypothesis, to further improve the

search efficiency, we replace the search network in [20] with

another shallower one (only 6 layers), which takes only 4

GPU hours of searching on CIFAR-10.

To generate the final network, we first select the oper-

ations with highest probabilities in all edges. For nodes

with multi-input, we employ element-wise addition with

top K probabilities. The final network consists of a prede-

fined number of stacked cells, using either norm or reduc-

tion cells. Our multinomial distribution learning algorithm

is presented in Alg. 1.

5. Experiment

In this section, we first conduct some experiments on the

CIFAR-10 to demonstrate the proposed hypothesis. Then,

Algorithm 1: Multinomial Distribution Learning

Input: Training data: Dt; Validation data: Dv;

CNN model: F
1 . Output: Cell operation probabilities: P
2 . for t= 1,...,T epoch do

3 Sample the operation according to Equation 1;

4 Train the network with 1 epoch;

5 Validate the network on Dv;

6 Caculate the differential of epoch and accuracy

according to Equation 3 and Equation 4;

7 Update the probabilities with Equation 5;

8 end

we compare our method with state-of-the-art methods on

both search effectiveness and efficiency on two widely-used

classification datasets including CIFAR-10 and ImageNet.

5.1. Experiment Settings

5.1.1 Datasets

We follow most NAS works [20, 4, 34, 19] in their exper-

iment datasets and evaluation metrics. In particular, we

conduct most experiments on CIFAR-10 [15] which has

50, 000 training images and 10, 000 testing images. In ar-

chitecture search, we randomly select 5, 000 images in the

training set as the validation set to evaluate the architecture.

The color image size is 32 × 32 with 10 classes. All the

color intensities of the images are normalized to [−1,+1].
To further evaluate the generalization, after discovering a

good cell on CIFAR-10, the architecture is transferred into

a deeper network, and therefore we also conduct classifica-

tion on ILSVRC 2012 ImageNet [25]. This dataset consists

of 1, 000 classes, which has 1.28 million training images

and 50, 000 validation images. Here we consider the mo-

bile setting where the input image size is 224× 224 and the

number of multiply-add operations in the model is restricted

to be less than 600M.

5.1.2 Implementation Details

In the search process, according to the hypothesis, the layer

number is irrelevant to the evaluation of a cell structures.

We therefore consider in total L = 6 cells in the network,

where the reduction cells are inserted in the second and third

layers, and 4 nodes for a cell. The network is trained for 100

epoches, with a batch size as 512 (due to the shallow net-

work and few operation sampling), and the initial number

of channels as 16. We use SGD with momentum to opti-

mize the network weights w, with an initial learning rate of

0.025 (annealed down to zero following a cosine schedule),

a momentum of 0.9, and a weight decay of 3 × 10−4. The

learning rate of the multinomial parameters is set to 0.01.
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Figure 4. The test error (left), top 1 accuracy (middle), and Kendall’s τ (right) of different architectures. The error and accuracy curves

are entangled, since they are sampled from the same search space defined in Section 3. Therefore, we further calculate the Kendall’s τ

between every epoch and the final result. Note that the Kendall’s τ > 0 can be considered as a high value, which means more than half of

the rankings are consistent.

The search takes only 4 GPU hours with only one NVIDIA

GTX 1080Ti on CIFAR-10.

In the architecture evaluation step, the experimental set-

ting is similar to [20, 34, 23]. A large network of 20 cells

is trained for 600 epochs with a batch size of 96, with addi-

tional regularization such as cutout [8], and path dropout of

probability of 0.3 [20]. All the experiments and models of

our implementation are in PyTorch [22].

On ImageNet, we keep the same search hyper-

parameters as on CIFAR-10. In the training procedure,

we follow previous NAS methods [20, 34, 23] with the

same experimental settings. The network is trained for 250

epochs with a batch size of 512, a weight decay of 3×10−5,

and an initial SGD learning rate of 0.1 (decayed by a factor

of 0.97 in every epoch).

5.1.3 Baselines

We compare our method with both human designed net-

works and other NAS networks. The manually designed

networks include ResNet [11], DenseNet [14] and SENet

[13]. For NAS networks, we classify them according

to different search methods, such as RL (NASNet [34],

ENAS [23] and Path-level NAS [4]), evolutional algorithms

(AmoebaNet [24]), Sequential Model Based Optimization

(SMBO) (PNAS [19]), and gradient-based (DARTS [20]).

We further compare our method under the mobile setting on

ImageNet to demonstrate the generalization. The best archi-

tecture generated by our algorithm on CIFAR-10 is trans-

ferred to ImageNet, which follows the same experimental

setting as the works mentioned above. Since our algorithm

takes less time and memory, we also directly search on Im-

ageNet, and compare it with another similar baseline (low

computation consumption) of proxy-less NAS [5].

5.2. Evaluation of the Hypothesis

We first conduct experiments to verify the correctness of

the proposed performance ranking hypothesis. To get some

intuitive sense of the hypothesis, we introduce the Kendall

rank correlation coefficient, a.k.a. Kendall’s τ [1]. Given

two different ranks of m items, the Kendall’s τ is computed

as follows:

τ =
P −Q

P +Q
, (6)

where P is the number of pairs that are concordant (in the

same order in both rankings) and Q denotes the number of

pairs that are discordant (in the reverse order). τ ∈ [−1, 1],
with 1 meaning the rankings are identical and -1 meaning

a rank is in reverse of another. The probability of a pair in

two ranks being consistent is pτ = τ+1
2 . Therefore, a τ = 0

means that 50% of the pairs are concordant.

We randomly sample different network architectures in

the search space, and report the loss, accuracy and Kendall’s

τ of different epochs on the testing set. The performance

ranking in every epoch is compared with the final perfor-

mance ranking of different network architectures. As il-

lustrated in Fig. 4, the accuracy and loss are hardly distin-

guished due to the homogeneity of the sampled networks,

i.e., all the networks are generated from the same space. On

the other hand, the Kendall coefficient keeps a high value

(τ > 0, pτ > 0.5) in most epochs, generally approaching

1 as the number of epochs increases. It indicates that the

architecture evaluation ranking has highly convincing prob-

abilities in every epoch and generally becomes more close

to the final ranking. Note that, the mean value of Kendall’s

τ for each epoch is 0.474. Therefore, the hypothesis holds

with a probability of 0.74. Moreover, we discover that the

combination of the hypothesis with the multinomial distri-

bution learning can enhance each other. The hypothesis

guarantees the high expectation when selecting a good ar-

chitecture, and the distribution learning decreases the prob-
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Architecture
Test Error Params Search Cost Search

(%) (M) (GPU days) Method

ResNet-18 [11] 3.53 11.1 - manual

DenseNet [14] 4.77 1.0 - manual

SENet [13] 4.05 11.2 - manual

NASNet-A [34] 2.65 3.3 1800 RL

AmoebaNet-A [24] 3.34 3.2 3150 evolution

AmoebaNet-B [24] 2.55 2.8 3150 evolution

PNAS [19] 3.41 3.2 225 SMBO

ENAS [23] 2.89 4.6 0.5 RL

Path-level NAS [4] 2.49 5.7 8.3 RL

DARTS(first order) [20] 2.94 3.1 1.5 gradient-based

DARTS(second order) [20] 2.83 3.4 4 gradient-based

Random Sample [20] 3.49 3.1 - -

MdeNAS (Ours) 2.55 3.61 0.16 MDL

Table 1. Test error rates of our discovered architecture, human-designed network and other NAS architectures on CIFAR-10. To be fair, we

select the architectures and results with similar parameters (< 10M) and training conditions (same epochs and regularization).

Figure 5. Detailed structure of the best cells discovered on CIFAR-

10. The definition of the operations on the edges is in Section 3.1.

In the reduction cell (up) the stride of operations on 2 input nodes

is 2, and in the norm cell (down), the stride is 1.

ability of sampling a bad architecture.

5.3. Results on CIFAR­10

We start by finding the optimal cell architecture using

the proposed method. In particular, we first search neural

architectures on an over-parameterized network, and then

we evaluate the best architecture with a deeper network. To

eliminate the random factor, the algorithm is run for several

times. We find that the architecture performance is only

slightly different with different times, as well as compar-

ing to the final performance in the deeper network (<0.2),

which indicates the stability of the proposed method. The

best architecture is illustrated in Fig. 5.

The summarized results for convolutional architectures

on CIFAR-10 are presented in Tab. 1. It is worth not-

ing that the proposed method outperforms the state-of-the-

art [34, 20], while with extremely less computation con-

sumption (only 0.16 GPU days << 1,800 in [34]). Since

the performance highly depends on different regularization

methods (e.g., cutout [8]) and layers, the network architec-

tures are selected to compare equally under the same set-

tings. Moreover, other works search the networks using

either differential-based or black-box optimization. We at-

tribute our superior results based on our novel way to solve

the problem with distribution learning, was well as the fast

learning procedure: The network architecture can be di-

rectly obtained from the distribution when the distribution

converges. On the contrary, previous methods [34] evaluate

architectures only when the training process is done, which

is highly inefficient. Another notable phenomena observed

in Tab. 1 is that, even with randomly sampling in the search

space, the test error rate in [20] is only 3.49%, which is

comparable with the previous methods in the same search

space. We can therefore reasonable conclude that, the high

performance in the previous methods is partially due to the

good search space. At the same time, the proposed method

quickly explores the search space and generates a better ar-

chitecture. We also report the results of hand-crafted net-

works in Tab. 1. Clearly, our method shows a notable en-

hancement, which indicates its superiority in both resource

consumption and test accuracy.

5.4. Results on ImageNet

We also run our algorithm on the ImageNet dataset

[25]. Following existing works, we conduct two experi-

ments with different search datasets, and test on the same

dataset. As reported in Tab. 1, the previous works are time

consuming on CIFAR-10, which is impractical to search on
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Architecture
Accuracy (%) Params Search Cost Search

Top1 Top5 (M) (GPU days) Method

MobileNetV1 [12] 70.6 89.5 6.6 - manual

MobileNetV2 [26] 72.0 91.0 3.4 - manual

ShuffleNetV1 2x (V1) [30] 70.9 90.8 ∼5 - manual

ShuffleNetV2 2x (V2) [21] 73.7 - ∼5 - manual

NASNet-A [34] 74.0 91.6 5.3 1800 RL

AmoebaNet-A [24] 74.5 92.0 5.1 3150 evolution

AmoebaNet-C [24] 75.7 92.4 6.4 3150 evolution

PNAS [19] 74.2 91.9 5.1 225 SMBO

DARTS [20] 73.1 91.0 4.9 4 gradient-based

MdeNAS (Ours) 74.5 92.1 6.1 0.16 MDL

Table 2. Comparison with state-of-the-art image classification methods on ImageNet with the mobile setting. All the NAS networks are

searched on CIFAR-10, and then directly transferred to ImageNet.

Model Top-1
Search time

GPU latency
GPU days

MobileNetV2 72.0 - 6.1ms

ShuffleNetV2 72.6 - 7.3ms

Proxyless (GPU) [5] 74.8 4 5.1ms

Proxyless (CPU) [5] 74.1 4 7.4ms

MdeNAS (GPU) 75.2 2 4.9ms

MdeNAS (CPU) 74.1 2 7.1ms

Table 3. Comparison with state-of-the-art image classification on

ImageNet with the mobile setting. The networks are directly

searched on ImageNet with the MobileNetV2 [26] backbone.

ImageNet. Therefore, we first consider a transferable ex-

periment on ImageNet, i.e., the best architecture found on

CIFAR-10 is directly transferred to ImageNet, using two

initial convolution layers of stride 2 before stacking 14 cells

with scale reduction (reduction cells) at 1, 2, 6 and 10. The

total number of flops is decided by choosing the initial num-

ber of channels. We follow the existing NAS works to com-

pare the performance under the mobile setting, where the in-

put image size is 224× 224 and the model is constrained to

less than 600M FLOPS. We set the other hyper-parameters

by following [20, 34], as mentioned in Sec. 5.1.2. The re-

sults in Tab. 2 show that the best cell architecture on CIFAR-

10 is transferable to ImageNet. Note that, the proposed

method achieves comparable accuracy with state-of-the-art

methods, while using much less computation resource.

The extremely minimal time and GPU memory con-

sumption makes our algorithm on ImageNet feasible.

Therefore, we further conduct a search experiment on Im-

ageNet. We follow [5] to design network setting and the

search space. In particular, we allow a set of mobile con-

volution layers with various kernels {3, 5, 7} and expand-

ing ratios {1, 3, 6}. To further accelerate the search, we

directly use the network with the CPU and GPU structure

obtained in [5]. In this way, the zero and identity layer

in the search space is abandoned, and we only search the

hyper-parameters related to the convolutional layers. The

results are reported in Tab. 3, where we have found that our

MdeNAS achieves superior performance compared to both

human-designed and automatic architecture search meth-

ods, with less computation consumption.

6. Conclusion

In this paper, we have presented MdeNAS, the first dis-

tribution learning-based architecture search algorithm for

convolutional networks. Our algorithm is deployed based

on a novel performance rank hypothesis that is able to fur-

ther reduce the search time which compares the architec-

ture performance in the early training process. Benefiting

from our hypothesis, MdeNAS can drastically reduce the

computation consumption while achieving excellent model

accuracies on CIFAR-10 and ImageNet. Furthermore, Mde-

NAS can directly search on ImageNet, which outperforms

the human-designed networks and other NAS methods.
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