
PointCloud Saliency Maps

Tianhang Zheng Changyou Chen Junsong Yuan

State University of New York at Buffalo

{tzheng4, changyou, jsyuan}@buffalo.edu

Bo Li Kui Ren

Zhejiang University

{boli, kuiren}@zju.edu.cn

Abstract

3D point-cloud recognition with PointNet and its vari-

ants has received remarkable progress. A missing ingredi-

ent, however, is the ability to automatically evaluate point-

wise importance w.r.t. classification performance, which is

usually reflected by a saliency map. A saliency map is an

important tool as it allows one to perform further processes

on point-cloud data. In this paper, we propose a novel

way of characterizing critical points and segments to build

point-cloud saliency maps. Our method assigns each point

a score reflecting its contribution to the model-recognition

loss. The saliency map explicitly explains which points are

the key for model recognition. Furthermore, aggregations of

highly-scored points indicate important segments/subsets in

a point-cloud. Our motivation for constructing a saliency

map is by point dropping, which is a non-differentiable

operator. To overcome this issue, we approximate point-

dropping with a differentiable procedure of shifting points

towards the cloud centroid. Consequently, each saliency

score can be efficiently measured by the corresponding gra-

dient of the loss w.r.t the point under the spherical coor-

dinates. Extensive evaluations on several state-of-the-art

point-cloud recognition models, including PointNet, Point-

Net++ and DGCNN, demonstrate the veracity and gener-

ality of our proposed saliency map. Code for experiments

is released on https://github.com/tianzheng4/

PointCloud-Saliency-Maps.

1. Introduction

Point clouds, which comprise raw outputs of many 3D

data acquisition devices such as radars and sonars, are an

important 3D data representation for computer-vision ap-

plications [6, 17, 12, 11]. Real applications such as ob-

ject classification and segmentation usually require high-

level processing of 3D point clouds [16, 3, 1, 5]. Recent

research has proposed to employ Deep Neural Network

(DNN) for high-accuracy and high-level processing of point

clouds, achieving remarkable success. Representative DNN

models for point-cloud data classification include PointNet

Figure 1. Drop the 5% most critical points identified by our

saliency map from a bench point cloud can easily change the pre-

diction outcome (even can trick human vision!).

[9], PointNet++ [10] and DGCNN [19], which successfully

handled the irregularity of point clouds and achieved high

classification accuracy. Beyond that, a notable character-

istic of PointNet and its variants is their robustness to fur-

thest/random point dropping. [9] owes the robustness to the

max pooling layer in PointNet, which only concentrates on

a critical subset of a point cloud. In other words, the recog-

nition result is mainly determined by those critical points

such that dropping some other non-critical points does not

change the prediction. We refer to the corresponding the-

ory given in [9] as critical-subset theory. Despite identify-

ing such an important subset, we observed that the critical-

subset theory is too ambiguous, as it does not specify the im-

portance of each point and subset. In this paper, we propose

a simple method to construct a general saliency map for

point-level and subset-level saliency assessment. Note in

[13, 14, 8], saliency map is constructed for images to char-

acterize the contribution of each pixel value to the recogni-

tion result. We extend this concept to point cloud, aiming

at studying importance of each single point. Specifically,

our method assigns a saliency score for each point, reflect-

ing the contribution of a point to the corresponding model-

prediction loss. A saliency map is important to better un-

derstand point-cloud data, in that: On the one hand, if one

drops points with the highest saliency scores, model perfor-

mance would decrease significantly, endowing the potential

to build an adversarial attack model. On the other hand, if

only points with the lowest scores are dropped, model per-

formance would not change a lot. Somewhat surprisingly,

we find dropping points with negative scores even leads to

better recognition performance.

Despite simplicity in concept, how to construct such a

1598



point-level saliency map is nontrivial. One possible solu-

tion is to drop all possible combinations of points and com-

pute the loss changes after dropping those combinations,

i.e., loss difference caused by those combinations. How-

ever, this simple brute-force method is impractical because

the computational complexity scales exponentially w.r.t. the

number of points in a point cloud. Instead, we propose an

efficient and effective method to approximate saliency maps

with a single backward step through DNN models. The

basic idea is to approximate point dropping with a contin-

uous point-shifting procedure, i.e., moving points towards

the point-cloud center. This is intuitively valid because the

point cloud center is supposed to be uninformative for clas-

sification. In this way, prediction-loss changes can be ap-

proximated by the gradient of the loss w.r.t. the point under

a spherical coordinate system. Thus, every point in a point

cloud is associated with a score proportional to the gradient

of loss w.r.t. the point. We further propose an iterative point-

dropping algorithm for verification of our saliency map.

As stated above, if our saliency map is effective, dropping

points with the highest (positive)/lowest (negative) saliency

scores will degrade/improve model performance. Surpris-

ingly, some point clouds manipulated by our point-dropping

algorithm even concur with human intuition well as shown

in Fig. 1, indicating our saliency map can recognize salient

points and segments like human does.

We compared our saliency-map-driven point-dropping

algorithms with the random point-dropping baseline and the

best critical-subset-based strategy on several state-of-the-art

point-cloud DNN models, including PointNet, PointNet++,

and DGCNN. We show that our method can always out-

perform those schemes in terms of improving or degrad-

ing model performance with limited points dropped. As

an example, we show that dropping 200/1024 points with

the highest saliency scores from each point cloud by our

algorithm can reduce the classification accuracy of Point-

Net on 3D-MNIST/ModelNet40 to 49.2%/44.3%, while

the random-dropping scheme only reduce the accuracy to

94.8%/87.7%, close to original accuracies. Besides, the

best critical-subset-based strategy (only applicable to Point-

Net) only reduces the accuracies to 80.0%/58.1%. All those

experiments verified that our saliency map is a more accu-

rate way to characterize point-level and even subset-level

saliency than the critical-subset theory.

2. Preliminaries

2.1. Definition and Notations

Point Cloud A point cloud is represented as (X ,

{xi}i=1...N , y), where xi ∈ R
3 is a 3D point and N is the

number of points in the point cloud; y ∈ {1, 2, ..., k} is the

ground-truth label, where k is the number of classes. We

denote the output of a point-cloud classification network as

Fθ(·) , {Fθ,j |j = 1...k}, whose input is a point cloud X

and output is a probability vector Fθ(X). The classifica-

tion loss of the network is denoted as L(X, y;θ), which is

usually defined as the cross-entropy between Fθ(X) and y.

Point Contribution We define the contribution of a

point/points in a point cloud as the difference between the

prediction-losses of two point clouds including or exclud-

ing the point/points, respectively. Formally, given a point

xi in X, the contribution of xi is defined as L(X′, y;θ) −
L(X, y;θ), where X′

, {xj : j = 1...N, j 6= i}. If this

value is positive (or large), we consider the contribution of

xi to model prediction as positive (or large). Because in

this case, if xi is added back to X′, the loss will be reduced,

leading to more accurate classification. Otherwise, we con-

sider the contribution of xi to be negative (or small).

Image and Point-Cloud Saliency Map Existing works

on model interpretation and vulnerability have constructed

saliency maps for images to identify which pixels are crit-

ical to model-recognition and how those pixel values can

influence the recognition performance [13, 14, 8]. We first

propose a similar saliency map for point cloud here. Point-

cloud saliency map assigns each point xi a saliency score,

i.e., si, to reflect the contribution of xi. Formally, the map

can be denoted as a function Sθ(·) with input X and out-

putting a vector of lengthN , i.e., {si|i = 1...N}. We expect

higher (positive) si to indicate more (positive) contribution

of xi. We can use point-dropping to verify the veracity of

our saliency map.

Point Dropping Point dropping is a method to evalu-

ate the veracity of our proposed saliency map. If our

saliency map is accurate, then dropping points with the

highest(positive)/lowest(negative) saliency scores will de-

grade/improve recognition performance. Ideally, high (pos-

itive) saliency scores indicate significant positive contri-

butions to the recognition result. Thus after dropping

points with the highest scores, we are expected to have

argj maxFθ,j(X
′) 6= y, where X′ is the remaining point

cloud. On the contrary, especially when the dropped

points have negative saliency scores, which means they

contribute negatively to the prediction, we should have

argj maxFθ,j(X
′) = y.

2.2. 3D Point­Cloud Recognition Models

There are three mainstream approaches for 3D object

recognition: volume-based [20, 7], multi-view-based [15,

18, 21, 4], and point-cloud-based [9, 10, 19] approaches,

which rely on voxel, multi-view-image, and point-cloud

representations of 3D objects, respectively. In this work,

we focus on point-cloud-based models.

1599



PointNet and PointNet++ PointNet [9] applies a com-

position of single variable-functions, a max pooling layer,

and a function of the max pooled features, which is invari-

ant to point orders, to approximate the functions for point-

cloud classification and segmentation. Formally, the com-

position can be denoted as γ ◦ MAX
xi∈X

{h(xi)}, with h(·) a

single-variable function, MAX the max-pooling layer, and γ
a function of the max pooled features (i.e., MAX{h(xi)}).

PointNet plays a significant role in the recent development

of point-cloud high-level processing, serving as a baseline

for many following point-cloud DNN models. PointNet++

[10] is one extension, which applies PointNet recursively

on a nested partitioning of the input point set, to capture

hierarchical structures induced by the metric space where

points live in. Compared to PointNet, PointNet++ is able

to learn hierarchical features w.r.t. the Euclidean distance

metric, and thus typically achieves better performance.

Dynamic Graph Convolutional Neural Network

(DGCNN) DGCNN [19] integrates a novel operation

into PointNet, namely EdgeConv, to capture local geo-

metric structures while maintaining network invariance to

point-permutation. Specifically, the operation EdgeConv

generates features that can describe the neighboring re-

lationships by constructing a local neighborhood graph

and applying convolutional-like operations on edges

connecting neighboring pairs of points. EdgeConv helps

DGCNN achieve further performance improvement,

usually surpassing PointNet and PointNet++.

Critical-Subset Theory For any point cloud X, [9]

proves that there exists a subset C ⊆ X, namely critical

subset, which determines all the max pooled features u,

and thus the output of PointNet. We briefly explain this

theory in the following: a PointNet network can be ex-

pressed as F(X) , γ ◦ u(X), where γ is a continuous

function, and u(X) represents the max pooled features. Ap-

parently, F(X) is determined by u(X). u(X) is computed

by u(X) = MAX
xi∈X

{h(xi)}, where MAX (i.e., a special max-

pooling layer) is an operator that takes N vectors as input

and returns a new vector of the element-wise maximums.

For the jth dimension of u, there exists one xi ∈ X such

that uj = hj(xi), where hj is the j − th dimension of

h. Aggregate all those xi into a subset C ⊆ X such that

C will determine u and thus γ ◦ u. [9] named C as criti-

cal subset. As we can see, this theory is applicable to net-

work structures similar to γ ◦ MAX
xi∈X

{h(xi)}, where a max-

pooled feature is simply determined by one point, but not

to networks with more complicated structures. Visually, C

usually distributes evenly along the skeleton of X. In this

sense, for PointNet, the critical subset seems to include all

the points critical to the recognition result. We refer the

readers who are interested in more details to the appendix

in [9]. Although the critical-subset theory helps to iden-

tify a salient point subset, we found that the theory does not

specify point-level saliency yet, and it is also not an accurate

and exhaustive way to characterize subset-level saliency.

3. Point-Cloud Saliency Map

In this section, we derive our proposed saliency map fol-

lowing the definitions in Section 2.1. Instead of dropping

every point/subset and calculating the loss change (differ-

ence), we approximate point dropping by the procedure

of shifting points to the spherical core (center) of a point

cloud. Through this way, the nondifferentiable loss change

caused by point-dropping can be approximated by differen-

tiable loss change under a point-shifting operation, based on

which a saliency map is constructed.

3.1. From Point Dropping to Point Shifting

Our idea is illustrated in Fig. 2. The intuition is that all

the external (outward) points of a point cloud are supposed

to determine the recognition result, because those points en-

code shape information of objects, while the points near

the point center (inward) ∗ almost have no effect on the

recognition performance. More concretely, Outward cor-

responds to all original external points not shifted (to the

center). Consequently, dropping a point has similar effects

to shifting the point towards the center in terms of elim-

inating the effect of the point on the classification result.

A more precise explanation for this intuition in theory is

that the central points for all the point clouds are at the

same position after coordinate translation so that their con-

tribution to recognition can be neglected. Formally, we di-

vide a point cloud into two parts {{x′
i}, {ci}}, where {ci}

represents the point subset at the centroid, and {x′
i} rep-

resents the remaining points on the surface. For a natural

point cloud, {ci} is usually an empty set. The max-pooling

layer in PointNet can be rewritten as MAX{h(xi)} =
max{MAX{h(x′

i)},MAX{h(ci)}}, where max(a,b) re-

turns the element-wise maximum of a and b. Since {ci}
is the same for all the point clouds after coordinate trans-

formation, determinant max-pooled features should mainly

come from MAX{h(x′
i)}.

To verify our hypothesis, we conduct a proof-of-concept

experiment: thousands of pairs of point clouds are gen-

erated by dropping 100/1024 points and shifting those

100/1024 points to the point cloud center respectively. Here

we totally used three schemes to select those 100/1024
points, including furthest point-dropping, random point-

dropping, and point-dropping based on our saliency map.

We use PointNet for classification of both of the point

clouds in every pair. For all those selection schemes, the

∗Median value of x, y, z coordinates

1600



Figure 2. Approximate point dropping with point shifting toward

the point-cloud center.

classification results achieve more than 95% pairwise con-

sistency†, indicating applicability of our approach.

3.2. Gradient­based Saliency Map

Based on the intuition in 3.1, we approximate the contri-

bution of a point by the gradient of loss, i.e., the difference

between the prediction-losses of two point clouds includ-

ing or excluding the point, under the point-shifting opera-

tion. Note that measuring gradients in the original coordi-

nate system is problematic because points are not view (an-

gle) invariant. In order to overcome this issue, we consider

point shifting in the Spherical Coordinate System, where a

point is represented as (r, ψ, φ) with r distance of a point

to the spherical core, ψ and φ the two angles of a point rel-

ative to the spherical core. Under this spherical coordinate

system, as shown in Fig. 2, shifting a point towards the cen-

ter by δ will increase the loss L by −∂L
∂r
δ. Then based on

the equivalence we established in section 3.1, we measure

the contribution of a point by a real-valued score – negative

gradient of the loss L w.r.t. r, i.e., −∂L
∂r

. To calculate ∂L
∂r

for certain point cloud, we use the medians of the axis val-

ues of all the points in the point cloud as the spherical core,

denoted as xc, to build the spherical coordinate system for

outlier-robustness [2]. Formally, xc can be expressed as

xcj = median({xij | xi ∈ X}) (j = 1, 2, 3), (1)

where (xi1,xi2,xi3) represent the axis values of point xi

corresponding the orthogonal coordinates (x, y, z). Con-

sequently, ∂L
∂r

can be computed by the gradients under the

original orthogonal coordinates as:

∂L

∂ri
=

3
∑

j=1

∂L

∂ xij

xij −xcj

ri
, (2)

where ri =
√

∑3
j=1(xij −xcj)2. In practice, we apply a

change-of-variable by ρi = r−α
i (α > 0) to allow more

flexibility in saliency-map construction, where α is used to

rescale the point clouds. The gradient of L w.r.t. ρi can be

calculated by

†For more than 95% pairs, the classification results of the two point

clouds in each pair are the same (may be correct or wrong)

∂L

∂ρi
= −

1

α

∂L

∂ri
r1+α
i . (3)

Define δρ/δr as a differential step size along ρ/r. Since

δρ = −αr−(α+1)δr, shifting a point (r, ψ, φ) by −δr (i.e.,

δr towards the center r = 0) is equivalent to shifting the

point by δρ if ignoring the positive factor αr−(α+1). There-

fore, under the framework of (ρ, ψ, φ), we approximate the

loss change by ∂L
∂ρ
δρ, which is proportional to ∂L

∂ρ
. Thus in

the rescaled coordinates, we measure the contribution of a

point xi by ∂L
∂ρi

, i.e., − 1
α

∂L
∂ri
r1+α
i . Since 1

α
is a constant, we

simply employ

si = −
∂L

∂ri
r1+α
i (4)

as the saliency score of xi in our saliency map. Note the ad-

ditional parameter α gives us extra flexibility for saliency-

map construction, and optimal choice of α would be prob-

lem specific. In the following experiments, we simply set α
to 1, which already achieves remarkable performance. For

better understanding of our saliency maps, several maps are

visualized in Fig. 3. We colorcode those points by the ranks

of their saliency scores, i.e., larger number indicated higher

saliency scores.

4. Point Dropping Algorithms

As stated in Section 2.1, point dropping can be used to

verify the veracity of our saliency map. Therefore, we pro-

pose two point dropping algorithms in Section 4.1. For

comparison with the critical-subset theory, we also tried

several critical-subset based point dropping strategies, and

present the most effective one in Section 4.2. For sim-

plicity, we refer to dropping points with the highest scores

as high-drop, dropping points with the lowest scores as

low-drop, and the most effective critical-subset based strat-

egy as critical in the followings. Except for verification,

point dropping is also helpful for understanding subset-level

(segment-level) saliency. For instance, after high-drop, the

remaining fragmented point cloud will be recognized as an-

other object, which means the dropped points belong to the

most important segments in the object for recognition. Sur-

prisingly, the points dropped by our saliency-map based

high-drop algorithms are always clustered as illustrated in

Fig. 8, and the clusters are indeed the critical segments for

object recognition even in human eyes.

4.1. Saliency­Map based Point Dropping

Based on the illustrations in Section 3.2, saliency maps

are readily constructed by calculating gradients following

(4), which guide our point-dropping processes (algorithms).

Algorithm 1 describes our iterative algorithm for point

dropping. Note calculating saliency scores at once might be

suboptimal because point dependencies have been ignored.

To alleviate this issue, we propose to drop points iteratively

1601



Figure 3. Visualize several saliency maps of digits and objectives (one-step): coloring points by their score-rankings.

such that point dependencies in the remaining point set will

be considered when calculating saliency scores for the next

iteration. Specifically, in each iteration, a new saliency map

is constructed for the remaining points, and among them

n/T points are dropped based on the current saliency map.

In section 5.3, we set n/T = 5 for dropping points with

the highest saliency scores and show that this setting is

good enough in terms of improving the performance and

understanding subset-level saliency with reasonable com-

putational cost.

Algorithm 1 Iteratively drop points based on dynamic

saliency maps

Require: Loss function L(X, y;θ); point cloud input X,

label y, and model weights θ; hyper-parameter α; total

number of points to drop n; number of iterations T .

for t = 0 to T do

Compute the gradient gt
i = ∇x

t

i

L(Xt, y;θ)

Compute the center by xt
c , (xtc1, x

t
c2, x

t
c3) =

median(xt
i1,x

t
i2,x

t
i3)

Compute ri
∂L
∂ri

= (xt
i −xt

c) · g
t
i (inner product)

Construct the saliency map by si = −rαi ri
∂L
∂ri

if high-drop then

Drop the points with n/T lowest si from Xt

else if low-drop then

Drop the points with n/T highest si from Xt

end if

end for

Output XT

4.2. Critical­Subset based Point Dropping

To compare our saliency map with the critical-subset

theory, we also propose several point-dropping strategies

based on the critical-subset theory, e.g., randomly drop-

ping points from the critical-subset one-time/iteratively and

dropping the points that contribute to the most number of

max-pooled features one-time/iteratively. Among all those

critical-subset based schemes, dropping the points with

contribution to the most number of max-pooled features

(at least two features) iteratively provides the best perfor-

mance. The strategy is illustrated in Algorithm 2. However,

we found that even this scheme still performs worse than

our saliency-map based point-dropping algorithm, which

indicates that our saliency map is a more accurate measure

on the point-level and subset-level saliency.

Algorithm 2 Iteratively drop points based on dynamic crit-

ical subset

Require: PointNet network f = γ ◦ MAX
xi∈X

{h(xi)}; point

cloud input X, label y, and model weights θ; hyper-

parameter α; total number of points to drop n; number

of iterations T .

for t = 0 to T do

Compute the indexes of points in the critical-subset

(index list) is by argMAX{h(xi)}
Count ci , the frequency of i in the list (i.e., xi de-

termines ci max-pooled features)

Drop n/T points with the largest ci from Xt

end for

Output XT

5. Experiments

We verify our saliency map and point dropping algo-

rithms by applying them to several benchmarks.

5.1. Datasets and Models

We use the two public datasets, 3D MNIST‡ and Mod-

elNet40§ [20], to test our saliency map and point-dropping

algorithms. 3D MNIST contains 6000 raw 3D point clouds

generated from 2D MNIST images, among which 5000 are

used for training and 1000 for testing. Each raw point cloud

contains about 20000 3D points. To enrich the dataset, we

‡https://www.kaggle.com/daavoo/3d-mnist/

version/13
§http://modelnet.cs.princeton.edu/

1602



Figure 4. PointNet on 3D-MNIST and ModelNet40 from left to right: averaged loss (3D-MNIST), overall accuracy (3D-MNIST), averaged

loss (ModelNet40), overall accuracy (ModelNet40).

Figure 5. PointNet++ on 3D-MNIST and ModelNet40 from left to right: averaged loss (3D-MNIST), overall accuracy (3D-MNIST),

averaged loss (ModelNet40), overall accuracy (ModelNet40).

randomly select 1024 points from each raw point cloud for

10 times to create 10 point clouds, making a training set

of size 50000 and a testing set of size 10000, with each

point cloud consisting of 1024 points. ModelNet40 con-

tains 12,311 meshed CAD models of 40 categories, where

9,843 models are used for training and 2,468 models are for

testing. We use the same point-cloud data provided by [9],

which are sampled from the surfaces of those CAD mod-

els. Finally, our approach is evaluated on state-of-the-art

point cloud models introduced in section 2.2, i.e., PointNet,

PointNet++ and DGCNN.

5.2. Implementation Details

Our implementation is based on the models and code

provided by [9, 10, 19] Default settings are used to train

these models. To enable dynamic point-number input

along the second dimension of the batch-input tensor, for

all the three models, we substitute several Tensorflow ops

with equivalent ops that support dynamic inputs. We also

rewrite a dynamic batch-gather ops and its gradient ops for

DGCNN by C++ and Cuda. For simplicity, we set the num-

ber of votes ¶ as 1. In all of the following cases, approxi-

mately 1% accuracy improvement can be obtained by more

votes, e.g., 12 votes. Besides, incorporation of additional

features like face normals will further improve the accuracy

by nearly 1%. We did not consider these tricks in our ex-

periments for simplicity.

5.3. Empirical Results

To verify the veracity of our saliency map, we com-

pare our saliency-map-driven point dropping approaches

with the random point-dropping baseline [9], denoted as

¶Aggregate classification scores from multiple rotations

rand-drop, and the critical-subset-based strategy introduced

in Section 4.2, denoted as critical (only applicable to the

PointNet structure). For simplicity, we refer to dropping

n points with the lowest saliency scores as low-drop, and

dropping n points with highest positive scores as high-drop

in the followings. For low-drop, we found one iteration of

Algorithm 1 is already enough to achieve a good perfor-

mance. While for high-drop, as explained in 4.1, we set

n/T = 5 when dropping points with the highest scores in

order to achieve better performance. We will further explain

why we use this setting in the parameter study.

Results on PointNet The performance of PointNet on

3D-MNIST test set is shown in Fig. 4. The overall accu-

racy of PointNet maintains 94% ∼ 95% under rand-drop

while varying the number of dropped points between 0 to

200. In contrast, high-drop reduces PointNet’s overall ac-

curacy to 49.2%. Furthermore, it is interesting to see by

dropping points with negative scores, the accuracy even in-

creases compared to using original point clouds by nearly

1%. This is consistent for other models and datasets as

shown below. For ModelNet40, as shown in Fig. 4, the

overall accuracy of PointNet maintains 87% ∼ 89% ∗ un-

der rand-drop. However, our point-dropping algorithm can

increase/reduce the accuracy to 91.4%/44.3%.

Results on PointNet++ The results for PointNet++ are

shown in Fig. 5, which maintains 95% ∼ 96% on 3D-

MNIST under rand-drop, while our point-dropping algo-

rithm can increase/reduce the accuracy to 97.2%/59.5%.

On the ModelNet40 test set, PointNet++ maintains 88 ∼

∗89.2% in [9] can be acquired by setting the number of votes as 12.

We set the number of votes to 1 for simplicity. The discrepancy between

the accuracies under these two setting is always less than 1%.

1603



Figure 6. DGCNN on 3D-MNIST and ModelNet40: averaged loss (3D-MNIST), overall accuracy (3D-MNIST), averaged loss (Model-

Net40), overall accuracy (ModelNet40).

Figure 7. Impacts of hyper-parameters: (1) scaling factor α, (2) number of dropped points n (middle), (3) number of iterations T , (4)

generalization results (subsets generated by point dropping on PointNet).

90%† overall accuracy under rand-drop, while our algo-

rithm can increase/reduce the accuracy to 91.1%/58.5%.

Results on DGCNN The accuracies of DGCNN on 3D-

MNIST and ModelNet40 test sets are shown in Fig. 6,

respectively. Similarly, under rand-drop, DGCNN main-

tains 96% ∼ 97% and 89% ∼ 91% accuracies re-

spectively. Given the same conditions, our algorithm is

able to increase/reduce the accuracies to 97.2%/76.4% and

91.3%/64.2% respectively.

Visualization Several point clouds manipulated by high-

drop are visualized in Fig. 8. For the point clouds shown

in those figures, our saliency map and the iterative point-

dropping algorithm successfully identify the important seg-

ments (i.e., the dropped segments) that distinguish them

from other clouds, e.g., the base of the lamp. It is worth

pointing out that human also recognize several point clouds

in Fig. 8 as other objects. On the contrary, as shown in

Fig. 9, low-drop is visually similar to a denoising pro-

cess, i.e., dropping noisy/useless points scattered through-

out point clouds. Although the DNN model misclassifies

the original point clouds in some cases, dropping those

noisy points could correct the model predictions.

Parameter Study We employ PointNet on ModelNet40

to study the impacts of the scaling factor α, the number of

dropped points n, and the number of iterations T to model

performance. As shown in Fig. 7, α = 1 is a good setting

for Algorithm 1 since as α increases, model prediction loss

will slightly decrease. Besides, it is clear in Fig. 7 (2nd) that

†91.9% in [10] can be achieved by incorporating face normals as ad-

ditional features and setting the number of votes as 12

our high-drop significantly outperforms rand-drop in terms

of degrading model performance: the accuracy of PointNet

still maintains over 80% under rand-drop with 600/1024
points dropped, while high-drop reduces the accuracy to

nearly 0. In Fig. 7 (3rd), we show that more iterations

lead to better performance. However, when it comes to low-

drop, more iterations only slightly improve the performance

but with more computational cost. Therefore, we recom-

mend executing our algorithm for 20 iterations to identify

the important subsets (high-drop), and for one iteration to

denoise the point clouds (low-drop).

Generalization We also show the generalization perfor-

mance of our algorithm in Fig. 7 (4th). Specifically, we test

the PointNet-generated subsets (after dropping high-score

points) on the PointNet++ and DGCNN, and the accuracy

still degrades a lot.

Discussion Among all the three state-of-the-art DNN

models for 3D point clouds, DGCNN appears to be the

most robust model to point dropping (missing), which indi-

cates DGCNN depends more on the entire point cloud rather

than certain point or segment. We conjecture the robustness

comes from its structures designed to capture more local

and global information, which is supposed to compensate

for the information loss by dropping points or segments. On

the contrary, PointNet does not capture local structures [10],

making it the most sensitive model to point dropping.

6. Conclusion

In this paper, a saliency-map is constructed for 3D point-
clouds to measure the contribution (importance) of each
point in a point cloud to model prediction loss. By approxi-

1604



Figure 8. High-score point dropping (high-drop): original correct prediction (left), dropped points associated with highest scores by

Algorithm 1 (middle), wrong prediction after point dropping (right).

Figure 9. Low-score point dropping (low-drop): original wrong prediction (left), dropped points associated with lowest scores (middle),

correct prediction after point dropping (right).

mating point dropping with a continuous point-shifting pro-
cedure, we show that the contribution of a point is approx-
imately proportional to, and thus can be scored by, the
gradient of loss w.r.t. the point under a scaled spherical-
coordinate system. Using this saliency map, we further
standardize the point-dropping process to verify the ve-
racity of our saliency map on characterizing point-level

and subset-level saliency. Extensive evaluations show that
our saliency-map-driven point-dropping algorithm consis-
tently outperforms other schemes such as the random point-
dropping scheme and critical-subset based strategy, indicat-
ing that our saliency is a more accurate measure to quantify
the point-level and subset-level saliency of a point cloud.

1605



References

[1] Joydeep Biswas and Manuela Veloso. Depth camera based

indoor mobile robot localization and navigation. In 2012

IEEE International Conference on Robotics and Automation,

pages 1697–1702. IEEE, 2012.

[2] Christian Böhm, Christos Faloutsos, and Claudia Plant.

Outlier-robust clustering using independent components. In

Proceedings of the 2008 ACM SIGMOD international con-

ference on Management of data, pages 185–198. ACM,

2008.

[3] Raia Hadsell, Pierre Sermanet, Jan Ben, Ayse Erkan, Marco

Scoffier, Koray Kavukcuoglu, Urs Muller, and Yann LeCun.

Learning long-range vision for autonomous off-road driving.

Journal of Field Robotics, 26(2):120–144, 2009.

[4] Asako Kanezaki, Yasuyuki Matsushita, and Yoshifumi

Nishida. Rotationnet: Joint object categorization and pose

estimation using multiviews from unsupervised viewpoints.

In Proceedings of IEEE International Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2018.

[5] Ben Kehoe, Akihiro Matsukawa, Sal Candido, James

Kuffner, and Ken Goldberg. Cloud-based robot grasping

with the google object recognition engine. In 2013 IEEE In-

ternational Conference on Robotics and Automation, pages

4263–4270. IEEE, 2013.

[6] Lars Linsen. Point cloud representation. Univ., Fak. für

Informatik, Bibliothek Technical Report, Faculty of Com-

puter , 2001.

[7] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-

volutional neural network for real-time object recognition.

In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ

International Conference on, pages 922–928. IEEE, 2015.

[8] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt

Fredrikson, Z Berkay Celik, and Ananthram Swami. The

limitations of deep learning in adversarial settings. In Secu-

rity and Privacy (EuroS&P), 2016 IEEE European Sympo-

sium on, pages 372–387. IEEE, 2016.

[9] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classifica-

tion and segmentation. Proc. Computer Vision and Pattern

Recognition (CVPR), IEEE, 1(2):4, 2017.

[10] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in Neural Informa-

tion Processing Systems, pages 5099–5108, 2017.

[11] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast

point feature histograms (fpfh) for 3d registration. In 2009

IEEE International Conference on Robotics and Automation,

pages 3212–3217. IEEE, 2009.

[12] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mi-

hai Dolha, and Michael Beetz. Towards 3d point cloud based

object maps for household environments. Robotics and Au-

tonomous Systems, 56(11):927–941, 2008.

[13] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.

Deep inside convolutional networks: Visualising image

classification models and saliency maps. arXiv preprint

arXiv:1312.6034, 2013.

[14] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas

Brox, and Martin Riedmiller. Striving for simplicity: The

all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

[15] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik

Learned-Miller. Multi-view convolutional neural networks

for 3d shape recognition. In Proceedings of the IEEE in-

ternational conference on computer vision, pages 945–953,

2015.

[16] Sebastian Thrun, Michael Montemerlo, and Andrei Aron.

Probabilistic terrain analysis for high-speed desert driving.

In Robotics: Science and Systems, pages 16–19, 2006.

[17] George Vosselman, Ben GH Gorte, George Sithole, and

Tahir Rabbani. Recognising structure in laser scanner

point clouds. International archives of photogrammetry, re-

mote sensing and spatial information sciences, 46(8):33–38,

2004.

[18] Chu Wang, Marcello Pelillo, and Kaleem Siddiqi. Dominant

set clustering and pooling for multi-view 3d object recogni-

tion. In Proceedings of British Machine Vision Conference

(BMVC), volume 12, 2017.

[19] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. arXiv preprint

arXiv:1801.07829, 2018.

[20] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1912–1920, 2015.

[21] Tan Yu, Jingjing Meng, and Junsong Yuan. Multi-view har-

monized bilinear network for 3d object recognition. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 186–194, 2018.

1606


