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Abstract

This paper solves the Sparse Photometric stereo through

Lighting Interpolation and Normal Estimation using a gen-

erative Network (SPLINE-Net). SPLINE-Net contains a

lighting interpolation network to generate dense lighting

observations given a sparse set of lights as inputs followed

by a normal estimation network to estimate surface nor-

mals. Both networks are jointly constrained by the pro-

posed symmetric and asymmetric loss functions to enforce

isotropic constrain and perform outlier rejection of global

illumination effects. SPLINE-Net is verified to outperform

existing methods for photometric stereo of general BRDFs

by using only ten images of different lights instead of using

nearly one hundred images.

1. Introduction

The problem of photometric stereo [35] inversely solves

for the radiometric image formation model to recover sur-

face normals from different appearances of objects under

various lighting conditions with a fixed camera view. The

classic method [35] assumes an ideal Lambertian image for-

mation model without global illumination effects (such as

inter-reflection and shadows), which deviates from the real-

istic scenario and prevents photometric stereo from being

able to handle real-world objects. To make photometric

stereo practical, the major difficulties lie in dealing with

objects of general reflectance and global illumination ef-

fects. These can be achieved by either exploring analyti-

cal Bidirectional Reflectance Distribution Function (BRDF)

representations (e.g., [14]) and general BRDF properties

(e.g., [30]) to model non-Lambertian interactions of lighting

and surface normal or suppressing global effects by treat-

ing them as outliers (e.g., [37]). Recently, deep learning
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Figure 1. An illustration of observation maps corresponding to two

surface normals (a brief introduction of observation maps can be

found in Section 3.2 and [18]). (a) Two surface normals and their

observation maps with dense lights, (b) sparse observation maps

with 10 order-agnostic lights, (c) dense observation maps gener-

ated by our SPLINE-Net given sparse observation maps in (b) as

inputs, and (d) ground truth of dense observation maps with 1000

lights. We use v = (0, 0, 1)⊤ to represent viewing direction and

n to represent surface normal in this paper.

based approaches are introduced to solve these difficulties

by implicitly learning both the image formation process and

global illumination effects from training data (e.g., [9, 18]).

According to a comprehensive benchmark evaluation

[28] (including quantitative results for representative meth-

ods published before 2016) and the additional results re-

ported in most recent works [9, 18, 40], a moderately dense

lighting distribution (e.g., around 100 directional lights ran-

domly sampled from the visible hemisphere) is required

to achieve reasonably good normal estimation for objects

with general materials (e.g., angular error around 10◦ for a

shiny plastic). This is because multi-illumination observa-

tions under a dense set of lights are required to fit the pa-

rameters in analytic BRDF models [14], to analyze general

BRDF properties [30], to observe sufficient inliers and out-

liers [37], and to ensure the convergence of training neural

networks [9]. How to achieve high accuracy in normal es-

timation for objects given general BRDFs with a sparse set

of lights (e.g., 10), which we call sparse photometric stereo

in this paper, is still an open yet challenging problem [28].
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In this paper, we propose to solve Sparse Photometric

stereo through Lighting Interpolation and Normal Estima-

tion Networks, namely SPLINE-Net. The SPLINE-Net is

composed of two sub-networks: the Lighting Interpolation

Network (LI-Net) to generate dense observations given a

sparse set of input lights and the Normal Estimation Net-

work (NE-Net) to estimate surface normal from the gener-

ated dense observations. LI-Net takes advantage of a learn-

able representation for dense lighting called observation

map [18], and we propose to deal with sparse observation

maps as damaged paintings and generate dense observation

through inpainting (as shown in Figure 11). NE-Net then

follows LI-Net to infer surface normal guided by dense ob-

servation maps. To accurately guide the lighting interpola-

tion and normal estimation specially under the photometric

stereo context, we propose a symmetric loss and an asym-

metric loss to explicitly consider general BRDF properties

and outlier rejections. More specifically, the symmetric loss

is derived according to the property of isotropy for general

reflectance, which constrains pixel values on a generated

observation map to be symmetrically distributed w.r.t. an

axis determined by the corresponding surface normal. The

asymmetric loss is derived from contaminated observation

maps with global illumination effects, which constrains the

difference between values of symmetrically distributed pix-

els to be equal to a non-zero amount. SPINE-Net is vali-

dated to achieve superior normal estimation accuracy given

a small number of input images (e.g., 10) comparing to

state-of-the-art methods using a much larger number (e.g.,

96), which greatly relieves data capture and lighting cali-

bration labor for photometric stereo with general BRDFs.

The contributions of this paper are two-fold:

• We propose the SPLINE-Net to address the problem of

photometric stereo with general BRDFs using a small

number of images through an integrated learning pro-

cedure of lighting interpolation and normal estimation.

• We show how symmetric and asymmetric loss func-

tions can be formulated to facilitate the learning

of lighting interpolation and normal estimation with

isotropy constraint and outlier rejection of global il-

lumination effects considered.

2. Related Works

In this section, we briefly review traditional methods and

deep learning based methods for non-Lambertian photomet-

ric stereo with general materials and known lightings. For

other generalizations of photometric stereo, we refer read-

ers to survey papers in [15, 1, 28].

1Note that holes in ground truth of observation maps are produced by

the discrete projection from a limited number of lights to a grid with limited

resolution (e.g., from 1000 lighting directions to observation maps with

size 32× 32 in this figure).

Traditional methods. The classical method [35] for the

problem of photometric stereo is to assume a Lamber-

tian surface reflectance and recover surface normals pixel-

wisely. Such an assumption is too strong to provide an ac-

curate recovery in real-world due to densely observed non-

Lambertian reflectance caused by materials with diverse re-

flectance and global illumination effects. In order to ad-

dress non-Lambertian reflectance from broad classes of ma-

terials, modern algorithms attempt to use a mathematically

tractable form to describe BRDFs. Analytic models ex-

ploit all available data to fit a nonlinear analytic BRDF, such

as Blinn-Phong model [33], Torrance-Sparrow model [13],

Ward model and its variations [12, 14, 2], specular spike

model [11, 38], and microfacet BRDF model [10]. Empiri-

cal models consider general properties of a BRDF, such as

isotropy, monotonicity. Some basic derivations for isotropy

BRDFs are provided in [4, 31, 7]. Excellent performance

has been achieved by methods based on empirical mod-

els, including combining isotropy and monotonicity with

visibility constraint [16], using isotropic constraint for the

estimation of elevation angle [3, 29, 22], and approximat-

ing isotropic BRDFs by bivariate functions [25, 19, 30].

However, most of these methods based on analytic mod-

els and empirical models are pixel-wise so that they cannot

explicitly consider global illumination effects such as inter-

reflection and cast shadows. Outlier rejection based meth-

ods are developed to suppress global illumination effects by

considering them as outliers. Earlier works select a subset

of Lambertian images from inputs for the accurate recovery

of surface normals [24, 34, 23, 39, 37]. Recent methods ap-

ply robust analysis by assuming non-Lambertian reflectance

is sparse [36, 20]. However, these methods still rely on the

existence of a dominant Lambertian reflectance component.

Deep learning based methods. Recently, with the great

success in both high-level and low-level computer vision

tasks achieved by neural networks, researchers have intro-

duced deep learning based methods to solve the problem of

photometric stereo. Instead of explicitly modeling image

formation process and global illumination effects as in tra-

ditional methods, deep learning based methods attempt to

learn such information from data. DPSN [26] is the first at-

tempt and it uses a deep fully-connect network to regress

surface normals from given observations captured under

pre-defined lightings in a supervised manner. However,

pre-definition of lightings limits its practicality for photo-

metric stereo where the number of inputs often varies. PS-

FCN [9] is proposed to address such a limitation and handle

images under various lightings in an order-agnostic man-

ner by aggregating features of inputs using the max-pooling

operation. CNN-PS [18] is another work to accept order-

agnostic inputs by introducing observation map, which is

a fixed shape representation invariant to inputs. Besides

neural networks trained in a supervised manner, Taniai and
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Figure 2. The framework of the proposed SPLINE-Net. The lighting interpolation network generates dense observation maps D given

sparse observation maps S as inputs. The normal estimation network estimates surface normals n given S and D as inputs. Both networks

are trained in a supervised manner where ground truth of observation maps Dgt and surface normals ngt are known.

Maehara [32] presented an unsupervised learning frame-

work where surface normals and BRDFs are recovered by

minimizing a reconstruction loss between inputs and im-

ages synthesized based on a rendering equation.

Only a few earlier works address the problem of photo-

metric stereo with general reflectance using a small num-

ber of images in the literature (e.g., analytic model based

method [14], shadow analysis based method [6]). Our pa-

per revisits this problem due to its low costs for the labor of

data capture and lighting calibration.

3. The Proposed SPLINE-Net

In this section, we introduce our solution to the problem

of photometric stereo with general reflectance using a small

number of images. We first present the framework of our

SPLINE-Net in Section 3.1. Then we detail the symmetric

loss and the asymmetric loss in Section 3.2.

3.1. Framework

As illustrated in Figure 2, our SPLINE-Net, which con-

sists of a Lighting Interpolation Network (LI-Net) and a

Normal Estimation Network (NE-Net), is optimized in a su-

pervised manner. LI-Net (represented as a regression func-

tion f ) interpolates dense observation maps D from sparse

observation maps S (i.e., sparse sets of lights),

f : S → D. (1)

Such densely interpolated observation maps D are then con-

catenated to original inputs S and help estimate surface nor-

mals n in NE-Net (represented as a regression function g)

g : S,D → n. (2)

LI-Net and NE-Net are trained in an alternating itera-

tively manner, where fixing one network when optimizing

the other. Specifically, we update LI-Net once after updat-

ing NE-Net five times. The loss function for each network

composes of a reconstruction loss, a symmetric loss, and an

asymmetric loss.

Lighting Interpolation Network. Inspired by a recent

work [8] that suggests inferring lighting information as in-

termediate results can benefit the estimation of the surface

normal, we design the LI-Net to generate observation maps

regarding dense lighting directions. The basic idea is to in-

paint sparse observation maps and obtain dense ones, based

on learnable properties (e.g., spatial continuity). LI-Net is

designed using an encoder-decoder structure due to its ex-

cellent image generation capacity [21, 41]. The loss func-

tion of LI-Net Lf is formulated as,

Lf = Lrec
f + λsL

s
f + λaL

a
f . (3)

The reconstruction loss Lrec
f is defined as2,

Lrec
f = arccos(n⊤

ngt)+|D−Dgt|1+|Ms◦(D−Dgt)|1, (4)

where D = f(S),n = g(S,D), ngt and Dgt are ground

truth of a surface normal and its corresponding dense ob-

servation map, respectively, Ms is a binary mask indicating

positions of non-zero value of S, ◦ represents element-wise

multiplication. Ls
f and La

f are our symmetric and asymmet-

ric loss to be introduced in Section 3.2.

Normal Estimation Net. We use the same architecture as

that in [18] (a variation of DenseNet [17]) for NE-Net due

to its excellent capacity to model the relation between ob-

servation maps and surface normals. The loss function of

NE-Net is formulated as,

Lg = Lrec
g + λsL

s
g + λaL

a
g , (5)

2We experimentally find L1 and L2 distances provide similar results

and here we compute reconstruction loss Lrec
f using L1 distance.
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Figure 3. An illustration of an orthogonal projection from a hemi-

sphere surface to its base (gray) and an interpretation of isotropy

for a dense observation map. (a) Front view: l1 and l2 repre-

sent two lighting directions which are symmetric w.r.t. the plane

spanned by viewing direction v and surface normal n (orange

plane). (b) Top view: irradiance values (orange dots), which are

projected by l1 and l2, are numerically equal due to isotropy.

where Ls
g and La

g are symmetric loss and asymmetric loss,

and reconstruction loss is,

Lrec
g = arccos(n⊤

ngt). (6)

3.2. Symmetric Loss and Asymmetric Loss

In this section, we first revisit the observation map

from [18]. Then, we further investigate its characteristics

by considering isotropy and global illumination effects. Fi-

nally, we present symmetric and asymmetric loss functions.

Observation maps. As introduced in [18], each point on

a surface normal map corresponds to an observation map

(as shown in Figure 3 (a)). Elements on such a map de-

scribe observed irradiance values under different lighting

directions. These lighting directions are mapped to posi-

tions of elements, which is an orthogonal projection. As

illustrated in Figure 3 (a), a dense observation map can be

regarded as generated by projecting a hemisphere surface to

its base plane, where each point on the hemisphere surface

represents a direction of lighting and its projecting value

describes an observed irradiance value under such a light.

Such a projecting relation motivates us to introduce isotropy

to narrow the solution space of our SPLINE-Net.

Isotropic BRDFs and global illumination effects.

Isotropy BRDFs ρ(n⊤
ℓ,n⊤

v,v⊤
ℓ) for general materials

have the property that reflectance values are numerically

equal if lighting directions are symmetric about the plane

spanned by v and n as shown in Figure 3 (a). Consider-

ing the relation of the one-to-one mapping between light-

ing directions and positions of observed irradiance values,

these values are numerically equal if their positions are

symmetrically distributed regarding to the axis projected

by surface normals in observation maps, as shown by Fig-

ure 3 (b). However, such symmetric patterns can be de-

stroyed by global illumination effects because observation

maps are pixel-wisely generated. Therefore, unpredictable

shapes produce cast shadows or inter-reflection which can

Figure 4. Six dense observation maps of data BUDDHA from CY-

CLESPS [18] with (a) isotropic reflectance, (b) cast shadows, and

(c) inter-reflection. Red-dotted lines indicate directions of their

corresponding surface normals.

lead to sudden changes of irradiance values on observa-

tion maps. Figure 4 illustrates examples of isotropy, cast

shadow, inter-reflection.

Symmetric and asymmetric loss functions. In order to

further narrow solution spaces for the lighting interpolation

of dense observation maps to facilitate accurate estimation

of the surface normal, we propose symmetric and asymmet-

ric loss functions to exploit above observations for LI-Net

and NE-Net. More specifically, given a dense observation

map D and its corresponding surface normal n, the sym-

metric loss forces the isotropic properties of general BRDFs

which are valid on various real-world reflectance. That is,

it constrains irradiance values, which are symmetrically dis-

tributed w.r.t. an axis determined by its surface normal (red-

dotted lines in Figure 4), to be numerically equal,

Ls = Ls(D,n) = |D− r(D,n)|1, (7)

where function r(D,n) mirrors the observation map D

w.r.t. the axis determined by n. Different from symmet-

ric loss, the asymmetric loss models the asymmetric pattern

brought by outliers such as global illuminations. It con-

strains the difference between values of symmetrically dis-

tributed pixels to be equal to a non-zero amount η,

La = La(D,n) =
∣

∣|D− r(D),n|1 − η
∣

∣

1

+ λc

∣

∣|p(D)− r(p(D),n)|1 − η
∣

∣

1
,

(8)

where λc is a weight parameter, function p(·) performs an

average pooling operation with stride of 2 to ensure spa-

tial continuity of observation maps. Empirically, we set

η = 1, λc = 50 for all experiments. Both of Ls and La

aim to better fit observations of symmetric and asymmet-

ric patterns (as illustrated in Figure 4) during training. We

integrate symmetric and the asymmetric loss functions to

optimize LI-Net by setting,

Ls
f = Ls(D,ngt),

La
f = La(D,ngt),

(9)
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Table 1. Quantitative comparisons in terms of angular error on CYCLESPS-TEST dataset [18]. Results of three shapes (PAPERBOWL,

SPHERE, TURTLE) with metallic (M) and specular (S) materials are reported. Note that all results are averaged over 100 random trials. For

subset L17 (left) and subset L305 (right), results over 6 different data are averaged (Avg.) for each method.
PAPERBOWL SPHERE TURTLE

Avg.
PAPERBOWL SPHERE TURTLE

Avg.
M S M S M S M S M S M S

LS [35] 41.47 35.09 18.85 10.76 27.74 19.89 25.63 43.09 37.36 20.19 12.79 28.51 21.76 27.28

IW12 [20] 46.68 33.86 16.77 2.23 31.83 12.65 24.00 48.01 37.10 21.93 3.19 34.91 16.32 26.91

ST14 [30] 42.94 35.13 22.58 4.18 34.30 17.01 26.02 44.44 37.35 25.41 4.89 36.01 19.06 27.86

IA14 [19] 48.25 43.51 18.62 11.71 30.59 23.55 29.37 49.01 45.37 21.52 13.63 32.82 26.27 31.44

CNN-PS [18] 37.14 23.40 17.44 6.99 22.86 10.74 19.76 38.45 26.90 18.25 9.04 23.91 14.36 21.82

SPLINE-Net 29.87 18.65 6.59 3.82 15.07 7.85 13.64 33.99 23.15 9.21 6.69 17.35 12.01 17.07

and to optimize NE-Net by setting,

Ls
g = Ls(Dgt,n),

La
g = La(Dgt,n).

(10)

We empirically set λs = 2 × 10−2, λa = 2 × 10−5 due to

the fact that global illumination effects are always observed

for small regions of real-world objects.

4. Experiments

Settings and implementation details. A recent survey

work [28] implies that photometric stereo with general

BRDFs shows significant performance drop if only around

10 images are provided. Therefore, we define 10 as the

number of sparse lights and use 10 randomly sampled lights

as inputs for both training and testing. The resolution of our

observation map is set to 32 × 32 and the batch size is set

to 128, which are the same as those in [18], for easier com-

parisons. Adam optimizer is used to optimize our networks

with parameters β1 = 0.9 and β2 = 0.999.

Datasets and evaluation. We use CYCLESPS data pro-

vided by [18] as our training data. There are 45 training data

including 15 shapes with 3 categories of reflectance (dif-

fuse, metallic, and specular). Our testing sets are built

based on public evaluation datasets. To cover as many light-

ing conditions as possible, we construct 100 instances for

each testing data from these datasets and each instance con-

tains images illuminated under 10 randomly selected lights.

Quantitative results are averaged of mean angular errors and

metric used in the paper is the angular error in degrees (unit

is omitted in all tables).

Compared methods. We compare with five methods, in-

cluding the least squares based Lambertian photometric

stereo method LS [35], an outlier rejection based method

IW12 [20], two state-of-the-art methods exploring general

BRDF properties ST14 [30] and IA14 [19], and a deep

learning based method CNN-PS [18]. We re-train CNN-

PS [18] by taking 10 observed irradiance values as inputs.3

3Considering the overall quantitative results of CNN-PS [18] with

default settings (taking 50 observed irradiance values as inputs) on

CYCLESPS-TEST [18] (L17: 31.08◦ and L305: 34.90◦) and DILI-

GENT [28] (14.10◦), we report results re-trained by our setting. PS-

FCN [9] is not compared due to different requirements of training data.

4.1. Synthetic Data

CYCLESPS-TEST is a testing dataset from [18], which

consists of two subsets (denoted as ‘L17’ and ‘L305’).

Each of subsets contains three shapes and these shapes are

rendered by reflectance of ‘metallic’ and ‘specular’.4 For

all the 12 data, we construct 100 instances (each with 10

randomly selected images) to build our testing set.

As can be observed from Table 1, metallic materials

are more challenging as compared with specular materials.

Even for the simple shape (SPHERE) containing few global

illumination effects, all methods fail to estimate accurate

surface normals for metallic materials. The performance

advantage of our method is superior, i.e., the overall perfor-

mance is much better than the second best one. Interest-

ingly, two traditional methods, IW12 [20] and ST14 [30],

outperform other methods on data SPHERE with specular

materials. However, their performance degrades for com-

plex shapes (PAPERBOWL and TURTLE), while our method

consistently achieves the best performance.

Visual comparisons in Figure 5 further validates the ef-

fectiveness of our method. It deals with specular reflectance

more robustly (SPHERE) and consistently produces the best

estimation for most regions on a more complex shape (PA-

PERBOWL). The superior performance shows the effective-

ness of our method to address the problem of photometric

stereo with general BRDFs using a small number of images.

4.2. Real Data

The benchmark dataset DILIGENT [28] consists of 10

real data. Similarly, for each of these 10 data, we construct

100 instances, each of which contains 10 randomly selected

images, to build the testing set.

As can be found from quantitative results in Table 2,

our method demonstrates obvious superiority for most data

except for BALL and POT1, which get similar or worse

results as compared to two traditional methods LS [35]

and IW12 [20]. The reason is these two data are diffuse-

dominant so that traditional methods with Lambertian as-

sumption fit well even for a small number of observed ir-

radiance values. However, our data-driven approach con-

siders general reflectance and global illumination effects

4‘Metallic’ and ‘specular’ reflectance are generated by controlling 11

parameters from Disney’s principled BSDF [5], which are detailed in [18].
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Figure 5. Comparisons of normal maps and angular error maps (in degrees) on SPHERE with specular materials (top) and PAPERBOWL with

metallic materials (bottom) from L17, CYCLESPS-TEST [18].

Table 2. Quantitative comparisons in terms of angular error on DILIGENT dataset [28]. Note that all results are averaged over 100 random

trials. Results over 10 different data are averaged (Avg.) for each method.
Methods BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING Avg.

LS [35] 4.41 9.05 15.62 9.03 26.42 19.59 31.31 9.46 15.37 20.16 16.04

IW12 [20] 3.33 7.62 13.36 8.13 25.01 18.01 29.37 8.73 14.60 16.63 14.48

ST14 [30] 5.24 9.39 15.79 9.34 26.08 19.71 30.85 9.76 15.57 20.08 16.18

IA14 [19] 12.94 16.40 20.63 15.53 18.08 18.73 32.50 6.28 14.31 24.99 19.04

CNN-PS [18] 17.86 13.08 19.25 15.67 19.28 21.56 21.52 16.95 18.52 21.30 18.50

Nets w/o loss 6.06 7.01 10.69 8.38 10.39 11.37 19.02 9.42 12.34 16.18 11.09

Nets with Ls 5.04 5.89 10.11 7.79 9.38 10.84 19.03 8.91 11.47 15.87 10.43

SPLINE-Net 4.96 5.99 10.07 7.52 8.80 10.43 19.05 8.77 11.79 16.13 10.35

evenly during model optimization and hence may under-

fit Lambertian surfaces with simple shapes. Unlike excel-

lent performance on synthetic data, CNN-PS [18] achieve

less accuracy on real data. We think that the reason is

mainly due to the problem of overfitting during training,

i.e., synthetic data for testing are constructed in a similar

manner as training data. Our method achieves the best ac-

curacy for most of data, such as COW (metallic paint materi-

als) and GOBLET, HARVEST (most of regions contain inter-

reflection or cast shadows).

Visual comparisons on data COW and POT1 are shown

in Figure 6. Our method provides much more accurate re-

sults for metallic materials (COW) which is consistent with

the results of synthetic data (Table 1). Most of the com-

pared methods and our method achieve accurate estimation

for center regions of POT1, however, our method gets a sig-

nificant advantage for boundaries (e.g., regions of spout and

kettle-holder) containing inter-reflection or cast shadows.

Table 3. The performance of SPLINE-Net on DILIGENT [28]

against different standard deviations (σ) of Gaussian noise (µ = 0)

added to lighting directions of inputs.
σ (in degrees) 0 (no noise) 2 4 6 8

Performance 10.35 11.21 12.14 13.76 15.94

4.3. Robustness against Noise

Lights. It is inevitable to introduce errors during light-

ing calibration in practice. To show the robustness of our

method against errors in light source directions, we manu-

ally add noise to lights in DILIGENT [28] and test the quan-

titative performance regarding different levels of noise. As

can be observed in Table 3, our method is able to produce

accurate results when the noise is small (σ = 2). However,

its performance drops with higher levels of noise. The ro-

bustness of our method to small noise is mainly due to our

training data, i.e., small random noise is added to each light

when creating training dataset as introduced in [18].
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Figure 6. Comparisons of normal maps and angular error maps (in degrees) on COW (top) and POT1 (bottom) from DILIGENT [28].

Figure 7. Left: a normal map and its four points. Right: four pairs

of observation maps (inputs and their ground truth) corresponding

to points on the left; numbers below are errors of estimated surface

normal given corresponding inputs. Zoom in for a better view.

Inputs. Because of the sparsity of inputs, the performance

of our method is affected by inputs due to outliers resulting

from inter-reflection and shadows. Figure 7 (right) illus-

trates this consideration. As can be found, when the num-

ber of outliers of inputs increases (the number of dark dots

in inputs increases), the error becomes larger accordingly.

4.4. Ablation Studies

In this section, we perform ablation studies to further

investigate the contribution of important components in

SPLINE-Net. Considering the same network structure of

NE-Net and that in CNN-PS [18] and the fact that our

SPLINE-Net is composed of LI-Net and NE-Net, we com-

pare our SPLINE-Net without symmetric loss or asymmet-

ric loss (denoted as ‘Nets w/o loss’) with CNN-PS [18] to

validate the effectiveness of LI-Net. By comparing the per-

formance of Nets w/o loss with that with an additional sym-

metric loss (denoted as ‘Nets with Ls’), we validate the ef-

fectiveness of enforcing isotropy property. The comparison

performed between Nets with Ls and SPLINE-Net is to ver-

ify the effectiveness of the consideration of global illumina-

tion effects. The same settings and the same testing set as

those in Section 4.2 is used for evaluation in this section.

The quantitative performance are reported in Table 2. As

can be observed, Nets w/o loss significantly outperforms

Figure 8. An illustration of observation maps. From left to right

columns: inputs (10 order-agnostic lights), maps generated by

SPLINE-Net w/o our loss, by SPLINE-Net with symmetric loss

Ls, by SPLINE-Net, and ground truth (1000 lights).

CNN-PS [18], which verifies the effectiveness of using LI-

Net to help the estimation of surface normals and prevent

overfitting of directly regressing sparse observation maps to

surface normals. The proposed symmetric loss and asym-

metric loss help improve overall performance.

An illustration of observation maps generated by our

method using different settings is displayed in Figure 8. Our

methods (Nets with Ls and SPLINE-Net) successfully in-

paint regions damaged by global illumination effects and it

tends to produce smooth ones even if the ground truth is not

smooth. Visual comparisons in Figure 9 intuitively shows

the advantages of each component of our method to facili-

tate accurate estimation of surface normals.

5. Conclusion

This paper proposes SPLINE-Net to address the problem

of photometric stereo with general reflectance and global il-

lumination effects using a small number of images. The ba-

sic idea of SPLINE-Net is to generate dense lighting obser-

vations from a sparse set of lights to guide the estimation of

surface normals. The proposed SPLINE-Net is further con-

strained by the proposed symmetric and asymmetric loss
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Figure 9. Comparisons of normal maps and angular error maps (in degrees) on GOBLET (top) and READING (bottom) from DILIGENT [28].

Figure 10. Comparisons of normal maps on diffuse-dominant data BUDDHA (top) and SHEEP (bottom).

functions to enforce isotropic constrain and perform outlier

rejection of global illumination effects.

Limitations. Interestingly, even though deep learning

based methods achieve superior performance for non-

Lambertian reflectance, their performance drops for diffuse-

dominant surfaces that can be well fitted by traditional

methods with Lambertian assumption. Figure 10 illustrates

results of four traditional methods and three deep learning

based methods (including PS-FCN [9]) on two real data5

with diffuse surfaces. Such results, which are consistent

with those of BALL and POT1 in Table 2, indicate the limi-

tation of deep learning methods for diffuse surfaces. To ex-

5BUDDHA is courtesy of Dan Goldman and Steven Seitz (found from

http://www.cs.washington.edu/education/courses/

csep576/05wi//projects/project3). SHEEP is from [27].

plicitly consider diffuse surface at the same time maintain

the performance advantage on non-Lambertian surfaces for

deep learning based methods can be one of further works.
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