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Figure 1: Our algorithm takes a portrait image and a target lighting as input and generates a new portrait image.

Abstract

Conventional physically-based methods for relighting

portrait images need to solve an inverse rendering prob-

lem, estimating face geometry, reflectance and lighting.

However, the inaccurate estimation of face components can

cause strong artifacts in relighting, leading to unsatisfac-

tory results. In this work, we apply a physically-based por-

trait relighting method to generate a large scale, high qual-

ity, “in the wild” portrait relighting dataset (DPR). A deep

Convolutional Neural Network (CNN) is then trained using

this dataset to generate a relit portrait image by using a

source image and a target lighting as input. The training

procedure regularizes the generated results, removing the

artifacts caused by physically-based relighting methods. A

GAN loss is further applied to improve the quality of the re-

lit portrait image. Our trained network can relight portrait

images with resolutions as high as 1024× 1024. We evalu-

ate the proposed method on the proposed DPR datset, Flickr

portrait dataset and Multi-PIE dataset both qualitatively

and quantitatively. Our experiments demonstrate that the

proposed method achieves state-of-the-art results. Please

refer to https://zhhoper.github.io/dpr.html

for dataset and code.

∗Hao Zhou is currently at Amazon AWS.

1. Introduction

The goal of this work is to design an automatic single-

image portrait relighting algorithm, which takes a portrait

image and a target lighting as input and generates a new

portrait image under the target lighting condition. There

are physically-based relighting methods that explicitly re-

construct the face geometry, reflectance, and lighting and

then re-render this reconstruction using a novel lighting

[3, 31, 7, 26, 29, 22]. However, single image face recon-

struction is still an open problem, and even the state-of-the-

art methods have significant errors, e.g., inaccurate estima-

tion of face geometry and reflectance properties. These er-

rors can propagate into the relighting and lead to poor re-

sults. As a result, while these relighting methods are gen-

erally good at capturing lighting variations, they may con-

tain artifacts that prevent them from looking realistic. In

this work, we leverage this property: we use a physically-

based relighting method to generate a large-scale training

dataset, and then use it to train a generative network to re-

produce them while imposing an adversarial loss based only

on real photographs. The supervised reconstruction loss al-

lows the network to learn how to relight, while the adversar-

ial loss ensures that the results are on the manifold of real

photographs and do not have the errors from the physically-

based relighting method.

We first propose a ratio image-based (RI-based) [23] ren-

dering algorithm to generate a large scale, high resolution,

“in the wild” deep portrait relighting dataset (DPR). In this
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algorithm, an image under a target lighting condition can

be rendered by multiplying the source image with the ratio

of the target shading and source shading. Face normals and

Spherical Harmonic (SH) lighting of the source image are

estimated using 3DDFA [11] and SfSNet [22] respectively.

A novel As-Rigid-As-Possible-based (ARAP-based) [27]

warping method is then proposed to accurately align the es-

timated face normal to the portrait image. SH [5, 21] light-

ing is then randomly sampled from a lighting prior dataset

[7] to relight the portrait image. We apply our proposed

RI-based algorithm to the high resolution CelebA dataset

(CelebA-HQ) [12] and generate 138,135 relit 1024 × 1024
portrait images with known SH lighting.

An hourglass network [19] is trained using the proposed

DPR dataset for the portrait relighting task. It takes a source

image and a target lighting as input and generates the relit

image. It also predicts the SH lighting for the source image

using the features from the bottleneck layer to disentangle

lighting information from the source image. We observe

that the skip connections in the hourglass network prevent

the bottleneck layer from learning meaningful facial infor-

mation. Therefore, we propose a simple skip training strat-

egy to enforce facial information in the bottleneck layer,

which improves the quality of the generated images. Our

network is first trained on 512 × 512 images and then fine

tuned on 1024 × 1024 images. To the best of our knowl-

edge, our proposed method can generate relit images at

the highest resolution among all deep learning-based algo-

rithms. We test our method qualitatively on our proposed

DPR dataset and the Flickr portrait dataset [24] and quanti-

tatively on the Multi-PIE dataset [9]. All these experiments

demonstrate that the proposed method can achieve state-of-

the-art results both qualitatively and quantitatively.

To reiterate, the contributions of our work are three-

fold. First, we propose a ratio image-based algorithm to

generate a large scale, high resolution “in the wild” deep

portrait relighting dataset. A novel As-Rigid-As-Possible-

based warping method is proposed to align the face normals

accurately with the face image. Second, we design an auto-

matic single-image portrait relighting algorithm that takes

a source image and target SH lighting as input and gen-

erates a face image under the target lighting. Third, our

trained network can generate 1024× 1024 relit portrait im-

ages, which, to the best of our knowledge, is the highest

resolution among all deep learning-based portrait relighting

methods.

2. Related Work

Quotient Images for Portrait Relighting Shashua and

Riklin-Raviv [23] proposed to use the quotient (ratio) im-

age for portrait relighting. They require multiple reference

images as input and assume all these images are in frontal

view. Stoschek extended the ratio image to arbitrary pose

by aligning facial landmarks of the source and target image

[28]. Wen et al. proposed to render a new image using the

ratio of the radiance environment map [32]. [20] proposed

to apply ratio images to real time portrait illumination edit-

ing. However, their method requires capturing images of a

static subject using a Light Stage apparatus. Due to the suc-

cess of ratio images in portrait relighting applications, we

apply this technique in our data preparation pipeline.

Inverse Rendering of Portrait Images Starting with the

3D Morphable Model (3DMM) [6], many inverse ren-

dering methods for portrait images have been proposed

[31, 3, 7, 26, 30, 8, 22, 29, 33]. These methods decom-

pose a portrait image into reflectance, geometry and light-

ing. A relit portrait image can then be rendered by changing

the lighting and keeping the geometry and reflectance fixed.

[31, 3, 7] are optimization-based methods, and are time con-

suming. [26, 30, 8, 29, 22] are all deep learning-based meth-

ods. Compared with optimization-based methods, they are

more time efficient. However, due to the complexity of in-

verse rendering, all these methods can only work on low

resolution images. On the contrary, our proposed method,

focusing on portrait relighting, can be designed to generate

very high resolution (1024 × 1024) images. Yamaguchi et

al. [33] recently proposed a deep learning-based method to

estimate high resolution face reflectance and normal. How-

ever, their method cannot relight the entire face image and

leave out the eye, teeth and hair regions

Photo and Portrait Style Transfer Photo and portrait style

transfer [18, 16, 24, 25] takes a source image and a refer-

ence image as input and transfers the style of the reference

image to the source image. Since lighting can be treated as

a kind of style, these methods can also be applied in portrait

relighting applications. To generate a high quality portrait

image, these methods usually require a high quality, non-

occluded reference image that contains the desired lighting

with a different subject as input, which limits the possible

application scenarios. Different from these methods, our

proposed method is a single-image-based algorithm, and

does not require a reference lighting image, thus making

it more general.

3. Deep Portrait Relighting Dataset

In this section, we introduce the Deep Portrait Relight-

ing (DPR) dataset, which is a large scale, high resolu-

tion, “in the wild” image dataset generated for portrait re-

lighting purposes. DPR is build on the high resolution

CelebA dataset (CelebA-HQ) published by [12], which con-

tains 30,000 face images from the CelebA [17] dataset with

1024 × 1024 resolution. We remove images on which the

landmark detector [14] fails to detect landmarks, resulting

in 27,627 images in the DPR dataset. For each of these im-

ages, we randomly select 5 lighting conditions from a light-

ing prior dataset [7] to generate relit face images, leading to
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Figure 2: ARAP based normal refinement.

(a) (b) (c)

Figure 3: We show the original face overlaid with normal

estimated by 3DDFA [11] in (a) and our refined normal in

(b). The second row of (a) and (b) show the right eye region.

(c) shows the final normal map.

138,135 relit images.

3.1. Ratio Imagebased Face Relighting

We proposed a RI-based algorithm for data generation.

To render a face image I, we need the reflectance R, normal

N and lighting L. We further assume that the reflectance

of human face is Lambertian. A face image I can thus be

represented as:

I = R⊙ f(N,L), (1)

where ⊙ represents the element-wise product and f is the

Lambertian shading function. To relight a face image, we

apply the ratio image trick proposed in [23]. According to

Eq 1, the same face under two different lighting conditions

L and L
∗ can be represented as I = R ⊙ f(N,L) and

I
∗ = R⊙ f(N,L∗). We know that

I
∗ = R⊙ f(N,L∗) (2)

=
R⊙ f(N,L∗)

R⊙ f(N,L)
(R⊙ f(N,L))

=
f(N,L∗)

f(N,L)
I.

As a result, a portrait image I
∗ under lighting L

∗ can be

generated given portrait image I and its normal and lighting.

Figure 4: First column is the original image, second to

fourth columns in the first row are relit images generated

by our rendering pipeline, the second row shows the half

sphere rendered using the corresponding SH lighting.

3.2. Normal Estimation

There are many research studies targeted at estimating

normals from portrait images. We use 3DDFA [34] (Code

provided by [11]) since it outputs the shape parameters of

a 3DMM, which can be used to generate portrait normal

images at arbitrary resolution. Although 3DDFA takes fa-

cial expression into consideration while fitting 3DMM, the

normals estimated still cannot be acccurately aligned with

the the portrait image. We believe this is due to the limited

power of the 3DMM to model variations of face geometry,

as 3DMM is built on a limited number of faces. To avoid ar-

tifacts in the relit images, we propose aligning the estimated

normals with the portrait image using an ARAP-based nor-

mal refinement algorithm.

3.2.1 ARAP-Based Normal Refinement

Figure 2 illustrates the procedure of the ARAP based nor-

mal refinement algorithm. Using the 3DMM parameteres

predicted by 3DDFA [11], a mesh can be created. The “re-

flectance” image of the portrait can be obtained by project-

ing the generic reflectance map of the 3DMM model onto

this mesh. We then apply [14] to detect 68 facial land-

marks on this “reflectance” image. These 68 detected fa-

cial landmarks, together with evenly sampled 198 points

along the boundaries of the image are combined as “anchor

points” and are used to create a triangle mesh on the “re-

flectance” image using Delauny Triangulation. Similarly,

a triangle mesh is created for the portrait image. An As-

Rigid-As-Possible transformation [27] (ARAP) is then ap-

plied to warp the triangle mesh of the “reflectance” image to

the portrait image. The estimated warp function by ARAP

is then applied to the face normals estimated by 3DDFA to

get refined normals as illustrated in Figure 2. To demon-

strate the effectiveness of the proposed normal refinement

method, we overlay the normals estimated by 3DDFA [11]

and our refined normals with the original image, and show

them in Figure 3 (a) and (b) respectively. It is clear that the
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Figure 5: The structure of the proposed Hourglass network.

quality of the alignment of normals w.r.t. the portrait im-

age at the eye and mouth has been improved significantly

through our proposed normal refinement method.

We notice that our proposed ARAP normal refinement

method cannot improve the misalignment of the ear and

neck regions. This is because 3DMM cannot model the

deformation of ear and neck well, and, to the best of our

knowledge, there is no landmark detection algorithm for

ears and necks. As a result, we remove the ear and neck

regions from the refined normals to avoid possible artifacts

in relit images. In order to get a full normal image, we

solve a Poisson equation to fill in the missing normals for

ear, neck, mouth and background region as suggested by

[26]. Figure 3 (c) shows the normals after filling the miss-

ing region.

3.3. Relighting Images

For a portrait image I
∗, we apply our method to esti-

mate normals N and use SfSNet [22] to estimate SH light-

ing L
∗. Then a target SH lighting L is randomly sampled

from the lighting prior dataset [7]. Eq 3 is then used to gen-

erate the relit face image I. Due to the ambiguity of the

color between lighting and reflectance, we apply the ren-

dering pipeline to the luminance channel and keep the color

of the portrait image unchanged. We show one example of

a relit face image in Figure 4.

4. Method

In this section, we introduce our proposed deep learning

based single-image portrait relighting algorithm. We design

an hourglass network for this task and use the DPR dataset

created in the section 3 to train the network.

4.1. Main Architecture for Portrait Relighting

Figure 5 shows the structure of our proposed hourglass

network [19]. It has an encoder and a decoder part. Four

skip connections are used to connect the features at different

scales in the encoder part to their corresponding scale in the

decoder part. To relight a face, our network takes a face im-

age I and a target lighting L
∗ as input. The encoder extracts

features Z which are divided into two parts: face feature Zf

which is independent of lighting; and lighting feature Zs.

Zs is then fed into a lighting regression network to predict

the lighting L of the input face image I. The target lighting

L
∗ is then mapped to the lighting feature Z∗

s
. Zf and Z

∗

s
are

concatenated together and fed into the decoder part to gen-

erate the relit face image. Please refer to the supplementary

for more details of our network architecture.

4.2. Supervision for Training the Network

As discussed in section 3, our data preparation process

generated five relit images with known ground truth light-

ing for each image in CelebA-HQ dataset. To generate one

training data, we randomly select one source image Is and

one target image It and their corresponding ground truth SH

lighting Ls and Lt from these five relit images and the origi-

nal image from CelebA-HQ. Our network then takes source

image Is and target lighting Lt as input and generates L
∗

s

and I
∗

t . Ls and It are used as ground truth to supervise the

training. We apply L1 loss for generated portrait image I
∗

t

and an L2 loss for the predicted lighting L
∗

s . An L1 loss is

further applied to the gradient of I∗t to preserve edges and

avoid blurring:

LI =
1

NI

(||It − I
∗

t ||1 + ||∇It −∇I
∗

t ||1) + (Ls − L
∗

s)
2,

(3)

where NI is the number of pixels in the image.

Since our “ground truth” images are generated using the

ratio image trick, they may contain artifacts due to inaccu-

rate estimation of face normal or lighting. We thus propose

to use a GAN loss to improve the quality of the generated

images. As these artifacts mostly appear locally, we use

a patch GAN [10] to force the distribution of local image

patches to be close to that of a natural image. We use LS-

GAN [2] for our GAN loss:

LGAN = EI(1−D(I))2 + EIs
D(G(Is,Lt))

2, (4)
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Figure 6: From left to right: output without skip layer

S4, output without S4/S3, output without S4/S3/S2, output

without S4/S3/S2/S1. Top row: vanilla Hourglass network,

bottom row: Hourglass network with skip training.

where I is the real image, G and D represent our relighting

network and discriminator respectively. We use 1 as a label

for real images and 0 as a label for fake images. While

training, we use the images from the FFHQ dataset [13] as

real images in our GAN loss since images in this dataset

contain more lighting variations.

A feature matching loss is further proposed to increase

the accuracy of the relit portrait image. More specifically,

images of the same person under different lighting condi-

tions should have the same face features. We thus define a

feature loss as:

LF =
1

NF

(Zf1 − Zf2)
2, (5)

where Zf1 and Zf2 are face features of two input face im-

ages Is1 and Is2, and NF is the number of elements in Zf .

4.3. Skip Training

When the Hourglass network is trained end-to-end (de-

noted as vanilla Hourglass), we notice that most of the facial

information is passed through skip layers. Our facial feature

Zf , on the other hand, contains little facial information. We

thus propose a skip training strategy in which we train our

network without skip connections first, then add skip layers

one by one during subsequent training. We denote this as

skip training. Figure 6 compares the relit images generated

by removing the skip layers of vanilla Hourglass network

and Hourglass network with skip training. We can see that

with the skip training strategy, more facial information is

kept in the feature layer. Figure 7 further demonstrates that

skip training can help improve the quality of the generated

results by removing artifacts around the nose. In the fol-

lowing discussion, unless otherwise specified, our network

is trained with skip training.

4.4. Implementation Details

The overall loss for our network is a linear combination

of the losses mentioned in Sec. 4.2:

L = LI + LGAN + λLF , (6)

(a) (b) (c) (d)

Figure 7: (a) output of vanilla Hourglass network, (b) rect-

angle region of (a), (c) output of Hourglass network with

skip training, (d) rectangle region of (c). We increase the

pixel intensity of (b) and (d) to better visualize.

where λ = 0.5. Our network is trained for fourteen epochs.

We add our feature loss LF after ten epochs. For skip train-

ing, we train our network without any skip connections for

five epochs, and add skip connections one at each epoch

thereafter, until all skip layers are added. We first train

our network with images of resolution 512 × 512; most of

our experiments are carried out under this resolution. Fi-

nally, we fine tune our trained network using images with

resolution 1024 × 1024 with a simple modification. More

specifically, an additional downsample and upsample layer

is added to encoder and decoder respectively to make our

network compatible with 1024×1024 images. We train our

network using the Adam optimizer [15] with default param-

eters. Please refer to the supplementary materials for more

details of our implementation.

5. Experiments

In this section, we evaluate our proposed method both

quantitatively and qualitatively and compare it with previ-

ous the state-of-the-art methods. Since our network can pre-

dict lighting, it can be used in two ways for portrait relight-

ing: (A) Given a source image Is and a SH lighting Lt,

generating an image It (denoted as the SH-based relight-

ing). (B) Given a source image Is and a reference image

If , extracting SH lighting Lt from If and using it to relight

Is to get It (denoted as the image-based relighting). When

the target SH lighting It is known (e.g. our DPR dataset) we

use (A) for our relighting task. For datasets such as Multi-

PIE [9], in which ground truth SH lighting is unknown, we

use (B) for relighting.

5.1. Dataset and Evaluation Metric

Dataset: We demonstrate the effectiveness of the proposed

method on the test set of our proposed DPR dataset. How-

ever, due to lack of real ground truth, we cannot evaluate

the accuracy of the relit images using this dataset. We thus

propose to use the Multi-PIE dataset [9] for quantitative

evaluation. The Multi-PIE dataset contains images of the

same person under different lighting conditions, which can

be used as source and target image pair. Each Multi-PIE im-

age is lit by a dominant point light source, while the lighting
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(a) (b) (c) (d) (e) (f) (g)

Figure 8: (a) shows the input image, (b), (d) and (f) are

images generated using LI , LI + LGAN and LI + LGAN +

Lf respectively; (c), (e) and (g) are the red rectangle region

of (b), (d) and (f) respectively. Note the edge in the middle

of the noise generated using LI .

conditions of most “in the wild” portrait images are diffuse.

We thus generate images under 7 lighting conditions by av-

eraging 3 to 4 original face images from Multi-PIE, so as to

generate images under more realistic, diffuse lighting con-

ditions. We created 440 groups of images from our gen-

erated face images, each of which contains a source image

Is, a target image It and a reference image If . Is and It

are images with the same identity but with different light-

ing conditions, It and Ir are images of different identities

but with the same lighting condition. When evaluating, a

relighting algorithm takes Is and If as input and predicts

It.

Evaluation metric: Since lighting is ambiguous up to a

scale (e.g., longer exposure time may lead to a SH with high

energy under the same lighting conditions), we proposed to

use a scale invariant Mean Squared Error (Si-MSE) [4] to

evaluate the error between the generated image I
∗

t and the

ground truth image It.

Si-MSE =
1

NI

min
α

(It − α ∗ I∗t )
2, (7)

where α is a scalar and NI is the number of pixels in the

image. To further check whether the generated image por-

trays the target lighting, we run SfSNet [22] to extract the

lighting Lt and L
∗

t from It and I
∗

t respectively, and com-

pute the scale invariant L2 (Si-L2) distance between Lt and

L
∗

t . We choose to use SfSNet [22] since it is proven to work

well at predicting consistent lighting for face images under

the same lighting condition.

5.2. Ablation Study

To demonstrate the effectiveness of the GAN loss and

feature loss, we show the quantitative and qualitative re-

sults of our network trained using LI , LI + IGAN and LI

+ LGAN + Lf (i.e. full model) in Table 1 and Figure 8.

We notice that with GAN loss, the accuracy of our trained

Table 1: Ablation Study on Multi-PIE Dataset

Si-MSE Si-L2

LI 0.00504 0.1307

LI + LGAN 0.00658 0.1686

LI + LGAN + Lf 0.00590 0.1444

(a) (b) (c) (d) (e) (f)

Figure 9: (a) original image, (c) results of RI-based render-

ing, (d) our results. (b), (d) and (f) show the red rectangle re-

gion of (a), (c) and (d) respectively. Note that the proposed

method removes the ghost effect and artificial highlights.

network is worse than the network trained without GAN

loss. This is because the GAN loss is used to make the dis-

tribution of the generated images closer to that of the real

images, i.e. improve the visual quality of the generated im-

ages. Adding the GAN loss may distract the network train-

ing process from being closer to the “ground truth” images.

However, Figure 8 shows that with GAN loss, the artifacts

on the nose part are alleviated compared with the network

trained without GAN loss. This demonstrates the effec-

tiveness of the GAN loss in improving the visual quality.

Adding a feature loss Lf significantly improves the accu-

racy of the images generated by our model, as shown in Ta-

ble 1. We believe this is because our feature loss can force

the generated images of the same identity to have similar

latent features, thus, better preserving the identity informa-

tion in the generated images. Moreover, Figure 8 shows

that feature loss does not affect the quality of the generated

images. As a result, we conclude that our full model can

achieve a good balance between the accuracy and quality of

the generated images.

5.3. Comparison with the Rendering Pipeline

Our proposed ARAP-based normal refinement method

improves the misalignment of face geometry as discussed

in Section 3. However, there are still cases in which the

face normal do not perfectly align with the face image, es-

pecially in the nose and the mouth region. These misalign-

ments can cause ghosting on the nose and artificial high-

lights at the corner of the mouth as shown in Figure 9.

Though our training data contains images with these arti-

facts, Figure 9 shows that these artifacts can be avoided by

the proposed method. This is because a deep learning-based

method can regularize the results, avoiding outlier effects.
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source reference ground truth proposed SfSNet [22] Shih et al. [24] Shu et al. [25] Li et al. [16]

Figure 10: Visual results of the proposed method and state-of-the-art methods on Multi-PIE.

reference image target SH input proposed sfsNet [22] Shih et al. [24] Shu et al. [25] Li et al. [16]

Figure 11: Qualitative comparison of the proposed method with state-of-the-art methods.

Table 2: Evaluation Multi-PIE Dataset

Si-MSE Si-L2

Li et al. [16] 0.01322 0.3939

Shih et al. [24] 0.01513 0.3415

Shu et al. [25] 0.01384 0.3908

sfsNet [22] 0.00659 0.1593

Proposed Method 0.00590 0.1444

5.4. Comparison with Stateoftheart Methods

In this section, we compare our method with [22, 25,

24, 16], which can do portrait relighting. Since there is no

ground truth lighting for images in the Multi-PIE dataset,

we use an image-based method to evaluate our proposed

method and SfSNet [22] on this dataset, i.e., target light-

ing is extracted from the reference image and used for re-

lighting. Both the proposed method and SfSNet [22] use

their own lighting estimation method to extract the target

lighting. [25] and [24] are two state-of-the-art portrait style

transfer methods. They take two images Is and If as in-

put and transfer the style of Is to If . To get the relit image

using these two methods, we transfer Is and If from RGB

image to Lab image, and only apply their algorithm on the

L channel. [16] is designed for general photo style transfer,

similarly we use the L channel for portrait relighting.

Though visual results are the best way to compare these

methods, we propose to evaluate them quantitatively in or-

der to understand whether the relit images reflect the refer-

ence lighting conditions accurately. Table 2 shows that our

proposed method achieves state-of-the-art results on both

Si-MSE and Si-L2 metric. This demonstrates that the pro-

posed method can accurately generate relit images under the

target lighting condition. 1 We show some examples of relit

faces in the Multi-PIE dataset in figure 10. We notice that

results of the proposed method on the Multi-PIE dataset are

blurry, however, this is not the case for “in the wild” im-

ages as shown in Figure 11 and 12. This is probably due to

the domain gap between the Multi-PIE dataset and our DPR

dataset used for training.

We visually compare the proposed method with these

state-of-the-art methods on DPR dataset and show results in

Figure 11. Since the target lighting is known in this dataset,

we apply an SH-based method to evaluate the proposed

method and SfSNet [22]. Comparison with SfSNet[22]:

We see that although SfSNet [22] can generate images un-

der the correct lighting conditions, their results are of low

quality. Also, SfSNet [22] works on 128 × 128 images,

which is too small for portrait relighting applications. Fur-

thermore, SfSNet cannot deal with the background cor-

rectly, making the results visually unpleasant. Comparison

with Shih et al. [24], Shu [25] and Li et al. [16]: [24], [25]

and [16] do not generate images under the correct lighting

1Note that the built in facial landmark detector [1] of [25] fail to detect

landmarks of 90 testing face images which are excluded when computing

the Si-MSE and Si-L2 for [25] in Table 2.
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(a)

(b)

Figure 12: (a) show results on non-frontal face images. (b) show results on the Flickr portrait dataset [24].

in these examples. These three methods are all reference

image based; when the reference image is of low quality

(e.g. occluded by hair region or sunglasses), they fail to

understand the lighting correctly and do not reproduce the

reference lighting accurately.

We believe this is a common drawback for all methods

which require a reference image as input. On the contrary,

the proposed method and SfSNet [22] can directly take tar-

get lighting as input and no reference image is required.

[24] and [25] both require accurate landmark detection. The

built in landmark detector [1] for [25] fails to detect facial

landmarks for some non-frontal faces, which limits the pos-

sible applications of [25]. Moreover, we notice that [24]

and [25] cannot generate attached shadows on the nose,

whereas, the proposed method can generate very natural at-

tached shadows.

5.5. Results on Challenge and Flickr Images

Figure 12 (a) shows that our proposed method works

well on non-frontal faces and faces with makeup. We fur-

ther fine tune our network on 1024 × 1024 images and test

the trained model on the Flickr portrait dataset [24]. Fig-

ure 12 (b) shows some of the results. Please refer to the

supplementary material for more results.

6. Conclusion

In this work, we have proposed an automatic single-

image portrait relighting algorithm. A physically-based

portrait relighting method is first proposed to generate a

large scale, high quality, “in the wild” deep portrait re-

lighting dataset. An hourglass network is then trained us-

ing this dataset to generate a relit portrait image by tak-

ing a source portrait image and a target lighting as input.

We show that our training procedure, that combines recon-

struction and adversarial losses with a novel skip connec-

tion training strategy, can regularize the generated results,

removing the artifacts caused by physically-based render-

ing. Our network can generate images with resolution as

high as 1024× 1024 and achieves state-of-the-art results.
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