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Abstract

We present a conceptually simple yet effective algorithm

to detect wireframes [14] in a given image. Compared to the

previous methods [14, 33] which first predict an intermediate

heat map and then extract straight lines with heuristic algo-

rithms, our method is end-to-end trainable and can directly

output a vectorized wireframe that contains semantically

meaningful and geometrically salient junctions and lines.

To better understand the quality of the outputs, we propose

a new metric for wireframe evaluation that penalizes over-

lapped line segments and incorrect line connectivities. We

conduct extensive experiments and show that our method

significantly outperforms the previous state-of-the-art wire-

frame and line extraction algorithms [14, 33, 32]. We hope

our simple approach can be served as a baseline for future

wireframe parsing studies. Code has been made publicly

available at https://github.com/zhou13/lcnn.

1. Introduction

Recent progress in object recognition [17, 31, 29, 13] and

large-scale datasets [28, 3, 2, 1] has made it possible to rec-

ognize, extract, and utilize high-level geometric features or

global structures of a scene for image-based 3D reconstruc-

tion. Unlike local features (SIFT [21], ORB [27], etc.) used

in conventional 3D reconstruction systems such as structure

from motion (SfM) and visual SLAM, high-level geometric

features provide more salient and robust information about

the global geometry of the scene. This line of research

has drawn interests on the exploration of extracting struc-

tures such as lines and junctions (wireframes) [14], planes

[34, 20], surfaces [11], and room layouts [37].

Among all the high-level geometric features, straight

lines and their junctions (together called a wireframe [14])

are probably the most fundamental elements that can be used

to assemble the 3D structures of a scene. Recently, works

such as [14] encourages the research of wireframe pars-

ing by providing a well-annotated dataset, a learning-based

framework, as well as a set of evaluation metrics. Never-

theless, existing wireframe parsing systems are intricate and

(a) Ground truth labels (b) Wireframe [14]

(c) AFM [33] (d) Our proposed L-CNN

Figure 1: Demonstration of the wireframe representation of

a scene and the results produced by Wireframe [14], AFM

[33], and our proposed L-CNN.

still inadequate for complex scenes with complicated line

connectivity. The goal of this paper is to explore a clean and

effective solution to this challenging problem.

Existing researches [14, 33] address the wireframe pars-

ing problem with two stages. First, an input image is passed

through a deep convolutional neural network to generate

pixel-wise junction and line heat maps (or their variants

[33]). After that, a heuristic algorithm is used to search

through the generated heat map to find junction positions,

vectorized line segments, and their connectivity. While

these methods are intuitive and widely used in the current

literature, their vectorization algorithms are often complex

and rely on a set of heuristics, and thus sometimes lead

to inferior solutions. Inspired by [4, 12, 9] in which the

end-to-end pipelines outperform their stage-wise counter-

parts, we hypothesis that making wireframe parsing systems

end-to-end trainable could also push the state-of-the-arts.
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Therefore, in this paper we address the following problem:

How to learn a vectorized representation of wire-

frames in an end-to-end trainable fashion?

To this end, we propose a new network called L-CNN, an

algorithm that performs end-to-end wireframe parsing using

a single and unified neural network. Our network can be split

into four parts: a feature extraction backbone, a junction

proposal module, and a line verification module bridged by a

line sampling module. Taken an RGB image as the input, the

neural network directly generates a vectorized representation

without using heuristics. Our system is fully differentiable

and can be trained end-to-end through back-propagation,

enabling us to fully exploit the power of the state-of-the-art

neural network architectures to parse the scenes.

Besides, current wireframe evaluation metrics treat a line

as a collection of independent pixels, so it cannot take the

correctness of line connectivity into consideration, as dis-

cussed in Section 4.3. To evaluate such structural correct-

ness of a wireframe, we introduce a new evaluation metric.

Our new proposed metric uses line matching to calculate the

precision and recall curves on vectorized wireframes. We

perform extensive experiments on wireframe datasets [14]

and carefully do the ablation study on the effects of different

system design choices.

2. Related work

Line Detection: Line detection is a widely studied prob-

lem in computer vision. It aims to produce vectorized line

representation from images. Traditional methods such as

[30, 32] detect lines based on local edge features. Recently,

[33] combines the deep learning-based features with the line

vectorization algorithm from [32]. Unlike the wireframe

representation, traditional line detection algorithms do not

provide the information about junctions and how lines and

junctions are connected to each other, which limits its appli-

cation in scene parsing and understanding.

Wireframe Parsing: [14] proposes the wireframe parsing

task. The authors train two separate neural networks to

predict junction and line heat maps from an input image.

After that, the two predictions are combined using a heuristic

wireframe fusion algorithm to produce the final vectorized

output. Although it is intuitive and can produce reasonable

results, such two-stage process prevents the benefits of end-

to-end training. In contrast, our framework is based on a

single end-to-end trainable neural network, which directly

delivers a vectorized wireframe representation as the output.

Instance-level Recognition: At the technical level, our

method is inspired by instance-level recognition frameworks

such as Fast R-CNN [9], Faster R-CNN [25], CornerNet [18],

Extremenet [35]. Our pipeline and LoI pooling (Section 3.6)

are conceptually similar to the RoI pooling in Faster R-

CNN and Fast R-CNN. Both methods first generate a set
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Figure 2: An overview of our network architecture.

of proposals and extract features to classify these proposes.

The difference is that in [25, 9], the candidate proposals are

generated by a sliding window fashion while our proposals

are generated by connecting salient junctions (line sampler

module Section 3.5). In this sense, the proposal generation

procedure is also similar to what is used in point-based

object detection [18, 35]. The difference lies in how to

discriminate between true lines and false positives. They

use either similarity between points feature embedding [18]

or the classification score in the geometric center of several

salient points [35] while ours extracts features to feed into a

small neural network (line verification network Section 3.6).

3. Methods

3.1. Data Representation

Our representation of wireframes is based on the notation

from graph theory. It can also be seen as a simplified version

of the wireframe definition in [14]. Let W = (V,E) be the

wireframe of an image, in which the V is the set of junction

indices and E ⊆ V × V is the set of lines represented by the

pair of junction endpoints in V. For each i ∈ V, we use

pi ∈ R2 to represent the (ground truth) coordinate of the

junction i in the image space.

3.2. Overall Network Architecture

Figure 2 illustrates the L-CNN architecture. It contains

four modules: 1) a feature extraction backbone (Section 3.3)

that takes a single image as the input and provides shared

intermediate feature maps for the successive modules; 2)

a junction proposal module (Section 3.4) which outputs the

candidate junctions; 3) a line sampling module (Section 3.5)

that outputs line proposals based on the output junctions

from the junction proposal module; 4) a line verification

module (in Section 3.6) which classifies the proposed lines.

The output of L-CNN are the positions of junctions and the

connectivity matrix among those junctions. Our system is

fully end-to-end trainable with stochastic gradient descent.
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3.3. Backbone Network

The function of the backbone network is to extract se-

mantically meaningful features for the successive modules

of L-CNN. We choose stacked hourglass network [23] as our

backbone for its efficiency and effectiveness. Input images

are resized into squares. The stacked hourglass network first

downsamples the input images twice in the spatial resolu-

tion via two 2-strided convolution layers. After that, learned

feature maps are gradually refined by multiple U-Net-like

modules [26] (the hourglass modules) with intermediate su-

pervision imposed on the output of each module. The total

loss of the network is the sum of the loss on those modules.

3.4. Junction Proposal Module

Junction Prediction: We use a simplified version of [14]

to estimate the candidate junction locations in the wireframe.

An input image with resolution W × H is first divided into

Wb × Hb bins. For each bin, the neural network predicts

whether there exists a junction inside it, and if yes, it also

predicts the its relative location inside this bin. Mathemati-

cally, the neural network outputs a junction likelihood map

J and an offset map O. For each bin b, we have

J(b) =

{

1 ∃i ∈ V : pi ∈ b,

0 otherwise

and

O(b) =

{

(b − pi)/Wb ∃i ∈ V : pi ∈ b,

0 otherwise.

where b represents the location of bin b’s center and p

represents the location of a vertex in V.

To predict J and O, we design a network head that consists

of two 1 × 1 convolution layers to transform the feature

maps into J and O. We treat the problem of prediction

J as a classification problem and use the average binary

cross entropy loss. We use ℓ2 regression to predict the

offset map O. As the range of offset O(b) is bounded by

[−1/2, 1/2) × [−1/2, 1/2), we append a sigmoid activation

with offset −0.5 after the head to normalize the output. The

loss on O is averaged over the bins that contain ground-truth

junctions for each input image.

Non-Maximum Suppression: In instance-level recogni-

tion, non-maximum suppression (NMS) is applied to remove

duplicate around correct predictions. We use the same

mechanism for remove blurred score map around correct

predictions and get J ′(b) as:

J ′(b) =

{

J(b) J(b) = maxb′∈N(b) J(b′)

0 otherwise,

where N(b) represents the 8 nearby bins around b. Here,

we suppress the pixel values that are not the local maxima

on the junction map. Such non-maximum suppression can

be implemented with a max-pooling operator. The final

(a) Ground truth (b) Example of S+ (c) Example of S−

(d) Example of D∗ (e) Example of D+ (f) Example of D−

Figure 3: Illustration of our sampling methods. Red circles

represent the ground truth junctions, red lines represent the

ground truth lines, green squares represent the predicted

junctions, and blue lines represent the candidate lines in the

static and dynamic samplers.

output of the junction proposal network is the top K junction

positions {p̂i}
K
i=1

with the highest probabilities in J ′.

3.5. Line Sampling Module

Given a list of K best candidate junctions {p̂i}
K
i=1

from

the junction proposal module, the purpose of the line

sampling module is to generate a list of line candidates

{Lj}
M
j=1
= {(p̃1

j
, p̃2

j
)}M

j=1
during the training stage so that the

line verification network can learn to predict the existence

of a line. Here p̃1
j

and p̃2
j

represents the coordinates of two

endpoints of the jth candidate line segment. In this task,

the amount of positive samples and negatives samples are

extremely unbalanced, we address this issue by carefully

design the sampling mechanism as stated below.

Static Line Sampler: For each image, the static line sam-

pler returns NS+ positive samples and NS− negative samples

that are directly derived from the ground truth labels. We call

them static samples since they are irrelevant to the predicted

candidate junction positions. Positive line samples are uni-

formly sampled from all the ground truth lines, denoted by

S
+, with the ground truth coordinate of the corresponding

junctions. The number of total negative line samples is

O(|V|2), which is huge compared to the number of positive

samples O(|E|). To alleviate the problem, we sample the

negative lines from S−, a set of negative lines that are po-

tentially hard to classify. We use the following heuristic to

compute the S−: we first rasterize all the ground truth lines

onto a 64 × 64 low-resolution bitmap. Then, for each possi-

ble connections formed by a pair of ground truth junctions

that is not a ground truth line, we define its hardness score

to be the average pixel density on the bitmap along this line.
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For each image, S− is set to be the top 2000 lines with the

highest hardness scores.

Dynamic Line Sampler: In contrast to the static line

sampler, the dynamic line sampler samples the lines using

the predicted junctions from the junction proposal module.

The sampler first matches all the predicted junctions to the

ground truth junction. Let mi := arg minj ‖p̂i − pj ‖2 be the

index of the best matching ground truth junction for the ith

junction candidates. If the ℓ2-distance between p̂i and pmi
is

less than the threshold η, we say that the junction candidate

p̂i is matched. For each line candidate line (p̂i1, p̂i2 ) in which

i1, i2 ∈ {1, 2, . . . ,K} and i1 , i2, we put it into line sets D+,

D
−, and D∗ according to the following criteria:

• if both p̂i1 and p̂i2 are matched, and (mi1,mi2 ) ∈ E, we

add this line to the positive sample set D+;

• if both p̂i1 and p̂i2 are matched, and (mi1,mi2 ) ∈ S
−, we

add this line to the hard negative sample set D−;

• the random sample set D∗ includes all the line candi-

dates from the predicted junctions, regardless of their

matching results.

Finally, we randomly choose ND+ lines from the positive

sample set, ND− lines from the hard negative sample set,

ND∗ lines from the random line sample set, and return their

union as the dynamic line samples.

On one hand, the static line sampler helps cold-start the

training at the beginning when there are few accurate positive

samples from the dynamic sampler. It also complements the

dynamic sampler by adding ground truth positive samples

and hard negative samples to help the joint training process.

On the other hand, the dynamic line sampler improves the

performance of line detection by adapting the line endpoints

to the predicted junction locations.

3.6. Line Verification Network

The line verification network takes a list of candidate

lines {Lj}
M
j=1
= {(p̃1

j
, p̃2

j
)}M

j=1
along with the feature maps

of the image from the backbone network as the input and

predicts whether or not each line is in the wireframe of the

scene. During training, L is computed by the line sampling

modules, while during the evaluation, L is set to be every

pair of the predicted junctions {p̂i}
K
i=1

.

For each candidate line segment Lj = (p̃1
j
, p̃2

j
), we feed

the coordinates of its two endpoints into a line of inter-

est (LoI) pooling layer (introduced below), which returns a

fixed-length feature vector. Then, we pass the concatenated

feature vector into a network head composed of two fully

connected layers and get a logit. The loss of the line is the

sigmoid binary cross entropy loss between the logit and the

label of this line, i.e., a positive sample or a negative sam-

ple. To keep the loss balanced between positive and negative

samples, the loss on each image for the line verification net-

work is the sum of two separated loss, averaged over the

positive lines and the negative lines, respectively.

LoI Pooling: To check whether a line segment exists in an

image, we first turn the line into a feature vector. Inspired by

the RoIPool and RoIAlign layers from the object detection

community [10, 9, 25, 12], we propose the LoI pooling

layer to extract line features while it can back-propagate the

gradient to the backbone network.

Each LoI is defined by the coordinates of its two end-

points, i.e., p̃1
j

and p̃2
j
. The LoI pooling layer first computes

the coordinates of Np uniform spaced middle points along

the line with linear interpretation

qk =
k

Np − 1
p̃1
j +

Np − k

Np − 1
p̃2
j, ∀k ∈ {0, 1, . . . , Np − 1}.

Then, it calculates the feature values at those Np points in

the backbone’s feature map using bilinear interpretation to

avoid quantization artifacts [4, 15, 6, 12]. The resulting

feature vector has a spatial extent of C × Np , in which C is

the channel dimension of the feature map from the backbone

network. After that, the LoI Pooling layer reduces the size

of the feature vector with a 1D max pooling layer. The result

feature vector has shape C × ⌈
Np

s
⌉, where s is the size of

stride of the max pooling layer. This vector is then flattened

and returned as the output of LoI pooling layer.

4. Experiments

4.1. Implementation Details

We use a stacked hourglass network [23] as our backbone.

Given an input image, we first apply a 7 × 7 stride-2 convo-

lution, three residual blocks with channel dimension 64, and

append a stride-2 max pooling on it. Then this intermediate

feature representation is fed into two stacked hourglass mod-

ules. In each hourglass, the feature maps are down-sampled

with 4 stride-2 residual blocks and then up-sampled with

nearest neighbour interpolation. The dimensions of both

the input channel and the output channel of each residual

block are 256. The network heads for J and O contain a

3 × 3 convolutional layer that reduces the number of chan-

nels to 128 with the ReLU non-linearity, followed by a 1× 1

convolutional layer to match the output dimension.

We reduce the feature dimension from 256 to 128 using

a 1 × 1 convolution kernels before feeding the feature map

into the line verification network. For the LoIPool layer,

we pick Np = 32 points along each line as the features of

the line, resulting a 128 × 32 feature for each line. After

that, we apply a one-dimensional stride-4 max pooling to

reduce the spatial dimension of line features from 32 to 8.

Our final line feature has dimension 128 × 8. The head of

the line verification network then takes the flattened feature

vector and feeds it into two fully connected layers with ReLU

non-linearity, in which the middle layer has 1024 neurons.

All the experiments are conducted on a single NVIDIA

GTX 1080Ti GPU for neural network training. We use

the ADAM optimizer [16]. The learning rate and weight
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(a) Overlapped lines (b) Incorrect connectivity

Figure 4: Demonstration of cases that heat map-based metric

is not ideal for wireframe quality evaluation. The upper part

shows the detected lines and their heat maps, and the lower

part shows the ground truth lines and their heat maps.

decay are set to 4 × 10−4 and 1 × 10−4, respectively. The

batch size is set to 6 for maximizing the GPU memory

occupancy. We train the network for 10 epochs and then

decay the learning rate by 10. We stop the training at 16

epochs as the validation loss no longer decreases. The total

training time is about 8 hours. All the input images are

resized to (H,W) = (512, 512) and we use Hb × Wb =

128× 128 bins for J and O. The junction proposal proposal

network outputs the best K = 300 junctions. For the line

sampling module, we use NS+ = 300, NS− = 40, ND+ = 300,

ND− = 80, and ND∗ = 600. The loss weights of multi-task

learning for J, O, and line verification network are set to 8,

0.25, and 1, respectively. Those weights are adjusted so that

the magnitudes of the losses are in a similar scale.

4.2. Datasets

We conduct most of our experiments on the ShanghaiTech

dataset [14]. It contains 5,462 images of man-made envi-

ronments, in which 5000 images are used as the training set

and 462 images are used as the testing set. The wireframe

annotation of this dataset includes the positions of the salient

junctions V and lines E. We also test the models trained with

the ShanghaiTech dataset on the York Urban dataset [7] to

evaluate the generalizability of all the methods.

4.3. Evaluation Metric

Previously, researchers use two metrics to evaluate the

quality of the detection wireframes: the heat map-based

APH to evaluate lines and junction AP to evaluate junctions.

In this section, we first give a brief introduction to these

metrics and discuss the reason why they are not proper for

the wireframe parsing tasks. Then we give a new metric,

named structural AP, a more reasonable way to evaluate the

structural quality of wireframes.

Precision and Recall of Line Heat Maps: The precision

and recall curve over line heap maps is often used to evaluate

the performance of wireframe and line detection [14, 33].

Given a vectorized representation (lines or wireframes), it

first generates a confidence heat map by rasterizing the lines.

To compare it with the ground truth heat map, a bipartite

matching that treats each pixel independently as a graph

node is ran to match between two heat maps. Then precision

and recall curve is computed according to the matching and

confidence of each pixel. In our experiment, we provide

analysis of different methods using this metric. We show

both the F-score (as in [33]) and the area under the PR curve

(similar to [8]) as the quantitative measure, and write the

them as FH and APH, respectively.

These metrics were originally designed for evaluating

boundary detection [22] and they work well for that purpose.

However they are problematic in wireframe detection since

1. they do not penalize for overlapped lines (Figure 4a);

2. they do not properly evaluate the connectivity of the

wireframe (Figure 4b).

For example, if a long line is broken into several short line

segments, the resulted heat map is almost the same as the

ground truth heat map, as shown in Figure 4. A good perfor-

mance on the above two properties is vital for downstream

tasks that rely on the correctness of line connectivity, such

as inferring the 3D geometry through lines [24, 36].

Structural AP: To overcome those drawbacks, we pro-

pose a new evaluation metric defined on vectorized wire-

frames rather than on a heat map. We call our metric struc-

tural average precision (sAP). This metric is inspired by the

mean average precision commonly used in object detection

[8]. Structural AP is defined to be the area under the preci-

sion recall curve computed from a scored list of the detected

line segments on all test images. Recall is the proportion of

the correctly detected line segments (up to a cutoff score)

to all the ground truth line segments, while precision is the

proportion of the correctly detected line segments above that

cutoff to all the detected line segments.

A detected line segment Lj = (p̃1
j
, p̃2

j
) is considered to be

a true positive (correct) if and only if

min
(u,v)∈E

‖p̃1
j − pu ‖

2
2 + ‖p̃2

j − pv ‖
2
2 ≤ ϑ,

where ϑ is a user-defined number represents the strictness

of the metric. In this experiment section, we evaluate the

structural AP at ϑ = 5, ϑ = 10, and ϑ = 15 under the

resolution of 128×128. We abbreviate them as sAP5, sAP10,

and sAP15, respectively. In addition, each ground truth line

segment is not allowed to be matched more than once in

order to penalize double-predicted lines. That is to say if

there exists a line Li that is ranked above the line Lj and

arg min
(u,v)∈E

‖p̃1
i − pu ‖

2
2 + ‖p̃2

i − pv ‖
2
2

= arg min
(u,v)∈E

‖p̃1
j − pu ‖

2
2 + ‖p̃2

j − pv ‖
2
2,

then the line Lj will always be marked as a false positive.
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sampler head metric

D
∗
S
+
S
−
D
+
D
− fc+fc conv+fc sAP5 sAP10 sAP15

(a) X X 43.7 48.2 50.2

(b) X X X 38.5 41.9 43.8

(c) X X X X 47.8 51.7 53.6

(d) X X X X X X 55.7 59.8 61.7

(e) X X X X 57.4 61.4 63.2

(f) X X X X X X 58.9 62.9 64.7

Table 1: Ablation study of L-CNN. The columns labeled

with “sampler” represent whether a specific sampler is used

during the training stage, as introduced in Section 3.5. The

columns labeled with “head” represent the network head

structured used in the line verification network. “fc + fc”

is the network structure introduced in Section 3.6, while in

“conv + fc” we replace the middle fully connected layer with

a 1D Bottleneck layer [13].

Junction mAP: The major difference between line detec-

tion and wireframe detection is that the wireframe represen-

tation encodes junction positions. Junctions have physical

meaning in 3D (corners or occlusional points) and encodes

the line connectivity information. Our junction mean AP

(mAPJ) evaluates the quality of vectorized junctions of a

wireframe detection algorithm without relying on heat maps

as in [14]. To better understand the advantage of explicitly

modeling junctions, we also evaluate our method using the

junction mAP as described below: for a given ranked list

of predicted junction positions, a junction is considered to

be correct if the ℓ2 distance between this junction and its

nearest ground-truth is within a threshold. Each ground

truth junction is only allowed to be matched once to penal-

ize double-predicted junctions. Using this criteria, we can

draw the precision recall curve by counting the number of

true and false positives. The junction AP is defined to be

the area under this curve. The mean junction AP is defined

to be the average of junction AP over difference distance

thresholds. In our implementation, we choose to average

over 0.5, 1.0, and 2.0 thresholds under 128×128 resolution.

4.4. Ablation Study

In this section, we run a series of ablation experiments

on the ShanghaiTech dataset [14] to study our proposed

method. We use our structural average precision (sAP) as

the evaluation metrics. The results are shown in Table 1.

Line Sampling Modules: We compare different design

choices for line sampling modules, as shown in Table 1. (a)

uses just the random pairs from the dynamic sampler. The

sAP5 is 43.7, which serves as the baseline. (b) only uses

the sampled pairs from ground-truth junctions and get much

worse performance. The performance gap is even larger

when the evaluation criterion is loose. This is because (b)

does not consider the imperfect of junction prediction map

and cannot tackle when junction is slightly misaligned with

the ground truth. After that, we combine the random dy-

namic sampling and the static sampling, which significantly

improves the performance, as shown in Table 1 (c). Then

we add dynamic sampler candidate D+ and D−, which leads

to the best sAP5 score 58.9 in (f). This experiment indicates

that the carefully selected dynamic line candidates are vital

to a good performance. Lastly, by comparing (e) and (f),

we find that including hard examples S− and D− is indeed

helpful compared to just doing the random sampling in D∗.

Line Verification Networks: Table 1 also shows our abla-

tion on how to design the line verification network. We tried

two different designs: In Table 1 (e), we apply two fully-

connected layers after the LoI Pooling feature to get the clas-

sification results, while in Table 1 (d) we firstly apply a 1D

convolution on the features and then use the fully-connected

layer on the flattened feature vector to get the final line clas-

sification. Experiments show that using convolution largely

deteriorates the performance. We hypothesis that this is be-

cause line classification requires location sensitivity, which

the translation-invariant convolution cannot provide [5, 19].

4.5. Comparison with Other Methods

Following the practice of [14, 33], we compare our

method with LSD [32], deep learning-based line detectors

[33], as well as wireframe parser from the ShanghaiTech

dataset paper [14]. FH, APH, and sAP with different thresh-

olds are used to evaluate those methods quantitatively. All

the models are trained on the ShanghaiTech dataset and

evaluate on both of the ShanghaiTech [14] and York Urban

datasets [7]. The results are shown in Table 2 and Figure 5.

We note that the difference of the numbers and curves for

APH from [14, 33] is due to our more proper implementation

of APH: 1) In the code provided by [14], they evaluate the

precision and recall per image and average them together,

while we first sum the number of true positives and false

positives over the dataset and then compute the precision

and recall. 2) Due to the insufficient number of thresholds,

the PR curves in [14, 33] do not cover all the recall that an

algorithm can achieve. We evaluate all the methods on more

thresholds to extend the curves as long as possible.

Figure 5a shows that our algorithm is better than the

state-of-the-art line detector methods under the PR curve

of heat map-based line metrics, especially in the high-recall

region. This indicates that our method can find more correct

lines compared to other methods. We also quantitatively

calculate the F-score and the average AP. Table 2 shows that

our algorithm performs significantly better than previous

state-of-the-art line detectors by 13.3 points in APH and 4.0

points in FH [33]. We also want to emphasize that compared

to line detection, it is conceptually harder for the wireframe

detection methods to reach the same performance as the line

detection methods in term of the heat map-based metrics.
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(a) Heat map-based PR curves on

the ShanghaiTech dataset [14].
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(b) Structural PR curves on the

ShanghaiTech dataset [14].
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(c) Heat map-based PR curves on

the York Urban dataset [7].
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(d) Structural PR curves on the

York Urban dataset [7].

Figure 5: Precision recall curves of multiple algorithms. All the models are training on the ShanghaiTech dataset.

This is because a wireframe detection algorithm requires the

positions of junctions, the endpoints of lines, to be correct,

while a line detector can start and end a line arbitrarily to

“fill” the line heat map. Before evaluating the heat map-

based metrics, we post process the lines from L-CNN to

remove the overlap, as described in Appendix A.1.

We then evaluate all the methods with our proposed struc-

tural AP. The precision recall curve is shown in Figure 5b

(LSD is missing here as its scores are too low to be drawn).

The gap between our method and previous methods is even

larger. Our method achieves 40-point sAP improvement

over the previous state-of-the-art method. This is because

our line verification network penalizes incorrect structures,

while methods such as AFM and wireframe parser use a

hand-craft algorithm to extract lines from heat maps, in

which the information of junction connectivity gets lost.

Furthermore, the authors of [14] mention that their vector-

ization algorithm will break lines and add junctions to better

fit the predicted heat map. Such behaviors can worsen the

structure correctness, which might explain its low sAP score.

The mAPJ results are shown in Table 2. For AFM, we

treat the endpoints of each line as junctions and use the

line NFA score as the score of its endpoints. We note that

the inferior junction quality of AFM is not because their

method is not well-designed but the end task is different.

This shows that one cannot directly apply a line detection

algorithm on the wireframe parsing task. In addition, our

L-CNN outperforms the previous wireframe parser [14] by a

large margin due to the joint training process of the pipeline.

Table 2 and Figures 5c and 5d show that L-CNN also

performs the best among all the wireframe and line detec-

tion methods when testing on a different dataset [7] without

finetune. This indicates that our method is able to generalize

to novel scenes and data. We note that the relatively low sAP

scores are due to the duplicated lines, texture lines, while

missing many long lines in the annotation of the dataset.

4.6. Visualization

We visualize our algorithm’s output in Figure 6. The

junctions are marked cyan blue and lines are marked or-

ShanghaiTech [14] York Urban [7]

sAP10 mAPJ APH FH sAP10 mAPJ APH FH

LSD / / 52.0 61.0 / / 51.0 60.0

Wireframe 5.1 40.9 67.8 72.6 2.6 13.4 53.4 63.7

AFM 24.4 23.3 69.5 77.2 3.5 6.9 48.4 63.1

L-CNN 62.9 59.3 83.0 81.2 26.4 30.4 59.8 65.4

Table 2: Performance comparison of wireframe detection.

All the models are trained on the ShanghaiTech dataset and

evaluate on both datasets. The columns labelled with “sAP”

show the line accuracy with respect to our structural metrics;

the columns labelled with “mAPJ” shows the mean average

precision of the predicted junctions; the columns labelled

with “FH” and “APH” shows the performance metrics related

to heat map-based PR curves. Our method L-CNN has the

state-of-the-art performance on all of the evaluation metrics.

ange. Wireframes from L-CNN are post processed using

the method from Appendix A.1. Since LSD and AFM do

not explicitly output junctions, we treat the endpoints of

lines as junctions. As shown in Figure 6, LSD detects some

high-frequency textures without semantic meaning. This is

expected as LSD is not a data-driven method. By training a

CNN to predict line heat maps, AFM [33] is able to suppress

some noise. However, both LSD and AFM still produce a

lot of short lines because they do not have an explicit notion

of junctions. The wireframe parser [14] utilizes junctions

to provide a relatively cleaner result, but their heuristic vec-

torization algorithm is sub-optimal and leads to crossing

lines and incorrectly connected junctions. In contrast, our

L-CNN uses powerful neural networks to classify whether

a line indeed exists and thus provides the best performance.
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(a) LSD (b) AFM (c) Wireframe (d) L-CNN (ours) (e) Ground truth

Figure 6: Qualitative evaluation of wireframe and line detection methods. From left to right, the columns shows the results

from LSD [32], AFM [33], Wireframe [14], L-CNN (ours), and the ground truth. We also draw the detected junctions from

Wireframe and L-CNN and the line endpoints from LSD and AFM.
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