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Abstract

In this paper, we propose a method to obtain a compact

and accurate 3D wireframe representation from a single im-

age by effectively exploiting global structural regularities.

Our method trains a convolutional neural network to simul-

taneously detect salient junctions and straight lines, as well

as predict their 3D depths and vanishing points. Compared

with the state-of-the-art learning-based wireframe detection

methods, our network is much simpler and more unified,

leading to better 2D wireframe detection. With global struc-

tural priors such as Manhattan assumption, our method

further reconstructs a full 3D wireframe model, a compact

vector representation suitable for a variety of high-level vi-

sion tasks such as AR and CAD. We conduct extensive eval-

uations on a large synthetic dataset of urban scenes as well

as real images.

1. Introduction

Recovering 3D geometry of a scene from RGB images is

one of the most fundamental and yet challenging problems

in computer vision. Most existing off-the-shelf commer-

cial solutions to obtain 3D geometry still requires active

depth sensors such as structured lights (e.g., Apple ARKit

and Microsoft Mixed Realty Toolkit) or LIDARs (popular

in autonomous driving). Although these systems can meet

the needs of specific purposes, they are limited by the cost,

range, and working conditions (indoor or outdoor) of the

sensors. The representations of final outputs are typically

dense point clouds, which are not only memory and compu-

tation intense, but also may contain noises and errors due to

transparency, occlusions, reflections, etc.

On the other hand, traditional image-based 3D recon-

struction methods, such as Structure from Motion (SfM) and

visual SLAM, often rely on local features. Although the ef-

ficiency and reliability have been improving (e.g., Microsoft

Hololens, Magic Leap), they often need multiple cameras

with depth sensors [13] for better accuracy. The final scene

representation remains quasi-dense point clouds, which are

∗This work was done when Y. Zhou was an intern at Adobe Research.

(a) Input image (b) 3D wireframe (c) Novel view

Figure 1. Results of our method tested on a single synthetic image

(top row) and a real image (bottom row). Column (a) shows the

input images overlaid with the groundtruth wireframes, in which

the red and blue dots represent the C- and T-type junctions, re-

spectively. Column (b) shows the predicted 3D wireframe from

our system, with grayscale visualizing depth. Column (c) shows

alternative views of (b). Note that our system recovers geomet-

rically salient wireframes, without being affected by the textural

lines, e.g., the vertical textural patterns on the Big Ben facade.

typically incomplete, noisy, and cumbersome to store and

share. Consequently, complex post-processing techniques

such as plane-fitting [11] and mesh refinement [14, 19] are

required. Such traditional representations can hardly meet

the increasing demand for high-level 3D modeling, content

editing, and model sharing from hand-held cameras, mobile

phones, and even drones.

Unlike conventional 3D geometry capturing systems, the

human visual system does not perceive the world as uni-

formly distributed points. Instead, humans are remark-

ably effective, efficient, and robust in utilizing geometrically

salient global structures such as lines, contours, planes, and

smooth surfaces to perceive 3D scenes [1]. However, it re-

mains challenging for vision algorithms to detect and utilize

such global structures from local image features, until recent

advances in deep learning which makes learning high-level

features possible from labeled data. The examples include
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detecting planes [29, 18], surfaces [9], 2D wireframes [12],

room layouts [34], key points for mesh fitting [30, 28], and

sparse scene representations from multiple images [5].

In this work, we infer global 3D scene layouts from

learned line and junction features, as opposed to local corner-

like features such as SIFT [7], ORB [21], or line segments

[10, 4, 23] used in conventional SfM or visual SLAM sys-

tems. Our algorithm learns to detect a special type of wire-

frames that consist of junctions and lines representing the

corners and edges of buildings. We call our representation

the geometric wireframe and demonstrate that together with

certain global priors (such as globally or locally Manhattan

[2, 7, 23]), the wireframe representation allows effective and

accurate recovery of the scene’s 3D geometry, even from a

single input image. Our method trains a neural network to

estimate global lines and two types of junctions with depths,

and constructs full 3D wireframes using the estimated depths

and geometric constraints.

Previously, there have been efforts trying to understand

the indoor scenes with the help of the 3D synthetic datasets

such as the SUNCG [24, 31]. Our work aims at natural urban

environments with a variety of geometries and textures. To

this end, we build two new datasets containing both synthetic

and natural urban scenes. Figure 1 shows the sampled results

of the reconstruction and Figure 2 shows the full pipeline of

our system.

Contributions of this paper. Comparing to existing wire-

frame detection algorithms such as [12], our method

• jointly detects junctions, lines, depth, and vanishing

points with a single neural network, exploiting the tight

relationship among those geometric structures;

• learns to differentiate two types of junctions: the physi-

cal intersections of lines and planes “C-junctions”, and

the occluding “T-junctions”;

• recovers a full 3D wireframe of the scene from the lines

and junctions detected in a single RGB image.

2. Methods

As depicted in Figure 2, our system starts with a neural

network that takes a single image as input and jointly predicts

multiple 2D heatmaps, from which we vectorize lines and

junctions as well as estimate their initial depth values and

vanishing points. We call this intermediate result a 2.5D

wireframe. Using both the depth values and vanishing points

estimated from the same network as the prior, we then lift

the wireframe from the 2.5D image-space into the full 3D

world-space.

2.1. Geometric Representation

In a geometric wireframe W = (V,E) of the scene, V

and E ⊆ V × V are the junctions and lines. Specifically, E

represents lines from physical intersections of two planes

while V represents (physical or projective) intersections of

lines among E. Unlike [10, 12], our E totally excludes

planar textural lines, such as the vertical textures of Big Ben

in Figure 1. The so-defined W aims to capture global scene

geometry instead of local textural details.1 By ruling out

planar textural lines, we can group the junctions into two

categories. Let Jv ∈ {C,T} be the junction type of v, in

which each junction can either be a C-junction (Jv = C)

or a T-junction (Jv = T). Corner C-junctions are actual

intersections of physical planes or edges, while T-junctions

are generated by occlusion. Examples of T-junctions (in

blue) and C-junctions (in red) can be found in Figure 1. We

denote them as two disjoint sets V = VC∪VT , in which VC =

{v ∈ V | Jv = C} and VT = {v ∈ V | Jv = T}. We note that

the number of lines incident to a T-junction in E is always

1 rather than 3 because a T-junction do not connect to the

two foreground vertices in 3D. Junction types are important

for inferring 3D wireframe geometry, as different 3D priors

will be applied to each type.2 For each C-junction vc ∈ VC ,

define zvc as the depth of vertex vc , i.e., the z coordinate

of vc in the camera space. For each occlusional T-junction

vt ∈ VT , we define zvt as the depth on the occluded line in the

background because the foreground line depth can always be

recovered from other junctions. With depth information, 3D

wireframes that are made of C-junctions, T-junctions, and

lines give a compact representation of the scene geometry.

Reconstructing such 3D wireframes from a single image is

our goal.

2.2. From a Single Image to 2.5D Representation

Our first step is to train a neural network that learns the

desired junctions, lines, depth, and vanishing points from our

labeled datasets. We first briefly describe the desired outputs

from the network and the architecture of the network. The

associated loss functions for training the network will be

specified in detail in the next sections.

Given the image I of a scene, the pixel-wise outputs of our

neural network consist of five outputs − junction probability

J, junction offset O, edge probability E , junction depth D,

and vanishing points V :

Y � (J,O, E,D,V ), Ŷ � (Ĵ, Ô, Ê, D̂, V̂ ), (1)

where symbols with and without hats represent the ground

truth and the prediction from the neural network, respec-

tively. The meaning of each symbol is detailed in Sec-

tion 2.2.2.

1In urban scenes, lines from regular textures (such as windows on a

facade) do encode accurate scene geometry [32]. The neural network can

still use them for inferring the wireframe but only not to keep them in

the final output, which is designed to give a compact representation of the

geometry only.

2There is another type of junctions which are caused by lines intersecting

with the image boundary. We treat them as C-junctions for simplicity.
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Figure 2. Overall pipeline of the proposed method.

2.2.1 Network Design

Our network structure is based on the stacked hourglass

network [22]. The input images are cropped and re-scaled

to 512 × 512 before entering the network. The feature-

extracting module, the first part of the network, includes

strided convolution layers and one max pooling layer to

downsample the feature map to 128 × 128. The following

part consists of S hourglass modules. Each module will

gradually downsample then upsample the feature map. The

stacked hourglass network will gradually refine the output

map to match the supervision from the training data. Let the

output of the jth hourglass module given the ith image be

Fj(Ii). During the training stage, the total loss to minimize

is:

Ltotal
�

N
∑

i=1

S
∑

j=1

L(Y
(j)
i
, Ŷi) =

N
∑

i=1

S
∑

j=1

L(Fj(Ii), Ŷi),

where i represents the index of images in the training dataset;

j represents the index of the hourglass modules; N repre-

sents the number of training images in a batch; S represents

the number of stacks used in the neural network; L(·, ·) rep-

resents the loss of an individual image; Y
(j)
i

represents the

predicted intermediate representation of image Ii from the

jth hourglass module, and Ŷi represents the ground truth

intermediate representation of image Ii .

The loss of an individual image is a superposition of the

loss functions Lk specified in the next section:

L �
∑

k

λkLk, k ∈ {J,O, E,D,V }.

The hyper-parameters λk represents the weight of each sub-

loss. During experiments, we set λ so that λkLk are of

similar scales.

2.2.2 Output Maps and Loss Functions

Junction Map J and Loss LJ . The ground truth junction

map Ĵ is a down-sampled heatmap for the input image,

whose value represents whether there exists a junction in

that pixel. For each junction type t ∈ {C,T}, we estimate its

junction heatmap

Ĵt (p) =

{

1 ∃v ∈ Vt : p = ⌊ v
4
⌋

0 otherwise
, t ∈ {C,T}.

where p is the integer coordinate on the heatmap and v is

the coordinate of a junction with type t in the image space.

Following [22], the resolution of the junction heatmap is 4

times less than the resolution of the input image.

Because some pixels may contain two types of junctions,

we treat the junction prediction as two per-pixel binary clas-

sification problems. We use the classic softmax cross en-

tropy loss to predict the junction maps:

LJ (J, Ĵ) �
1

n

∑

t∈{C,T }

∑

p

CrossEntropy
(

Jt (p), Ĵt (p)
)

,

where n is the number of pixels of the heatmap. The resulting

Jt (x, y) ∈ (0, 1) represents the probability whether there

exists a junction with type t at [4x, 4x + 4) × [4y, 4y + 4) in
the input image.

Offset Map O and Loss LO. Comparing to the input im-

age, the lower resolution of J might affect the precision of

junction positions. Inspired by [27], we use an offset map

to store the difference vector from Ĵ to its original position
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with sub-pixel accuracy:

Ôt (p) =

{

v
4
− p ∃v ∈ Vt : p = ⌊ v

4
⌋

0 otherwise
, t ∈ {C,T}.

We use the ℓ2-loss for the offset map and use the heatmap

as a mask to compute the loss only near the actual junctions.

Mathematically, the loss function is written as

LO(O, Ô) �
∑

t∈{C,T }

∑

p Ĵt (p)
�

�

�

�Ot (p) − Ôt (p)
�

�

�

�

2

2
∑

p Ĵt (p)
,

whereOt (p) is computed by applying a sigmoid and constant

translation function to the last layer of the offset branch in

the neural network to enforce Ot (p) ∈ [0, 1)
2. We normalize

LO by the number of junctions of each type.

Edge Map E and Loss LE . To estimate line positions,

we represent them in an edge heatmap. For the ground

truth lines, we draw them on the edge map using an anti-

aliasing technique [33] for better accuracy. Let dist(p, e) be

the shortest distance between a pixel p and the nearest line

segment e. We define the edge map to be

Ê(p) =

{

maxe 1 − dist(p, e) ∃e ∈ E : dist(p, e) < 1,

0 otherwise.

Intuitively, E(p) ∈ [0, 1] represents the probability of a line

close to point p. Because the range of the edge map is always

between 0 and 1, we can treat it as a probability distribution

and use the sigmoid cross entropy loss on the E and Ê:

LE (E, Ê) �
1

n

∑

p

CrossEntropy
(

E(p), Ê(p)
)

.

Junction Depth Maps D and Loss LD . To estimate the

depth zv for each junction v, we define the junction-wise

depth map as

D̂t (p) =

{

zv ∃v ∈ Vt : p = ⌊ v
4
⌋

0 otherwise
, t ∈ {C,T}.

In many datasets with unknown depth units and camera

intrinsic matrix K , zv remains a relative scale instead of ab-

solute depth. To remove the ambiguity from global scaling,

we use scale-invariant loss (SILog) which has been intro-

duced in the single image depth estimation literature [3]. It

removes the influence of the global scale by summing the

log difference between each pixel pair.

LD(D, D̂) �
∑

t

1

nt

∑

p∈Vt

(

logDt (p) − log D̂t (p)
)2

−
∑

t

1

n2
t

(

∑

p∈Vt

logDt (p) − log D̂t (p)
)2
.

Vanishing Point Map V and Loss LV . Lines in man-

made outdoor scenes often cluster around the three mutually

orthogonal directions. Let i ∈ {1, 2, 3} represent these three

directions. In perspective geometry, parallel lines in direc-

tion i will intersect at the same vanishing point (Vi,x,Vi,y) in
the image space, possibly at infinity. To prevent Vi,x or Vi,y

from becoming too large, we normalize the vector so that

V i =
1

V2
i,x
+ V2

i,y
+ 1

[

Vi,x,Vi,y, 1
]T
. (2)

Because the two horizontal vanishing points V 1 and V 2 are

order agnostic from a single RGB image, we use the Chamfer

ℓ2-loss for V 1 and V 2, and the ℓ2-loss for V 3 (the vertical

vanishing point):

LV (V, V̂ ) � min(‖V 1 − V̂ 1‖, ‖V 2 − V̂ 1‖)

+min(‖V 1 − V̂ 2‖, ‖V 2 − V̂ 2‖) + ‖V 3 − V̂ 3‖
2
2 .

2.3. Heatmap Vectorization

As seen from Figure 2, the outputs of the neural network

are essentially image-space 2.5D heatmaps of the desired

wireframe. Vecterization is needed to obtain a compact

wireframe representation.

Junction Vectorization. Recovering the junctions V from

the junction heatmaps J is straightforward. Let ϑC and ϑT
be the thresholds for JC and JT . The junction candidate sets

can be estimated as

Vt ← {p + Ot (p) | Jt (p) ≥ ϑt }, t ∈ {C,T}. (3)

Line Vectorization. Line vectorization has two stages.

In the first stage, we detect and construct the line candi-

dates from all the corner C-junctions. This can be done

by enumerating all the pairs of junctions u, w ∈ VC , con-

necting them, and testing if their line confidence score is

greater than a threshold c(u, w) ≥ ϑE . The confidence

score of a line with two endpoints u and w is given as

c(u, w) = 1
|uw |

∑

p∈P(u,w) E(p) where P(u, w) represents

the set of pixels in the rasterized line ®uw, and | ®uw | repre-

sents the number of pixels in that line.

In the second stage, we construct all the lines between

“T-T” and “T-C” junction pairs. We repeatedly add a T-

junction to the wireframe if it is tested to be close to a

detected line. Unlike corner C-junctions, the degree of a

T-junction is always one. So for each T-junction, we find

the best edge associated with it. This process is repeated

until no more lines could be added. Finally, we run a post-

processing procedure to remove lines that are too close or

cross each other. By handling C-junctions and T-junctions

separately, our line vectorization algorithm is both efficient

and robust for scenes with hundreds of lines. A more detailed

description is discussed in the supplementary material.

2.4. Image-Space 2.5D to World-Space 3D

So far, we have obtained vectorized junctions and lines in

2.5D image space with depth in a relative scale. However, in

scenarios such as AR and 3D design, absolute depth values
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are necessary for 6DoF manipulation of the 3D wireframe.

In this section, we present the steps to estimate them with

our network predicted vanishing points.

2.4.1 Calibration from Vanishing Points

In datasets such as MegaDepth [16], the camera calibration

matrix K ∈ R3×3 of each image is unknown, although it is

critical for a full 3D wireframe reconstruction. Fortunately,

calibration matrices can be inferred from three mutually or-

thogonal vanishing points if the scenes are mostly Manhat-

tan. According to [20], if we transform the orthogonal van-

ishing points V i to the calibrated coordinates V̄ i � K−1V i ,

then V̄ i should be mutually orthogonal, i.e.,

V iK
−T K−1V j = 0, ∀i, j ∈ {1, 2, 3}, i , j .

These equations impose three linearly independent con-

straints on K−T K−1 and would enable solving up to three

unknown parameters in the calibration matrix, such as the

optical center and the focal length.

2.4.2 Depth Refinement with Vanishing Points

Due to the estimation error, the predicted depth map may

not be consistent with the detected vanishing points V i . In

practice, we find the neural network performs better on esti-

mating the vanishing points than predicting the 2.5D depth

map. This is probably because there are more geometric

cues for the vanishing points, while estimating depth re-

quires priors from data. Furthermore, the unit of the depth

map might be unknown due to the dataset (e.g., MegaDepth)

and the usage of SILog loss. Therefore, we use the vanishing

points to refine the junction depth and determine its absolute

value. Let z̃v � DJv (v) be the predicted depth for junction

v from our neural network. We design the following convex

objective function:

min
z,α

3
∑

i=1

∑

(u,v)∈Ai



(zu ū − zv v̄) × V̄ i





2

+ λR

∑

v∈V

‖zv − αz̃v ‖
2
2 (4)

subject to zv ≥ 1, ∀v ∈ V, (5)

λzu + (1 − λ)zv ≤ zw, (6)

∀w ∈ VT , (u, v) ∈ E : w = λu + (1 − λ)v,

where Ai represents the set of lines corresponding to van-

ishing point i; α resolves the scale ambiguity in the depth

dimension; ū � K−1[ux uy 1]T is the vertex position in the

calibrated coordinate. The goal of the first term in Equa-

tion (4) is to encourage the line (zu ū, zw w̄) parallel to van-

ishing point V̄ i by penalizing over the parallelogram area

spanned by those two vectors. The second term regular-

izes zv so that it is close to the network’s estimation z̃v up

to a scale. Equation (5) prevents the degenerating solution

z = 0. Equation (6) is a convex relaxation of λ

zu
+

1−λ
zw
≥ 1

zv
,

the depth constraint for T-junctions.

3. Datasets and Annotation

One of the bottlenecks of supervised learning is inad-

equate dataset for training and testing. Previously, [12]

develops a dataset for 2D wireframe detection. However,

their dataset does not contain the 3D depth or the type of

junctions. To the best of our knowledge, there is no public

image dataset that has both wireframe and 3D information.

To validate our approach, we create a hybrid dataset with a

larger number of synthetic images of city scenes and smaller

number of real images. The former has accurate 3D geome-

try and automatically annotated ground truth 3D wireframes

from mesh edges, while the latter is manually labelled with

less accurate 3D information.

SceneCity Urban 3D Dataset (SU3). To obtain a large

number of images with accurate geometrical wireframes,

we use a progressively generated 3D mesh repository,

SceneCity3. The dataset is made up of simple polygons

with artist-tuned materials and textures. We extract the

C-junctions from the vertices of the mesh and compute

T-junctions using computational geometry algorithms and

OpenGL. Our dataset includes 230 cities, each containing

8× 8 city blocks. The cities have different building arrange-

ments and lighting conditions by varying the sky maps. We

randomly generate 100 viewpoints for each city based on cri-

teria such as the number of captured buildings to simulate

hand-held and drone cameras. The synthetic outdoor images

are then rendered through global illumination by Blender,

which provides 23, 000 images in total. We use the images

of the first 227 cities for training and the rest 3 cities for

validation.

Realistic Landmark Dataset. The MegaDepth v1 dataset

[17] contains real images of 196 landmarks in the world. It

also contains the depth maps of these images via structure

from motion. We select about 200 images that approxi-

mately meet the assumptions of our method, manually label

their wireframes, and register them with the rough 3D depth.

In our experiments, we pretrain our network on the SU3

dataset, and then use 2/3 of the real images to finetune the

model. The remaining 1/3 is for testing.

4. Experiments

We conduct extensive experiments to evaluate our method

and validate the design of our pipeline with ablation studies.

In addition, we compare our method with the state-of-the-

art 2D wireframe extraction approaches. We then evaluate

the performance of our vanishing point estimation and depth

refinement steps. Finally, we demonstrate the examples of

our 3D wireframe reconstruction.

3https://www.cgchan.com/
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4.1. Implementation Details

Our backbone is a two-stack hourglass network [22].

Each stack consists of 6 stride-2 residual blocks and 6 nearest

neighbour upsamplers. After the stacked hourglass feature

extractor, we insert different “head” modules for each map.

Each head contains a 3 × 3 convolutional layer to reduce

the number of channels followed by a 1 × 1 convolutional

layer to compute the corresponding map. For vanishing

point regression, we use a different head with two consecu-

tive stride-2 convolution layers followed by a global average

pooling layer and a fully-connected layer to regress the po-

sition of the vanishing points.

During the training, the ADAM [15] optimizer is used.

The learning rate and weight decay are set to 8 × 10−4

and 1 × 10−5. All the experiments are conducted on four

NVIDIA GTX 1080Ti GPUs, with each GPU holding 12

mini-batches. For the SceneCity Urban 3D dataset, we train

our network for 25 epochs. The loss weights are set as

λJ = 2.0, λO = 0.25 λE = 3.0, and λD = 0.1 so that all the

loss terms are roughly equal. For the real-world dataset, we

initialize the network with the one trained on the SU3 dataset

and use a 10−4 learning rate to train for 5 epochs. We hori-

zontally flip the input image as data-augmentation. Unless

otherwise stated, the input images are cropped to 512× 512.

The final output is of stride 4, i.e., with size 128 × 128.

During heatmap vectorization, we use the hyper-parameter

ϑC = 0.2, ϑT = 0.3, and ϑE = 0.65.

4.2. Evaluation Metrics

We use the standard AP (average precision) from object

detection [6] to evaluate our junction prediction results. Our

algorithm produces a set of junctions and their associated

scores. The prediction is considered correct if its ℓ2 distance

to the nearest ground truth is within a threshold. By this cri-

terion, we can draw the precision-recall curve and compute

the mean AP (mAP) as the area under this curve averaging

over several different thresholds of junction distance.

In our implementation, mAP is averaged over thresh-

olds 0.5, 1.0, and 2.0. In practical applications, long edges

between junctions are typically preferred over short ones.

Therefore, we weight the mAP metric by the sum of the

length of the lines connected to that junction. We use APC

and APT to represent such weighted mAP metric for C-

junctions and T-junctions, respectively. We use the inter-

section over union (IoU) metric to evaluate the quality of

line heatmaps. For junction depth map, we evaluate it on

the positions of the ground truth junctions with the scale

invariant logarithmic error (SILog) [3, 8].

4.3. Ablation on Joint Training and Loss Functions

We run a series of experiments to investigate how differ-

ent feature designs and multi-task learning strategies affect

the wireframe detection accuracy. Table 1 presents our abla-

supervisions metrics

J O E D J E D

CE ℓ1 ℓ2 CE SILog Ord APC APT IoUE SILog

(a) X 65.4 57.1 / /

(b) X X 69.3 55.8 / /

(c) X X 72.8 60.1 / /

(d) X / / 73.3 /

(e) X X X 74.3 61.0 74.2 /

(f) X / / / 3.59

(g) X X / / / 4.14

(h) X X X X 74.4 61.2 74.3 3.04

Table 1. Ablation study of multi-task learning on 3D wireframe

parsing. The columns under “supervisions” indicate what losses

and supervisions are used during training; the columns under “met-

rics“ indicate the performance given such supervision during eval-

uation. The second row shows the symbols of the feature maps;

the third row shows the loss function names of the corresponding

maps. “CE” stands for the cross entropy loss, “SILog” loss is pro-

posed by [3], and “Ord” represents the ordinary loss in [16]. “/”

indicates that the maps are not generated and thus not evaluable.

tion studies with different combinations of tasks to research

the effects of joint training. We also evaluate the choice of

ℓ1- and ℓ2-losses for offset regression and the ordinary loss

[16] for depth estimation. We conclude that:

1. Regressing offset is significantly important for local-

izing junctions (7.4 points for APC and 3 points for

APT ), by comparing rows (a-c). In addition, ℓ2 loss is

better than ℓ1 loss, probably due to its smoothness.

2. Joint training junctions and lines improve in both tasks.

Rows (c-e) show improvements with about 1.5 points in

APC , and 0.9 point in APT and line IoU. This indicates

the tight relation between junctions and lines.

3. For depth estimation, we test the ordinal loss from [16].

To our surprise, it does not improve the performance on

our dataset (rows (f-g)). We hypothesis that this is be-

cause the relative orders of sparsely annotated junctions

are harder to predict than the foreground/background

relationship in [16].

4. According to rows (f) and (h), joint training with junc-

tions and lines slightly improves the performance of

depth estimation by 0.55 SILOG point.

4.4. Comparison with 2D Wireframe Extraction

One recent work related to our system is [12], which

extracts 2D wireframes from single RGB images. However,

it has several fundamental differences from ours: 1) It does

not differentiate between corner C-junctions and occluding

T-junctions. 2) Its outputs are only 2D wireframes while

ours are 3D. 3) It trains two separated networks for detecting

junctions and lines. 4) It detects texture lines while ours only

detects geometric wireframes.
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Figure 3. Comparison with [12] on 2D wireframe detection. We

improve the baseline method by 4 points.

avg[EV] med[EV] avg[Ef] med[Ef] failures

Ours 2.69◦ 1.55◦ 4.02% 1.38% 2.3%

[4, 26] 4.65◦ 0.14◦ 12.40% 0.21% 20.0%

Table 2. Performance comparison between our method and LSD/J-

linkage [4, 26] for vanishing point detection. EV represents the

angular error of V i in degree, Ef represents the relative error of

the recovered camera focal lengths, and “failures” represents the

percentage of cases whose EV > 8◦.

In this experiment, we compare the performance with

[12]. The goal of this experiment is to validate the impor-

tance of joint training. Therefore we follow the exact same

training procedure and vectorization algorithms as in [12]

except for the unified objective function and network struc-

ture. Figure 3 shows the comparison of precision and recall

curves evaluated on the test images, using the same evalu-

ation metrics as in [12]. Note that due to different network

designs, their model has about 30M parameters while ours

only has 19M. With fewer parameters, our system achieves

4-point AP improvement over [12] on the 2D wireframe

detection task.

As a sanity check, we also train our network separately

for lines and junctions, as shown by the green curve in

Figure 3. The result is only slightly better than [12]. This

experiment shows that our performance gain is from jointly

trained objectives instead of neural network engineering.

4.5. Vanishing Points and Depth Refinement

In Section 2.4, vanishing point estimation and depth re-

finement are used in the last stage of the 3D wireframe

representation. Their robustness and precision are critical

to the final quality of the system output. In this section, we

conduct experiments to evaluate the performance of these

methods.

For vanishing point detection, Table 2 shows the per-

formance comparison between our neural network-based

method and the J-Linkage clustering algorithm [26, 25] with

(a) Ground truth (b) Before refinement (c) After refinement

Figure 4. Depth refinement with vanishing points. (b) shows a

rendering of the wireframe from z̃v from a slightly different view,

while (c) shows the wireframe improved by the optimization in

Section 2.4.2.

the LSD line detector [4] on the SU3 dataset. We find that

our method is more robust in term of the percentage of

failures and average error, while the traditional line cluster

algorithm is more accurate when it does not fail. This is

because LSD/J-linkage applies a stronger geometric prior,

while the neural network learns the concept from the data.

We choose our method for its simplicity and robustness, as

the focus of this project is more on the 3D wireframe repre-

sentation side, but we believe the performance can be further

improved by engineering a hybrid algorithm or designing a

better network structure.

We also compare the error of the junction depth before

and after depth refinement in term of SILog. We find that on

65% of the testing cases, the error is smaller after the refine-

ment. This shows that the geometric constraints from van-

ishing points does help improve the accuracy of the junction

depth in general. As shown inFigure 4, the depth refinement

also improves the visual quality of the 3D wireframe. On

the other hand, the depth refinement may not be as effective

when the vanishing points are not precise enough, or the

scene is too complex so that there are many erroneous lines

in the wireframe. Some failure cases can be found in the

supplementary material.

4.6. 3D Wireframe Reconstruction Results

We test our 3D wireframe reconstruction method on both

the synthetic dataset and the real images. Examples illustrat-

ing the visual quality of the final reconstruction are shown

in Figures 5 and 6. A video demonstration can be found

in http://y2u.be/l3sUtddPJPY. We do not show the

ground truth 3D wireframes for the real landmark dataset

due to its incomplete depth maps.
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Ground truth 2D Our Inferred 2D [12] Inferred 2D Ground truth 3D Inferred 3D Ground truth 3D Inferred 3D

Figure 5. Test results on the synthetic SceneCity image dataset. Left group: comparison of 2D results between the ground truth (column 1),

our predictions (column 2), and the results from wireframe parser [12]. Middle (columns 3-4) and right groups (columns 5-6): novel views

of the ground truths and our reconstructions to demonstrate the 3D representation of the scene. The color of the wireframes visualizes

depth.

Ground truth Inferred Novel views Ground truth Inferred Novel views

Figure 6. Test results on real images from MegaDepth.
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