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Abstract

Multi-modality perception is essential to develop in-

teractive intelligence. In this work, we consider a new

task of visual information-infused audio inpainting, i.e.

synthesizing missing audio segments that correspond to

their accompanying videos. We identify two key aspects

for a successful inpainter: (1) It is desirable to operate

on spectrograms instead of raw audios. Recent advances

in deep semantic image inpainting could be leveraged to

go beyond the limitations of traditional audio inpainting.

(2) To synthesize visually indicated audio, a visual-audio

joint feature space needs to be learned with synchro-

nization of audio and video. To facilitate a large-scale

study, we collect a new multi-modality instrument-playing

dataset called MUSIC-Extra-Solo (MUSICES) by enriching

MUSIC dataset [51]. Extensive experiments demonstrate

that our framework is capable of inpainting realistic and

varying audio segments with or without visual contexts.

More importantly, our synthesized audio segments are

coherent with their video counterparts, showing the effec-

tiveness of our proposed Vision-Infused Audio Inpainter

(VIAI). Code, models, dataset and video results are avail-

able at https://github.com/Hangz-nju-cuhk/

Vision-Infused-Audio-Inpainter-VIAI.

1. Introduction

Audio-visual analysis provides valuable and comple-

mentary information that is crucial for comprehensively

modeling sequential data. Substantial progress has been

achieved in recent years. For example, it has been shown

that the two modalities of audio and video can be trans-

formed from one to the other [10, 23], that is, from video

to audio [11, 9] and from audio to video [18, 52, 53].

This work focuses on a new task of audio inpainting, by

using both video and audio as constraints. The inpainted

audio segment is required to have the semantic concepts of

the constraints, meaning that it has to be not only auditory

reasonable but also visually coherent with the video. The
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Figure 1. Problem description. We study the problem of inpainting

a clip of missing audio data, particularly with its corresponding

video given. It is formulated into deep spectrogram inpainting,

and video information is infused for generating coherent audio.

setting of the problem is illustrated in Fig. 1.

In real life, audio signals often suffer from local distor-

tions where the intervals are corrupted by impulsive noise

and clicks. Even more, a clip of audio might be wiped out

due to accident or transmission failure loss. To deal with

such cases, a feasible operation is to fill the corrupted parts

with newly generated samples, which can be referred to as

audio inpainting [1].

While directly predicting a missing piece of audio is

difficult, concrete information about audio signals could

be provided by intact visual information accompanying the

audio data. The visual cue can be regarded as both a

constraint and self-supervision to guide audio generation.

In this paper, we present a vision-infused method that

can deal with both audio-only and audio-visual associated

inpainting.

Audio inpainting is significantly challenging as a conse-

quence of audio’s property of high sampling rate and long-

range dependency. Traditional methods normally exploit

the sparse representation of audio [1, 7, 8, 38, 43], and seek

to find similar signal structures. However, similar structures

do not always exist in the given inputs, especially when

the inputs are short. Moreover, most of the previous work

cannot handle missing lengths longer than 0.25 seconds [7].

And neither are these methods able to associate with given

videos.

Another idea is to apply recent advances in audio genera-

tive tasks by using deep learning. A recent work that closely
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related to ours is [53], which uses videos as conditions to

directly generate audio signals. However, previous methods

have not explored the smoothness constraint on both sides

of the to-be-inpainted audio.

To tackle these problems, our key insight is that we

can effectively exploit the context information in audio by

viewing the compact audio representation of spectrogram

as a continuous signal. Inspired by recent deep models of

image inpainting [37, 26, 49], we formulate the problem

in the same way, regarding spectrogram as a special kind

of “image”, by treating time and frequency as height and

width. Researchers have shown that spectrogram can

be effectively processed by convolutional neural networks

(CNNs) [12, 51]. We believe a convolutional encoder-

decoder network is able to recover high-level timbre and

low-level frequency of the missing audio parts. This

requires the spectrogram to contain enough yet simple in-

formation. With this motivation, we use the representation

of Mel-spectrogram and design a spectrogram inpainting

pipeline with generative adversarial networks (GAN) [22].

We then incorporate visual information into this pipeline.

We propose the core of extracting desired information is

to find a joint feature space where audio and video are

synchronized so that the shared rhythm information could

be provided to the network. Finally, a WaveNet [44]

decoder with mixture logistic loss is trained to recover

high-quality audio from the spectrogram for the target

source (instruments for music). The WaveNet decoder

also benefits us at utilizing previous clean data. Since our

spectrogram inpainting pipeline is inspired by the computer

vision community, and the model itself is designed to be

able to extend to audio-visual version, the proposed audio

inpainting system is, in principle, infused by visual signal.

Therefore we formally term our framework as Vision-

Infused Audio Inpainter (VIAI).

Our contributions are summarized as follows. (1) We

propose a novel framework for audio inpainting inspired by

image inpainting to perform on spectrograms. An inpainted

spectrogram is then converted into coherent audio with a

WaveNet decoder. (2) We incorporate visual cues into this

framework and, to the best of our knowledge, design the

first system targeting video-associated audio inpainting. (3)

Along with our model, we also introduce novel training

strategies for effective learning. Extensive experiments

show that our framework can successfully handle missing

music clips at lengths around 0.8 seconds with only 4

seconds inputs. Such lengths cannot be handled by most

of the existing audio inpainting methods. (4) We extend

the original MUSIC dataset [51] to a richer version, named

MUSICES, to benefit the entire audio-visual research com-

munity.

2. Related Work

Audio Inpainting. Previous research mainly resolves audio

inpainting from a signal processing point of view. Sparse

approximation in the time-frequency domain has been ex-

plored in [1, 42], but silence will be introduced when gap

exceeds 50ms. Self-similarity has been employed to inpaint

gaps up to 0.25 seconds using time-evolving features [7].

Recently, using similarity graphs, [38] proposes to inpaint

long music segments, but it cannot handle segments shorter

than 3 seconds. More importantly, similar frames do not

exist for certain in the given intact input areas. This kind

of method would fail when such cases are presented. Only

very recently, some contemporary works exploit CNNs for

audio inpainting [31].

Audio Synthesis. By applying deep learning, genera-

tive models such as SampleRNN [32], WaveNet [44] and

their variants [16, 34] have successfully generated high

fidelity raw audio samples. One of the most important

developments is to use them as decoders for conditional

audio generation tasks such as Text-to-Speech Synthesis

(TTS). For example, acoustic features designed by domain

expertise have been used as inputs for audio synthesis based

on SampleRNN [2] and WaveNet [5, 21]. Latter in Deep

Voice 3 [39] and Tacotron 2 [41], Mel-spectrogram has

been successfully used to train WaveNets. Inspired by their

works, we adopt a similar structure to generate raw audios

in the proposed task.

Audio-Visual Joint Analysis. Recent years witness the

rapid growth in audio-visual joint learning tasks such as

audio-visual speech recognition [13, 12], learning audio-

visual correspondence [3, 4, 6], localization [51, 40], syn-

chronization [14, 35, 29], audio to visual generation [11,

52, 23], visual to audio generation [18, 53, 36], visually

aided source separation [35, 17, 19], and spatial audio

generation [20, 33].

Among them, works that map visual to sound i.e.

source separation and sound generation are more related

to ours. Source separation works perform more often on

spectrograms. Zhao et al. [51] use Short-Time-Fourier-

Transforms (STFT) to realize source localization and sep-

aration. Similarly, Ephrat et al. [17] use talking face videos

to form masks on STFTs of speech signals to achieve

speech separation. Owens and Efros [35], on the other

hand, concatenate visual features in the bottleneck of a

spectrogram U-net. Unlike source separation that all audio

information to be recovered has already existed, generating

new audio would be much more difficult. In [36], hitting

sound is predicted specifically. And [53] directly generated

sound for in the wild videos using SampleRNN. But our

work has a different setting from all of them.

Image Inpainting. Image inpainting [37, 48] is a well-

studied topic in computer vision and graphics. Deep

learning methods have been successfully applied to this
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Figure 2. The whole Vision-Infused Audio Inpainter system pipeline. In the above bracket (a) is the VIAI-A inpainting schedule. First

the input corrupted audio is processed into Mel-spectrogram with a missing piece. An encoder-decoder pair {Ea, Ga} with one skip

connection at the second layer restores the spectrogram to a complete one sra. Below (b) is the VIAI-AV pipeline. Bottleneck features

f t

a, fv are extracted from audio and visual encoder Ea and Ev . They are trained to be synchronized with each other. At the same time,

concatenating fv with the distorted audio feature f i

a from Ea, the decoder Gav reconstruct the spectrogram srav base on both information.

The reconstruction output results sra and srav are constrained with reconstruction loss and GAN loss with the target st. Finally the results

are sent into the pretrained WaveNet decoder to generate raw audio.

field with GANs. Context Encoders [37] firstly trains

deep encoder-decoder networks for inpainting with large

holes. [26] extends it with global and local discriminators

as adversarial losses. Recently, researchers dig into the

combination of deep learning methods and exemplar-based

approaches [47, 45]. Same practice could be applied in our

framework, but for simplification of our proposed method,

we just borrow the encoder-decoder baseline.

3. Our Approach

We introduce our Vision-Infused Audio Inpainter (VIAI)

in this section. VIAI consists of two parts, a pure audio

module “VIAI-Audio (VIAI-A)”, and an audio-visual joint

inpainting module “VIAI-Audio-Visual (VIAI-AV)”. They

all share a modified WaveNet decoder. Fig 2 depicts the

entire pipelines. The main idea is to turn audio inpainting

into spectrogram inpainting in an image inpainting style.

We first borrow undistorted audio around the missing part

to form an input audio segment ai. Then it is transformed

into its Mel-spectrogram representation si given the missing

data length and position. Our goal is to reconstruct a

spectrogram sr, which is as similar to the target one st as

possible.

3.1. Audio Inpainting as Spectrogram Inpainting

Pipeline. The yellow bracket at the top of Fig 2 (a) shows

the whole procedure of VIAI-A. We adopt an encoder-

decoder architecture Neta = {Ea;Ga} with one skip

connection. The bottleneck feature f i
a is a 1-d feature map

(size of 1 × time × channel), which gives the network the

ability to deal with different input lengths. The output of the

network is the reconstructed spectrogram sra = Neta(s
i).

Reconstruction. While the skip connection benefits the

network to directly take advantage of low-level information

of the clean spectrogram by simple up-sampling operations,

we design a weight adjusting training scheme to construct

the missing part rely on high-level information from the

bottleneck. Let st{m} be the target of the originally missing

spectrogram parts and sra{m} be the predicted correspond-

ing parts where m denotes “missing”. When applying the

reconstruction L1 loss, the weights between the originally

clean and missing areas on the prediction and the target

varies according to training time. The L1 reconstruction

loss can be written as:

La
re = η1(t)‖s

t − sra‖1 + ‖st{m} − sra{m}‖1, (1)

where η1(t) is a parameter which decays with the training

steps, and set to a very small value after certain time. We

find that if η1(t) is fixed to 1, the network will learn mainly

up-sampling. But if it is set to be very small at the first

place, the network cannot restore the clean spectrogram

clearly thus audio smoothness could be hurt.

Besides, a discriminator D is trained with Patch-

GAN [27] objectives to maintain the local coherence and

global similarity:

La
GAN(Neta, D) = Est [logD(st)] +

Esi [log(1− D(sra)] (2)
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The total generation loss for VIAI-A is written as La
Gen. β

is a hyper-parameter that leverages the two losses.

La
total = La

Gen = La
GAN + βLa

re. (3)

3.2. Joint VisualAudio Spectrogram Inpainting

Pipeline. The pipeline for VIAI-AV is illustrated in the

lower part (b) of Fig 2. It evolves into a conditional

inpainting problem by introducing the video encoder Ev

along with a synchronization module. The structure of

audio encoder Ea is kept unchanged. With the feature

extracted by Ev to be fv , we aim to generate srav =
Gav(Ea(s

i), fv).
Infusing Visual Cues. The video corresponding to the tar-

get audio is provided. We believe motion information [30]

is strongly associated with the change of audio melody, i.e.,

intense movements with rapid rhythms, so optical flows are

extracted. Besides, [53] shows that using both image and

flow data can help improve direct audio generation results

from videos. Each image and flow within this video are

sent into encoder Ev , which contains ResNet encoders EI ,

EF and down-sampling convolution layers Efuse. Note that

we control the down-sampling rate of Efuse to let fv match

the size of fa.

Audio-Visual Synchronization. Redundant information

is contained in videos for audio reconstruction such as

person appearances, the position of the instruments, and

changing of background settings. To capture the association

between videos and audios, we propose to find a joint audio-

visual space with synchronized rhythm information. In this

joint space, visual feature fv is expected to be close to its

corresponding intact target audio feature f t
a = Ea(s

t). We

choose to use the contrastive loss as performed in [14, 29]

that maps features into the same space. The training

objective is to minimize the distance between synchronized

audio and video features and force the distance between

unpaired data to be larger than a certain margin γ :

LSync =

N∑

n=1

‖f t
a(n) − fv(n)‖

2
2 +

N,N∑

n 6=m

max(γ − ‖f t
a(n) − fv(m)‖2, 0)

2, (4)

where N is the number of data in one batch, and γ is set to 1.

All the features are normalized first before implementation.

The negative samples are drawn in a similar way as [29].

Reconstruction with Probe Loss. The video feature fv
is then concatenated with the distorted bottleneck audio

feature f i
a to form fav , and sent to the new audio-visual

decoder Gav for spectrogram reconstruction srav . The train-

ing objective is the same as section 3.1, only substituting

the subscript from a to av and get the generation loss:

Lav
Gen = Lav

GAN + βLav
re .

In this video-associated scenario, crucial information

about the missing piece is expected to be extracted from

the condition feature fv by the decoder Gav . As f t
a

is the compression of the clean spectrogram, information

recovery from f t
a is easier and more obvious. So we

reconstruct sraa′ = Gav(Ea(s
i), f t

a) using a similar Laa′

Gen

as a probe loss to guide the learning of the networks. The

idea is that while we restrict fv ≈ f t
a by applying the

synchronization loss, we can suppose Gav(Ea(s
i), fv) ≈

Gav(Ea(s
i), f t

a). The process of this additional clean-

audio-based inpainting module can be specifically named

as VIAI-AA’. The success of generating terrific results with

VIAI-AA’ also proofs the ability of passing information

from the bottleneck to the output.

The overall objective of VIAI-AV can be written as:

Lav
total = η2(t)L

aa′

Gen + Lav
Gen + LSync. (5)

η2(t) is a decay parameter that is similar with η1(t).

3.3. Spectrogram to Audio

WaveNet Decoder. At the end of VIAI, a WaveNet

decoder is attached for both the branches. Our choice

of Mel-spectrogram is a way of data compression. With

less information to recover for spectrogram inpainting, it

is more complicate to transform it back into raw audio

signals. So we utilize a modified version of the WaveNet

architecture [44] to decode spectrogram into raw audio

samples. WaveNet is an autoregressive model that is

composed of dilated convolutions and non-linear activa-

tions. During training, it can take raw audio data as input

and Mel-spectrogram as temporal conditions to predict the

next-time-step audio in a teacher-forcing way. The Mel-

spectrogram is first processed using up-sampling convolu-

tions to match the sampling rate of raw audio data. During

inference, WaveNet takes in one raw audio and upsampled

spectrogram data at each time step, and generates the next

time step’s raw audio data. It models the conditional

distribution between audio data and spectrogram p(a|s):

p(a|s) =

T∏

t=1

p(a(t)|a(1), · · · , a(t−1), s(t)) (6)

We follow Parallel WaveNet [34] and Tacotran 2 [41] to

use the discretized mixture logistic loss for training. One

WaveNet model is pretrained for each class using clean

audio samples and Mel-spectrograms in the dataset. A

uniform WaveNet can also be trained in the same manner

of multi-speaker TTS.

Conditioning on Past Audio. In audio inpainting task,

instead of simply modeling p(ar|sr), we take advantage of

the WaveNet to rely the generation on both spectrogram and

previous clean samples to model p(ar|sr,ai). Suppose the

audio data is missing from time step t0 to T , the distribution
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Figure 3. Data statistic comparing with the original MUSIC

dataset. The x-axis is the class name and the y-axis is the number

of videos per class.

we model for the reconstructed audio ar given existing

input audio ai and reconstructed spectrogram sr at time step

t (t > t0) can be written as:

p(ar|sr,ai) =

T∏

t=t0

p(ar(t)|a
i
(1), · · · , a

i
(t0−1), (7)

ar(t0), · · · , a
r
(t−1), s

r
(t))

Finally, this customize WaveNet decoder can be integrated

into our framework to constitute an end-to-end raw audio

inference and training system.

4. MUSIC-Extra-Solo Dataset

Selection and Organization. The strong association be-

tween audio and video can usually be found in videos of

instrument playing. For example, the positions of hands

and movements of the bow on strings can cast certain audio

notes. But normally people cannot analysis the music notes

according to only visual information. This provides our task

with a suitable and challenging data option, so we turn to

the recently proposed MUSIC dataset [51]. However, the

released version has only around 50 videos for each class,

which is not sufficient. Therefore, we extend the MUSIC

dataset to approximately triple its original size on 9 of its

major instruments. The additional videos are all solos, thus

our extension is called the MUSIC-Extra-Solo (MUSICES)

dataset. The statistics of the new dataset compared to the

original one are summarized in Fig. 3.

Realistic Recorded Data. Note that different from artificial

music data generated with digital inference software such as

MIDI, and videos recorded in a controlled lab environment,

music data in MUSICES are mostly home camera recorded

with minor background noise, which cast great difficulty

for audio generation. The data are selected to be stable

with good quality. In the original MUSIC dataset, important

movements in certain videos could be invisible. This kind of

video is kept out in our dataset. Different acoustic recording

environments lead to domain differences of audios even in

one single class, leading to a great challenge to our task.

Detecting Video Shots. We also detect the shots changing

within the dataset and provide the begin and end time of

(i) Salient area selection base on flows

(ii) Cropped and padded images and flows

(a) Video data processing (b) Data initialization

(ii) Nearest clean spectrum bins

(i) Clean Spectrogram

(iii) Initialized input

Corrupted

Interpolated

Figure 4. Data pre-processing. (a) illustrate the procedure of flow-

based salient area cropping for videos. (b) shows the results of

spectrogram interpolating initialization

each shot. We observe that videos may contain black transi-

tion frames and clips that are silent before the player starts

playing. So we split the videos according to our detected

shots and abandon those non-auditory ones. Besides, the

first 6 seconds of each video is cut out for data cleaning.

Note that the train/test sets are divided first before cutting

the videos in shots.

Set-Splitting Protocol. The train/test split is performed at

the video level. Specifically, we split 10% of the videos as

a fixed testing set and randomly sampled 5% as a held-out

validation set.

5. Experiments

Data Processing. Data processing is important in the

realization of our approach, so we elaborate in this part.

All audio samples are preprocessed to 16kHz sampling rate,

then all raw audio amplitudes are normalized to between

-1 and 1. Our Mel-spectrograms can be computed by

firstly performing STFT using a frame length of 1280 points

(corresponding to 80ms) and a hop size of 320 points

(20ms). The STFT magnitude is transformed to Mel scale

using an 80 channel Mel filterbank with a frequency span

from 125Hz to 7.6kHz, followed by log dynamic range

compression. The spectrograms are normalized to between

0 and 1.

The spectrogram frame length and hop size are designed

to map the 12.5 frame rate of its corresponding video. So

temporally one video frame can be mapped to 4 spectrum

bins. Optical flows are extracted by using TV-L-1 algo-

rithm [50] and bounded to be maximum 20 pixels. Salient

areas inside a video are approximated by setting a threshold

according to the average of all optical flow values over the

video. Images and flows in one video are all cropped to

this rectangular area with motion detected, and padded to

be square. Fig. 4 (a) depicts the procedure. Finally, the

pixel values of images and flows are normalized to between

-1 and 1.
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Score \ Approach SampleRNN [32] Visual2Sound [53] bi-SampleRNN bi-Visual2Sound VIAI-A VIAI-AV VIAI-AA’

PSNR 9.1 10.2 12.8 13.6 22.2 23.2 26.6

SSIM 0.33 0.35 0.38 0.41 0.61 0.64 0.75

SDR 4.89 3.70 4.20 4.72 6.54 6.63 6.89

OPS 51.1 51.3 51.2 52.2 52.4 56.3 56.7

Table 1. Quantitative results. The upper half are the evaluations of spectrograms and the lower half are the evaluation of audios. The

maximum of OPS is 100. Larger values are better among these metrics.

Model Configurations. The audio encoder Ea consists of 5

stride-2 convolution layers with 3× 3 kernels. The original

80 frequency bins are compressed to 1 by a final pooling

layer. Both the image and flow encoders EI and EF adopt

the ResNet-18 [24] architecture. One 256-length feature

vector can be obtained from each image and flow. Then the

features from one video clip are concatenated along the time

axis. The following Efuse has two stride-2 1d convolutions.

The decoder Ga has 15 convolution layers with 6 bilinear

upsample layers. The skip connection is at after the last

upsample layer. Decoder Gav different from Ga only at the

first convolution layer. It takes in twice the original feature

length. As for the WaveNet decoder, we use 24 dilated

convolution layers grouped into 3 dilation cycles instead of

the original 30 layers for computational efficiency. One set

of encoder-decoder and WaveNet model is trained for each

class in the dataset.

Experimental Settings. Throughout our experiments,

we only consider missing lengths longer than traditional

settings. When the missing length is short, differences

between methods become difficult to be discriminated, and

this problem is more challenging and realistic when the

missing length is longer so this is the focus of our paper.

Our choice of training input data is 4s. The distortion is

shorter than 1s but longer than 0.4s. The 4-second raw audio

corresponds to an 80×200 size spectrogram and maps to 50

video frames. The bottle-neck feature map is extracted to be

256× 13 with 13 to be the compressed time dimension.

Implementation Details. During training, we manually

crop a clip randomly within the clean spectrogram to create

distortion. Different from image inpainting, the distorted

part will be along the time axis (see Fig 4 (b) for visu-

alization of input spectrogram ). Based on the continuity

of audio data, we initialize it to be the interpolation of the

nearest clean spectrum bins as shown in Fig 4 (b), instead

of averaging “pixel” value like done in image inpainting.

This interpolation-based initialization can directly lead to

reasonable results under certain circumstances where the

missing part is a stable music note but would fail in most

cases.

Our implementation is based on PyTorch and trained

on 4 Titan X GPUs. Networks are trained using Adam

optimizer [28] with learning rate set to be 1e-4. The

batch size is 64 when training VIAI-A and 16 for VIAI-

AV. The decay parameter η1(t) and η2(t) are set to be

max(0.1, 0.9step/1000). The synchronization loss LSync

only updates video encoder Ev as this stabilizes training.

Competing Methods. We validate our spectrogram in-

painting is superior to deep learning-based autoregressive

audio generation methods with the listed baselines. Sam-

pleRNN [32] has the ability to predict long-term audios

with or without input conditions. We adopt it as an audio

inpainting baseline. Then we reproduce Visual2Sound [53]

as audio-visual baseline. Note that in original [53] paper,

only ImageNet and action recognition pretrain network

is used for feature extraction. For a fair comparison,

we initialize their video extraction network to be our

synchronizing pretrained ones. Also, we train an inverse

SampleRNN model and fuse the outputs from both sides

to create a bi-directional SampleRNN model. A similar

bi-Visual2Sound model is also implemented. These ap-

proaches are compared with our method VIAI-A, VIAI-

AV and a particular reference result of VIAI-AA’, which

is described in section 3.2 when reconstructing sraa′ . All

experiments are conducted on the same set of data with the

same pre-processing steps as described above. Note that we

also reproduce state of the art traditional audio inpainting

method which can handle the longest distortion [7], but it

fails to generate any results on our setting.

5.1. Quantitative Evaluation

Due to the limitation of paper length, we specifically

show the results of cello, as a particular case study for

quantitative evaluation. During the evaluation, the distorted

length is fixed to be 0.8s for comparison. In the same way

as training, the whole input audio length is selected to be

4 seconds. Only the missing area is considered under this

setting, and 20 corrupted segments are sampled from each

video in the test set for evaluation.

Evaluation for Spectrograms. We first evaluate the

directly inpainted results of spectrograms by regarding them

as images in the criterion of PSNR and SSIM [46] (larger is

better). For our baselines [32] and [53], the audios are first

generated then converted to Mel-spectrogram.

Evaluation for Audios. We adopt audio evaluation pro-

tocols SDR and OPS from the audio-source separation

community to evaluate the final inpainted raw audio results.

SDR is the Signal to Distortion Ratio that directly com-
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Input SampleRNN Visual2Sound VIAI-A VIAI-AV VIAI-AA' Ground Truth

Spectrogram

Area of Interest

Raw Audio

Area of Interest

Figure 5. Qualitative results of a 0.8s distortion at an arbitrary position for different methods. The area of interest is the part in its

corresponding red bracket above. Better viewed with zoom-in.

Table 2. Users’ Mean Opinion Scores. Lager is higher, with the maximum value to be 5.

MOS on \ Approach SampleRNN [32] Visual2Sound [53] VIAI-A VIAI-AV VIAI-AA’

Audio Quality 2.51 2.20 3.05 3.93 4.35

Audio-Visual Coherence 2.22 2.23 3.02 3.96 4.40

Similarity with Target 2.35 2.20 2.97 4.01 4.46

Table 3. Users’ MOS with bi-directional baselines.
MOS \ Approach bi-SampleRNN bi-Visual2Sound VIAI-A VIAI-AV

Audio Quality 2.89 2.92 3.12 3.86

Audio-Visual Coherence 2.76 2.90 3.05 3.93

Similarity with Target 2.31 2.65 3.11 3.96

paring the data samples numerically. Defined in PEMO-Q

auditory model [25], OPS is the Overall Perceptual Score,

which is also an objective assessment of audio quality

proposed in [15].

It can be observed from Fig. 4 that except for the model

directly borrow intact audio information for inpainting

(VIAI-AA’), results with video assistance surpass that of

audio-only. And our VIAI system outperforms purely

autoregressive models.

5.2. Qualitative Evaluation

We visualize a case in the form of spectrogram and raw

audio at Fig 5. The areas of interests are shown explicitly.

The comparison shows that while autoregressive models

fail to keep smoothness, our proposed VIAI-A generates

visually reasonable and continuous results. Moreover, with

the presence of visual information, our VIAI-AV model

captures more details than VIAI-A. The result of VIAI-

AA’ reaches the best, which proves that information in the

bottle-neck layer has indeed been used. For auditory results

please refer to our video.

User Study. Numerical numbers are hard to measure the

true quality of audio signal, so we conduct a user study

as a complimentary evaluation. The users are asked to

evaluate the results with respect to the following three

criteria; (1) Audio quality. The users mark how well the

inpainting qualities are by listening to audios only. (2)

Audio and Visual Coherence. To evaluate how well the

inpainted audios are associated with the given videos. (3)

The similarity to the ground truth. Compare the inpainted

results with the ground truths and decide to what extent they

are similar.

We utilize the widely used Mean Opinion Scores (MOS)

rating protocol. There are overall 20 users taking part in

the evaluation. The procedure for audio generation is the

same as quantitative evaluation. We generate 50 different

inpainted audio clips with all methods shown, and randomly

assign 10 of them to one of the users. The users then

give the ratings ranging from 1-5 with 5 to be the highest.

Finally, all opinions are averaged.

The main results are listed in Table 2. and results for

bi-directional methods are conducted additionally, listed

in Table 3. As illustrated, users prefer our VIAI system

comparing to baselines by significant margins. Apparently,

with video information infused, the system can inpaint

audios that are coherent with their corresponding videos.

5.3. Ablation Study

Audio-Visual Synchronizing. We propose that the audio-

visual synchronizing part is the core of extracting desired

visual information into the bottle-neck feature. Theoret-

ically, the network will directly take the short-cut of the
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MOS on \ Approach VIAI-AV’ (no sync) VIAI-AV (no prob) VIAI-AV (no con) VIAI-AV

Audio Quality 2.90 3.59 3.00 3.93

Audio-Viusal Coherence 2.95 3.65 3.17 3.96

Similarity with Target 3.00 3.56 3.49 4.01

Table 4. Ablation study with Mean Opinion Scores.

Class Violin Accordion Guitar Flute Xylophone Trumpet Saxophone Tuba Average

VIAI-A 21.1|0.64 22.2|0.59 21.3|0.58 22.4|0.60 20.2|0.56 20.2|0.62 21.5|0.59 20.0|0.57 21.2|0.60

VIAI-AV 22.4|0.66 23.6|0.61 21.9|0.61 23.5|0.63 21.1|0.58 21.0|0.64 22.5|0.60 21.2|0.57 22.2|0.62

Table 5. PSNR|SSIM results on all classes.

Approach \ Score PSNR SSIM

VIAI-A η1(0) 21.8 0.60

VIAI-A η1(+∞) 21.6 0.59

VIAI-A (old ini) 21.5 0.58

VIAI-A 22.2 0.61

VIAI-AV’ (no sync) 21.8 0.62

VIAI-AV (no prob) 22.5 0.63

VIAI-AV 23.2 0.64
Table 6. Ablation study with PSNR and SSIM metrics.

original VIAI-A path to inpaint base on spectrograms. We

believe to use solely the reconstruction loss on VIAI-AV

will render results similar to VIAI-A. The network trained

without it is denoted by VIAI-AV’.

Probe Loss of VIAI-AA’. Then we investigate the help

of the probe loss term Laa′

Gen. Besides the already shown

results in Section 5.1 and 5.2, which demonstrate that

latent information can be extracted from the bottle-neck,

we further explore the influence of the existence of the loss

term. The model is called VIAI-AV (no prob).

Weight Adjusting for Reconstruction To validate the

effectiveness of the weight adjusting term η1(t) and inter-

polation initialization, we train extra experiments on AIVI-

A by setting the coefficients of the loss term to be η1(0)
and η1(+∞). The experiment with the traditional fix value

initialization is also performed as VIAI-A (old ini).

WaveNet Conditioning. Lastly, we use WaveNet to

condition the generation on past results to further ensure

smoothness. The training outcome without the conditioning

term is addressed as VIAI-V (no con).

Ablation Results. The results regarding the metric of

PSNR and SSIM are shown in Table 4. Note that VIAI-

AV (no con) shares the same inpainted spectrogram as

VIAI-AV. We only perform subjective studies on these extra

modified VIAI-AV methods at Table 6. As depicted in the

tables, our final setting reaches optimal results regarding all

kinds of criteria.

5.4. Further Analysis

Analysis for Baselines. The baseline methods are designed

to generate continuous and reasonable results directly or

following a probe input segment. However, the task

of inpainting requires the generated parts to be coherent

with both sides of the existing audio parts. Particularly,

Visual2Sound [53] fails to capture fine-grained visual in-

formation when applied to instrument playing data during

our re-implementation.

Results on All Classes. We conduct inpainting experiments

on all 9 classes of our collected MUSICES dataset. The

PSNR|SSIM results of the rest classes are shown in Table 5.

Failure Cases. Failure could happen when the ground truth

is already contaminated by noise, or the changing of music

notes is too severe, which can be improved in the future.

6. Conclusion

In this paper, we have studied a new task and proposed

an effective system called Vision-Infused Audio Inpainter

(VIAI), which is capable of inpainting realistic and varying

audio segments to fill in the corrupted audio. Our model

integrates the intact corresponding video information

into our framework to create inpainting results, which

are coherent with the videos. Specifically, we formulate

the problem of audio inpainting in the form of deep

spectrogram semantic inpainting, and leverage the audio-

visual synchronizing supervision to create a joint space

for reconstruction. The novel usage of WaveNet decoder

that conditions on both previous data and the reconstructed

spectrogram enables the generation of high-quality raw

audio data. Compared to prior methods, our approach

can handle extreme inpainting settings that could not be

processed by existing works, and it achieves audio-visual

coherence audio-inpainting for the first time. Furthermore,

an enhanced multi-modality dataset named MUSICES

is contributed to the community for future audio-visual

research.
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