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Abstract

Attention mechanisms have become a popular compo-

nent in deep neural networks, yet there has been little ex-

amination of how different influencing factors and meth-

ods for computing attention from these factors affect per-

formance. Toward a better general understanding of atten-

tion mechanisms, we present an empirical study that ab-

lates various spatial attention elements within a generalized

attention formulation, encompassing the dominant Trans-

former attention as well as the prevalent deformable convo-

lution and dynamic convolution modules. Conducted on a

variety of applications, the study yields significant findings

about spatial attention in deep networks, some of which run

counter to conventional understanding. For example, we

find that the comparison of query and key content in Trans-

former attention is negligible for self-attention, but vital for

encoder-decoder attention. On the other hand, a proper

combination of deformable convolution with key content

saliency achieves the best accuracy-efficiency tradeoff in

self-attention. Our results suggest that there exists much

room for improvement in the design of attention mecha-

nisms.

1. Introduction

Attention mechanisms enable a neural network to fo-

cus more on relevant elements of the input than on irrel-

evant parts. They were first studied in natural language

processing (NLP), where encoder-decoder attention mod-

ules were developed to facilitate neural machine transla-

tion [2, 28, 14]. In computing the output for a given query

element (e.g., a target word in the output sentence), cer-

tain key elements (e.g., source words in the input sentence)

are prioritized according to the query. Later, self-attention

modules were presented for modeling intra-sentence rela-

∗Equal contribution. †This work was done when Xizhou Zhu and Dazhi

Cheng were interns at Microsoft Research Asia.

tions [6, 26, 30, 31, 36], where both the key and query

are from the same set of elements. In a milestone pa-

per [36], the Transformer attention module is presented,

superseding past works and substantially surpassing their

performance. The success of attention modeling in NLP

has led to its adoption in computer vision, where differ-

ent variants of Transformer attention are applied to recog-

nition tasks such as object detection and semantic segmen-

tation [20, 38, 17, 22, 46, 13], where the query and key are

visual elements such as image pixels or regions of interest.

In determining the attention weight assigned to a certain

key for a given query, there exist just a few properties of the

input that are commonly considered. One is the content of

the query. For the case of self-attention, the query content

may be the features at the query pixel in an image, or of a

word in a sentence. Another is the content of the key, where

a key may be a pixel within a local neighborhood of the

query, or another word within the sentence. The third is the

relative position of the query and key.

Based on these input properties, there are four possible

attention factors from which the attention weight for a key

with respect to a query is determined, as these factors must

account for information about the key. Specifically, these

factors are (1) the query and key content, (2) the query con-

tent and relative position, (3) the key content only, and (4)

the relative position only. In the latest version of Trans-

former attention [10], attention weights are expressed as a

sum of four terms (E1, E2, E3, E4), one for each of these at-

tention factors as illustrated in Fig. 1. The nature of the de-

pendencies involved with these terms vary. For example, the

first two (E1, E2) are sensitive to the query content. While,

the latter two (E3, E4) do not account for query content, but

rather they mainly capture salient key elements and exploit

global positional biases, respectively. Although attention

weights can be decomposed into terms based on these fac-

tors, their relative significance in various inference prob-

lems has not been closely examined in the literature. More-

over, prevalent modules like deformable convolution [9, 47]
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Figure 1. Illustration of different attention terms. The color bar above a sampling point denotes its content feature. The existence of content

features and/or relative position indicates that the term uses them for attention weight calculation.

and dynamic convolution [39], though seemingly orthogo-

nal to Transformer attention, also employ mechanisms that

focus on certain parts of an input. Whether these modules

can all be viewed from a unified perspective and how their

operational mechanisms differ also have not been explored.

In this work, we perceive Transformer attention, de-

formable convolution, and dynamic convolution modules as

various instantiations of spatial attention, involving differ-

ent subsets of the attention factors and accounting for these

factors in different ways. Towards disentangling the effects

of different attention factors and mechanisms, we present

an empirical study of spatial attention, in which various el-

ements of attention mechanisms are ablated within a gen-

eralized attention formulation. This investigation is con-

ducted on a variety of applications, namely neural machine

translation, semantic segmentation, and object detection.

From this study, we find that: 1) In the Transformer atten-

tion module, the query-sensitive terms, especially the query

and key content term, play a minor role in self-attention.

But in encoder-decoder attention, the query and key con-

tent term is vital. 2) Though deformable convolution uti-

lizes an attention mechanism based only on the query con-

tent and relative position term, it operates more effectively

and efficiently on image recognition than the counterpart in

Transformer attention. 3) In self-attention, the factors of

query content & relative position and key content only are

the most important. A proper combination of deformable

convolution and the key content only term in Transformer

attention delivers higher accuracy than that of the Trans-

former attention module, with much lower computational

overhead on image recognition tasks.

The observations made in this paper challenge the con-

ventional understanding of current spatial attention mecha-

nisms. For example, it is widely believed that their success

can mainly be attributed to query-sensitive attention, espe-

cially the query and key content term. This understanding

perhaps originates from the initial success of the encoder-

decoder attention module in neural machine translation.

Thus, in some recent variants [38, 22, 43, 13], like the

non-local block [38] and criss-cross attention module [22],

only the query and key content term is kept, with all the

other terms removed. These modules still function well

in self-attention applications, which strengthen this percep-

tion. However, our study suggests that this understanding is

incorrect. We find that these attention modules with only

query-sensitive terms actually perform on par with those

with only query-irrelevant terms. Our study further sug-

gests that this degeneration is likely due to the design of

the attention modules, rather than an inherent characteris-

tic of self-attention, since deformable convolution is found

to exploit query content & relative position effectively and

efficiently in image recognition tasks.

This empirical analysis suggests that there is much room

for improvement in the design of spatial attention mecha-

nisms in deep networks. Its findings are used in this pa-

per to make some initial headway in this direction, and it is

hoped that this study will spur further investigation into the

operational mechanisms used in modeling spatial attention.

2. Related Work

Development and application of attention-based mod-

ules. The field of NLP has witnessed steady development of

attention mechanisms in recent years [2, 28, 14, 36, 34, 10].

Starting from the introduction of an attention module in

neural machine translation [2], various attention factors and

weight assignment functions based on these factors have

been utilized. In [28], the inner product of vectors encod-

ing query and key contents is recommended for computing

attention weights, and absolute spatial positions are incor-

porated as an attention factor. In [14], the weight assign-

ment additionally accounts for the inner product of spatial

positions encoded in high-dimensional vectors. The land-

mark work of Transformer [36] set a new standard, and its

latest variants use relative positions instead of absolute posi-

tions for better generalization ability [34, 10]. In this paper,

we conduct the empirical study on the latest instantiation of

Transformer attention [10] from this family of works.

Motivated by their success in NLP tasks [2, 28, 14, 6, 26,

30, 31, 36], attention mechanisms have also been employed

in computer vision applications such as relational reasoning

among objects [3, 33], image captioning [41], image gener-

ation [45, 42], image recognition [20, 38, 17, 22, 46, 13],

and video recognition [48, 40]. In vision, the key and

query refer to visual elements, but aside from that, most

of these works use a formulation similar to Transformer at-

tention. Since the effects of different attention module ele-

ments may vary with the target application, we conduct the

empirical study on three different tasks that have been in-
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fluenced greatly by attention modeling, namely neural ma-

chine translation in NLP, and object detection and semantic

segmentation in computer vision.

Aside from Transformer attention, there are variants of

convolution, such as deformable convolution [9, 47] and

dynamic convolution [39], that also can be viewed as types

of attention mechanisms which operate on a subset of the

attention factors using different attention weight functions.

They also are included in the study for examination.

It is worth mentioning a dual form of spatial attention,

called channel-wise feature attention [37, 44, 21, 13]. As

different feature channels encode different semantic con-

cepts, these works seek to capture the correlations among

these concepts through activation/deactivation of certain

channels. Meanwhile, in the spatial domain, relationships

among elements at different spatial positions are modeled,

with the same attention weights on feature channels as-

signed to related spatial positions. The development of

channel-wise feature attention has been focused on cer-

tain image recognition tasks, like semantic segmentation

and image classification. In this paper, our empirical

study specifically examines spatial attention mechanisms

designed for broad application.

Analysis of spatial attention mechanisms. There ex-

ists relatively little analysis of spatial attention mecha-

nisms despite their prevalence in deep networks. This re-

search has largely been conducted by visualizing or an-

alyzing the learned attention weights of a whole atten-

tion module on only NLP tasks [15, 35, 16, 23]. Many

works [15, 35, 16] suggest that attention weight assignment

in encoder-decoder attention plays a role similar to word

alignment in traditional approaches [1, 7, 27, 5]. The im-

plicit underlying assumption in these works is that the input

elements accorded high attention weights are responsible

for the model outputs. However, recent research casts doubt

on this assumption [23], finding that attention weights do

not correlate well with feature importance measures, and

that counterfactual attention weight configurations do not

yield corresponding changes in prediction.

In this paper, we conduct the first comprehensive empir-

ical study on the elements of spatial attention modules over

both NLP and computer vision tasks. Different attention

factors and weight assignment functions are carefully dis-

entangled, with their effects directly measured by the final

performance on these tasks.

3. Study of Spatial Attention Mechanisms

To facilitate our study, we develop a generalized atten-

tion formulation that is able to represent various module

designs. We then show how the dominant attention mecha-

nisms can be represented within this formulation, and how

ablations can be conducted using this formulation with re-

spect to different attention module elements.

Generalized attention formulation

Given a query element and a set of key elements, an at-

tention function adaptively aggregates the key contents ac-

cording to attention weights that measure the compatibility

of query-key pairs. To allow the model to attend to key con-

tents from different representation subspaces and different

positions, the outputs of multiple attention functions (heads)

are linearly aggregated with learnable weights. Let q index

a query element with content zq , and k index a key element

with content xk. Then the multi-head attention feature yq is

computed as

yq =

M
∑

m=1

Wm

[
∑

k∈Ωq

Am(q, k, zq, xk)⊙W ′

mxk

]

, (1)

where m indexes the attention head, Ωq specifies the

supporting key region for the query, Am(q, k, zq, xk)
denotes the attention weights in the m-th attention

head, and Wm and W ′
m are learnable weights. Usu-

ally, the attention weights are normalized within Ωq , as
∑

k∈Ωq
Am(q, k, zq, xk) = 1.

In encoder-decoder attention, the key and the query are

from two different sets of elements, where in most applica-

tions the two sets of elements need to be properly aligned.

For example, in the encoder-decoder attention of neural ma-

chine translation, the key and the query elements corre-

spond to the words in the input and the output sentences,

respectively, where proper alignment is necessary for cor-

rect translation. Meanwhile, in self-attention, the key and

the query are from the same set of elements. For exam-

ple, both the key and the query are of words in the input or

output sentence. In such scenarios, the self-attention mech-

anism is expected to capture intra-relationships among the

elements, and usually the query and the key contents are

modeled by the same set of features, i.e., x = z.

Transformer attention

In the most recent instantiation of the Transformer at-

tention module [10], the attention weight of each query-key

pair is computed as the sum of four terms {Ej}
4
j=1

that are

based on different attention factors, as

ATrans
m (q, k, zq, xk) ∝ exp

(

4
∑

j=1

Ej

)

, (2)

normalized by
∑

k∈Ωq
ATrans

m (q, k, zq, xk) = 1 where the

supporting key region Ωq spans the key elements (e.g., the

whole input sentence). By default, 8 attentional heads are

utilized in this paper.

The E1 and E2 terms are sensitive to the query content.

The E1 term measures the compatibility of the query and

key content, as E1 = z⊤q U⊤
mV C

mxk, where Um, V C
m are

learnable embedding matrices for the query and key con-

tent, respectively. It enables the network to focus more

on the keys compatible with the query in terms of content.

A possible outcome is the correspondence between similar

query and key elements, as illustrated in Fig. 1 (a). For
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attention mechanism spatial properties query content key content relative position complexity

Transformer attention

E1 dense, global X X O(N2
sC +NsC

2)
E2 dense, global X X O(N2

sC +NsC
2)

E3 dense, global X O(NsC
2)

E4 dense, global X O(N2
sC +NsC

2)

Regular convolution sparse, local X O(NsC
2Nk)

Deformable convolution sparse, global X X O(NsC
2Nk)

Dynamic convolution sparse, local X X O(NsCNgNk +NsC
2)

Table 1. Comparison of different attention mechanisms. Ns denotes number of spatial elements, i.e. width by height for images, and

number of tokens for text; C denotes representation dimension; Nk denotes kernel size of convolution (Nk = 3 × 3 for images and

Nk = 3 for text, by default); Ng denotes number of feature groups in dynamic convolution.

the E2 term, it is based on the query content and relative

position, as E2 = z⊤q U⊤
mV R

mRk−q , where Rk−q encodes the

relative position k−q by projecting it to a high-dimensional

representation through computing sine and cosine functions

of different wavelengths1 [36]. V R
m is a learnable embed-

ding matrix for the encoded relative position Rk−q . This

term allows the network to adaptively determine where to

assign high attention weights based on the query content. It

may help to disentangle appearance from spatial transfor-

mations in image recognition, as illustrated in Fig. 1 (b).

The E3 and E4 terms are irrelevant to the query content.

The E3 term involves key content only, as E3 = u⊤
mV C

mxk,

where um is a learnable vector. It captures salient key con-

tent which should be focused on for the task, and is irrel-

evant to the query. An illustration is shown in Fig. 1 (c).

As for the E4 term, it involves relative position only, as

E4 = v⊤mV R
mRk−q , where vm is a learnable vector. It cap-

tures global positional bias between the key and query ele-

ments, as illustrated in Fig. 1 (d).

It is widely believed that query-sensitive prioritization,

especially the query and key content compatibility term E1,

is the key to the success of Transformer attention. Thus, in

some recent variants [38, 22, 43, 13], only E1 is kept, while

the other terms are all removed.

In Transformer attention, both Wm and W ′
m in Eq. (1)

are learnable. W ′
m projects the features of xk to a relatively

low dimension for reducing computational overhead, and

Wm projects the aggregated features back to the same di-

mension as yq .

Regular and deformable convolution

Regular and deformable convolution can be deemed

as special instantiations of spatial attention mechanisms,

where subsets of the attention factors are involved.

In regular convolution, given a query element, a fixed

number of key elements (e.g., 3 × 3) are sampled, accord-

ing to predetermined positional offsets with respect to the

query. From the perspective of Eq. (1), the attention weight

of regular convolution can be expressed as

1For 2-d image data, we separately encode the x-axis relative position

RX
k−q

and y-axis relative position RY
k−q

, and concatenate them to be the

final encoding Rk−q = [RX
k−q

, RY
k−q

].

Aregular
m (q, k) =

{

1 if k = q + pm

0 else,
(3)

where each sampled key element is of a separate attention

head (e.g., 3×3 regular convolution corresponds to 9 atten-

tion heads), and pm denotes the offset for the m-th sampling

position. In addition, the weight W ′
m in Eq. (1) is fixed as

identity, leaving Wm as learnable. In regular convolution,

only relative position is involved, without learnable parame-

ters for adapting attention to content. The supporting key re-

gion Ωq is restricted to a local window centered at the query

position and determined by the convolution kernel size.

In deformable convolution [9, 47], learnable offsets are

added to adjust the sampling positions of the key elements,

so as to capture spatial transformations. The learnable off-

sets are predicted based on the query content, and are thus

dynamic to the input. The key and the query elements are

from the same set. It can also be incorporated into the gen-

eralized attention formulation as a special instantiation of

self-attention, where the attention weight is

Adeform
m (q, k, xq) = G(k, q + pm + w⊤

mxq), (4)

where pm also denotes a predetermined offset, and w⊤
mxq

projects the query content xq to a deformation offset ac-

cording to a learnable vector wm
2. G(a, b) is the bilin-

ear interpolation kernel in N -d space, which can be de-

composed into 1-d bilinear interpolations as G(a, b) =
∏N

n=1
g(an, bn), where an and bn denote the n-th dimen-

sion of a and b respectively, and g(an, bn) = max(0, 1 −
|an − bn|). Similar to regular convolution, the weight W ′

m

in Eq. (1) is fixed as identity.

In deformable convolution, the attention factors are

query content and relative position. The supporting key

region Ωq can span over all the input elements due to the

introduced learnable offsets, while non-zero weights are as-

signed to a sparse set of key elements where bilinear inter-

polation is performed.

Dynamic convolution

Dynamic convolution [39] is recently proposed to re-

place the Transformer attention module in self-attention,

2Following [9], the learning rate of wm is set to 0.1 times that of other

parameters to stabilize training.
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and is claimed to be simpler and more efficient. It is built

upon depth-wise separable convolution [19] with shared dy-

namic kernel weights, which are predicted based on the

query content. In depth-wise separable convolution, a stan-

dard convolution is factorized into a depth-wise convolution

and a 1×1 convolution called a point-wise convolution, for

reducing computation and model size. In depth-wise convo-

lution, a single filter is applied to each input channel, which

is fixed for all positions. In dynamic convolution, the kernel

weights for the depth-wise convolution are dynamically pre-

dicted from the input features, followed by a Softmax nor-

malization. For computational savings, the input channels

are divided into several groups, where each group shares the

same dynamic kernel weights. In the system of [39], an or-

thogonal module called the gated linear unit (GLU) [11] is

applied before the dynamic convolution module to improve

accuracy. We include the GLU to respect the original de-

sign.

Dynamic convolution can also be incorporated into the

general attention formulation in Eq. (1) with minor modi-

fications, where each input feature channel is of a separate

attention head. It can be expressed as

yq =

Cin
∑

c=1

Wc

[
∑

k∈Ωq

Adynamic
c (q, k, xq) · xk,c

]

, (5)

where c enumerates the channels of the input features (Cin

channels in total), xk,c denotes the feature value at the c-th

channel of xk, and Wc is of the 1 × 1 point-wise convolu-

tion. A
dynamic
c (q, k, xq) is the attention weight specified by

the dynamic kernel in depth-wise convolution, written as

Adynamic
c (q, k, xq) =

{

Kj,c if k = q + pj

0 else,
(6)

where pj denotes the j-th sampling position in the dynamic

kernel, and Kj,c is the corresponding kernel weight. Zero

attention weight is assigned to keys outside of the kernel.

The kernel weight Kj,c is predicted from the input features,

and is shared among channels in the same group, as

Kj,c = Kshare
j,g ∝ exp

(

d⊤j,gxq

)

, g = ⌈
c

Cin/Ng

⌉. (7)

The input features are divided into Ng groups (Ng = 16 by

default). Kshare
j,g denotes the dynamic kernel weight for the

g-th group, and dj,g is the corresponding learnable weight

vector. Kshare
j,g is normalized by

∑Nk

j=1
Kshare

j,g = 1, where

Nk denotes the number of elements in the dynamic kernel.

In dynamic convolution, attention assignment is based

on the query content and relative position factor. The sup-

porting key region Ωq is restricted to a local window around

the query position covered by the dynamic kernel.

Comparing attention mechanisms

Tab. 1 compares the three attention mechanisms dis-

cussed above. Transformer attention exploits comprehen-

sive content and position information from both query and

key. The E1, E2 and E4 terms require computation propor-

tional to the product of the query and key element num-

bers, because they involve a traversal of each query-key

pair. The E3 term captures key content only, and thus in-

volves computation linear to the key element number. In

neural machine translation, the key and query elements are

commonly dozens of words in a sentence, so the computa-

tional overheads of E1, E2 and E4 are comparable to E3. In

image recognition, the key and query elements consist of

numerous pixels in an image. The computational overheads

of E1, E2 and E4 are thus much heavier than E3. Note that

when the four terms are put together, some computational

overhead can be shared among them.

Similar to the E2 term, deformable convolution also is

based on query content and relative position. But de-

formable convolution samples just a sparse set of key el-

ements for each query, and the complexity is linear to the

query element number. Deformable convolution is thus

much faster to compute than E2 for image recognition, and

is comparable in speed to E2 for machine translation.

Dynamic convolution also relies on query content and

relative position. The attention weights of key elements are

assigned by the dynamic convolution kernel, based on the

query content. Non-zero attention weights only exist in a

local range covered by the dynamic kernel. The computa-

tional overhead is proportional to the product of the kernel

size and query element number. Compared to the E2 term,

the computational overhead can be considerably lower if the

kernel size is much smaller than the key element number.

We seek to further disentangle the effects of different at-

tention factors, and to facilitate comparison to other instan-

tiations of spatial attention that use a subset of the factors.

Thus, manual switches are introduced into the Transformer

attention module, which enable us to manually activate / de-

activate particular terms. This is expressed as

ÂTrans
m (q, k, zq, xk) ∝ exp

(

4
∑

j=1

βTrans
j Ej

)

, (8)

where {βTrans
j } takes values in {0, 1} to control the activa-

tion of corresponding terms, and ÂTrans
m (q, k, zq, xk) is nor-

malized by
∑

k∈Ωq
ÂTrans

m (q, k, zq, xk) = 1.

Incorporating attention modules into deep networks

We incorporate various attention mechanisms into deep

networks to study their effects. There are different design

choices in inserting the modules, e.g., whether to connect

them in series or in parallel, and where to place the mod-

ules in the backbone network. We empirically observed the

results to be quite similar for different well-considered de-

signs. In this paper, we select the design choices in Fig. 2.

Detailed descriptions are provided in the Appendix, and

a brief introduction is presented here. For the object de-

tection and semantic segmentation tasks, ResNet-50 [18] is

chosen as the backbone and just the self-attention mecha-
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Figure 2. Illustration of attention module configurations for empirical study. The modules in blue color are newly added to existing blocks.

nism is involved. The three attention mechanisms are incor-

porated into the residual block. The resulting architecture

is called “Attended Residual Block”, shown in Fig. 2 (a).

In the neural machine translation task, the network archi-

tecture follows the Transformer base model [36] with rel-

ative position encoding [10], where both self-attention and

encoder-decoder attention mechanisms are involved. The

architecture is shown in Fig. 2 (b). For its deformable

convolution counterpart, the deformable convolution unit

(with kernel size of 3) is inserted prior to the input of the

Transformer attention module. The resulting architecture is

called “Transformer + Deformable”, shown in Fig. 2 (c).

4. Experiments and Analysis

4.1. Experimental settings

Image Object Detection

Models are trained on the 118k images of the COCO

2017 [25] train set. Evaluation is done on the 5k images

of the COCO 2017 validation set. Accuracy is measured by

the standard mean AP scores at different box IoUs (mAP).

Faster R-CNN [32] with Feature Pyramid Networks

(FPN) [24] is chosen as the baseline system. ImageNet [12]

pre-trained ResNet-50 is utilized as the backbone. The

attended residual blocks in Fig. 2 (a) are applied in the

last two stages (conv4 and conv5 stages) of ResNet-50.

In Transformer attention, the relative position encoding is

of the same dimension as the content feature embedding,

specifically 256-d and 512-d in the conv4 and conv5 stages,

respectively. The hyper-parameter setting strictly follows

FPN [24]. See the Appendix for details.

Image Semantic Segmentation

Models are trained on the 5,000 finely annotated images

of the Cityscapes [8] train set. Evaluation is done on the 500

images of the validation set. The standard mean IoU score

(mIoU) is used to measure semantic segmentation accuracy.

The CCNet [22] for semantic segmentation is utilized,

with ImageNet pre-trained ResNet-50 and without the criss-

cross attention module proposed in [22], which is a variant

of Transformer attention. As done for object detection, the

attended residual blocks in Fig. 2 (a) are applied in the last

two stages. An additional Transformer attention / dynamic

convolution module is placed after the ResNet-50 output

following the practice in [22] for improving performance.

The hyper-parameter setting strictly follows that in the CC-

Net paper [22]. Details are given in the Appendix.

Neural Machine Translation (NMT)

Model training is conducted on the standard WMT 2014

English-German dataset, consisting of about 4.5 million

sentence pairs. Sentences are encoded using byte-pair en-

coding [4], with a shared source-target vocabulary of about

37k tokens. Evaluation is on the English-to-German new-

stest2014 set. Accuracy is measured by the standard bilin-

gual evaluation understudy (BLEU) scores [29].

The Transformer base model [36] with relative posi-

tion encoding [10] is utilized as the backbone. The hyper-

parameters follows the original setting in [36]. Further de-

tails are in the Appendix.

4.2. Effects of various attention­based modules

Disentanglement in Transformer attention

We first seek to disentangle the effects of the four terms

in the Transformer attention module. This is achieved by

manually setting the {βTrans
j }4j=1

values in Eq. (8) to control

the activation / deactivation of individual terms. The net-

work is trained and tested for all 16 possible configurations

of {βTrans
j }4j=1

. In this set of experiments, no other attention

mechanisms are involved. Thus, for the object detection and

semantic segmentation tasks, the 3×3 convolution is of reg-

ular convolution in the network of Fig. 2 (a). For the NMT

task, the network architecture in Fig. 2 (b) is utilized. Trans-

former attention is used in the choices of “Transformer at-

tention / Dynamic convolution” in Fig. 2 (a) and (b). Note

that for the NMT task, Transformer attention modules are

utilized for both self-attention and encoder-decoder atten-

tion. To reduce experimental complexity, the Transformer
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Figure 3. Accuracy-efficiency tradeoffs of the four terms in Transformer attention (E1 for query and key content, E2 for query content

and relative position, E3 for key content only, and E4 for relative position only). The activation and deactivation of particular terms is

set by configuration {βTrans
j }4j=1 (e.g., “0011” denotes the activation of E3 and E4). Because the encoder-decoder attention mechanism is

indispensable for NMT, there is no “w/o” setting in (d). The results of some configurations overlap in the plots because they are of the

same accuracy and computational overhead. The key configurations under study are highlighted in red. The recommended configuration

of “0010 + deformable” for self-attention in Tab. 2 is also plotted here.

βTrans
1,2,3,4 → βTrans

1,2,3,4 + deformable
Object Detection (self-attention) Semantic Segmentation (self-attention) Neural Machine Translation (self-attention)

mAP ∆ mAP GFLOPs ∆% FLOPs mIoU ∆ mIoU GFLOPs ∆% FLOPs BLEU ∆ BLEU GFLOPs ∆% FLOPs

w/o → 1111 + deformable 36.4 → 41.0 +4.6 213.7 → 281.4 +31.7% 71.9 → 77.8 +5.9 449.5 → 1112.1 +147.4% 20.9 → 28.0 +7.1 1.7 → 3.2 +88.2%

1111 → 1011 + deformable 38.8 → 41.0 +2.2 281.4 → 281.4 -0.0% 76.7 → 77.8 +1.1 1112.1 → 1112.1 -0.0% 27.7 → 28.0 +0.3 2.7 → 3.2 +17.3%

1110 → 1010 + deformable 38.8 → 40.9 +2.1 281.4 → 281.2 -0.1% 76.7 → 77.7 +1.0 1112.1 → 1111.2 -0.1% 27.7 → 28.0 +0.3 2.7 → 2.9 +5.8%

1101 → 1001 + deformable 38.8 → 41.0 +2.2 281.4 → 281.4 -0.0% 76.7 → 77.8 +1.1 1112.1 → 1112.1 -0.0% 27.7 → 28.0 +0.3 2.7 → 3.2 +17.3%

1100 → 1000 + deformable 38.8 → 40.9 +2.1 281.4 → 281.2 -0.1% 76.7 → 77.7 +1.0 1112.1 → 1111.2 -0.1% 27.7 → 28.0 +0.3 2.7 → 2.9 +5.8%

0111 → 0011 + deformable 38.8 → 41.0 +2.2 253.6 → 250.1 -1.4% 76.6 → 77.5 +0.9 814.0 → 794.4 -2.4% 27.6 → 27.7 +0.1 2.7 → 3.0 +10.9%

0110 → 0010 + deformable 38.8 → 40.8 +2.0 253.6 → 221.1 -12.8% 76.6 → 77.3 +0.7 814.0 → 489.5 -39.9% 27.6 → 27.7 +0.1 2.7 → 2.7 -1.1%

0101 → 0001 + deformable 38.6 → 40.7 +2.1 251.1 → 247.6 -1.4% 76.3 → 77.3 +1.0 800.7 → 781.1 -2.5% 27.4 → 27.6 +0.2 2.6 → 2.9 +11.6%

0100 → w/o + deformable 38.6 → 39.9 +1.3 251.1 → 213.7 -14.9% 76.3 → 77.2 +0.9 800.7 → 449.5 -43.9% 27.4 → 27.3 -0.1 2.6 → 2.2 -13.5%

Table 2. Deformable convolution vs. E2 in Transformer attention, where both exploit query content and relative position information. The

underlined configuration of “0010 + deformable” is recommended for an optimal accuracy-efficiency tradeoff.

attention modules in encoder-decoder attention are kept as

their full version (βTrans
j = 1, j = 1, . . . , 4, abbreviated as

configuration “1111” here) when we study self-attention.

Fig. 3 plots the accuracy-efficiency tradeoffs of different

{βTrans
j }4j=1

configurations, where the accuracy-efficiency

envelopes are indicated by connected line segments. Note

that only the computational overheads from the Transformer

attention modules under study are counted here, without the

overheads from other parts of the network. From the plot,

we draw the following conclusions:

(1) In self-attention, the query-sensitive terms play a mi-

nor role compared to the query-irrelevant terms. Especially,

the query and key content term have a negligible effect

on accuracy, while being computationally heavy in image

recognition tasks. Overall, the accuracy gain brought by

the Transformer attention module is large (from the con-

figuration where the Transformer attention module is re-

moved (“w/o”) to that where the full version of Trans-

former attention is utilized (“1111”)). It can be seen that

the gain brought by the query-irrelevant terms (from con-

figuration “w/o” to “0011”) is much larger than that brought

by the query-sensitive terms (from configuration “0011” to
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βTrans
1,2,3,4 → dynamic

Object Detection (self-attention) Semantic Segmentation (self-attention) Neural Machine Translation (self-attention)

mAP ∆ mAP GFLOPs ∆% FLOPs mIoU ∆ mIoU GFLOPs ∆% FLOPs BLEU ∆ BLEU GFLOPs ∆% FLOPs

0100 38.6 - 251.1 - 76.3 - 800.7 - 27.4 - 2.6 -

0100 (nk = 31) → dynamic (nk = 31) 38.6 → 37.9 -0.7 229.4 → 352.9 +53.8% 75.5 → 74.2 -1.3 523.3 → 1029.0 +96.6% 27.4 → 27.6 +0.2 2.4 → 2.4 +1.8%

0100 (nk = 25) → dynamic (nk = 25) 38.6 → 37.8 -0.8 226.6 → 306.8 +35.4% 75.5 → 74.2 -1.3 511.8 → 840.4 +64.2% 27.4 → 27.6 +0.2 2.3 → 2.3 +1.4%

0100 (nk = 19) → dynamic (nk = 19) 38.6 → 37.6 -1.0 224.4 → 270.6 +20.6% 75.4 → 73.7 -1.7 502.6 → 692.1 +37.7% 27.4 → 27.5 +0.1 2.3 → 2.3 +1.1%

0100 (nk = 13) → dynamic (nk = 13) 38.5 → 37.5 -1.0 222.7 → 244.3 +9.7% 74.4 → 71.9 -2.5 495.9 → 584.3 +17.8% 27.3 → 27.4 +0.1 2.3 → 2.3 +0.7%

Table 3. Dynamic convolution vs. E2 in Transformer attention, where both exploit query content and relative position information. The

kernel size of dynamic convolution Nk is n2

k for image recognition and nk for NMT. The spatial range of Transformer attention is also

constrained to be the kernel size of dynamic convolution for ablation.

“1111”). Particularly, the performance gain brought by the

query and key content term (controlled by βTrans
1

) is negligi-

ble. Removing it (from configuration “1111” to “0111”) in-

curs only a tiny drop in accuracy, while considerably reduc-

ing the computational overhead in image recognition tasks.

(2) In encoder-decoder attention, the query and key con-

tent term is vital. Deactivation of it (controlled by βTrans
1

) in-

curs a noticeable drop in accuracy, while only utilizing the

query and key content term (configuration “1000”) delivers

accuracy almost the same as the full version (configuration

“1111”). This is because the key step in NMT is to align the

words in the source and the target sentences. A traversal of

the query and key content is essential for such alignment.

(3) In self-attention, the attention factors of query con-

tent & relative position and the key content only are most

important. The corresponding configuration “0110” de-

livers accuracy very close to the full version (configura-

tion “1111”), while saving a considerable amount of com-

putational overhead in image recognition tasks. It is also

worth noting that the key content only term, which cap-

tures saliency information, can effectively improve the per-

formance with little additional overhead.

Our findings contradict the widespread belief that query-

sensitive terms, especially the query and key content term,

are crucial for the success of Transformer attention. The

experimental results suggest that this is only true for the

encoder-decoder attention scenario. In self-attention sce-

narios, the query and key content term is even removable.

Deformable convolution vs. E2 in Transformer attention

Here, we compare deformable convolution and the E2
term from Transformer attention in Eq. (2). Because

deformable convolution is designed for capturing self-

attention, we restrict the experiments to self-attention sce-

narios only. Note that when deformable convolution is uti-

lized in the NMT task, the network architecture is of “Trans-

former + Deformable” in Fig. 2 (c).

Tab. 2 compares deformable convolution and the E2 term

in a variety of settings. We find that:

(1) For object detection and semantic segmentation, de-

formable convolution considerably surpasses the E2 term in

both accuracy and efficiency. While for NMT, deformable

convolution is on par with the E2 term in both accuracy and

efficiency. In terms of efficiency, deformable convolution

does not need to traverse all the key elements. This ad-

vantage is obvious on images, where numerous pixels are

involved. In terms of accuracy, the bilinear sampling in de-

formable convolution is based on the hypothesis of local

linearity of feature maps. This hypothesis holds better on

images where local image content changes gradually, than

on languages where words change abruptly.

(2) The combination of deformable convolution and the

key content only term (“0010 + deformable”) delivers the

best accuracy-efficiency tradeoff. The accuracy is on par

with using deformable convolution and the whole atten-

tion module (“1111 + deformable”), while the overhead

is slightly higher than that of deformable convolution only

(“w/o + deformable”). This finding is in line with finding

(3) of “Disentanglement in Transformer attention”. It fur-

ther suggests the importance of the query content & relative

position and key content only factors in self-attention. The

configuration “0010 + deformable” is also plotted in Fig. 3.

Dynamic convolution vs. E2 in Transformer attention

We compare these two instantiations in self-attention

scenarios. The network architectures are of Fig. 2 (a) for

image recognition tasks, and of Fig. 2 (b) for NMT, where

either the Transformer attention with E2 only (configuration

“0100”) or dynamic convolution is utilized.

Tab. 3 presents the results. We can find that for NMT,

dynamic convolution achieves accuracy on par with the E2
term at reduced computational cost. However, dynamic

convolution is not effective for object detection and seman-

tic segmentation, delivering considerably lower accuracy.

To further study the influence of kernel size in dynamic con-

volution, we also constrain the spatial range of the E2 term

to be the same as that in dynamic convolution. The accuracy

drops as the spatial range shrinks for both dynamic convo-

lution and the E2 term. But it is worth noting that the E2
term still surpasses dynamic convolution at the same spatial

range in image recognition tasks, with even smaller compu-

tational overhead. The inferior accuracy of dynamic convo-

lution in image recognition tasks might be because dynamic

convolution is originally designed for NMT, and some de-

sign choices may not be suitable for image recognition.
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