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Abstract

We investigate learning feature-to-feature translator
networks by alternating back-propagation as a general-
purpose solution to zero-shot learning (ZSL) problems.
It is a generative model-based ZSL framework. In con-
trast to models based on generative adversarial networks
(GAN) or variational autoencoders (VAE) that require aux-
iliary networks to assist the training, our model consists
of a single conditional generator that maps class-level se-
mantic features and Gaussian white noise vector account-
ing for instance-level latent factors to visual features, and
is trained by maximum likelihood estimation. The train-
ing process is a simple yet effective alternating back-
propagation process that iterates the following two steps:
(i) the inferential back-propagation to infer the latent fac-
tors of each observed example, and (ii) the learning back-
propagation to update the model parameters. We show that,
with slight modifications, our model is capable of learning
from incomplete visual features for ZSL. We conduct ex-
tensive comparisons with existing generative ZSL methods
on five benchmarks, demonstrating the superiority of our
method in not only ZSL performance but also convergence
speed and computational cost. Specifically, our model out-
performs the existing state-of-the-art methods by a remark-
able margin up to 3.1% and 4.0% in ZSL and generalized
ZSL settings, respectively.

1. Introduction

Deep learning techniques have successfully tackled vari-
ous computer vision problems such as object detection [ 16,

, 10, 26, 9, 63], image, video and 3d shape genera-
tion [18, 13, 57, 58, 33, 60, 59, 64, 45], pose estima-
tion [32, 44, 65, 42, 43], object recognition [20, 41, 17], etc.
Especially, these advanced deep learning methods equip the
machine with the comparable ability of object recognition
to human beings when abundant labeled training samples

*Work was done while Yizhe Zhu was an intern at Hikvision.
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Figure 1: Demonstration of the feature-to-feature transla-
tor for generative zero-shot learning. Training (blue flow):
given the class-level semantic features C' and the observed
visual features X, (i) the latent factors Z are inferred by
MCMC and (ii) the weights 6 of the translator are updated
by the gradient ascent for maximum likelihood. Transla-
tion (black flow): once the translator is learned, arbitrary
number of synthetic visual features can be generated for
unseen classes by translating the unseen class semantic fea-
tures along with Z randomly sampled from Gaussian distri-
bution. The generated samples for unseen classes are useful
for zero-shot learning.

are provided. However, this ability will decrease dramati-
cally for classes that are insufficiently represented or even
not present in the training data, thus increasing the difficulty
of real-world applications due to the costly data collection
and annotation effort. This limitation attracts the intense
interest of researchers in zero-shot learning (ZSL).

ZSL aims to recognize novel classes where no training
data is available for these classes. The key to make ZSL
work is to use the semantic description of classes as the
bridge to connect the seen classes and unseen classes. Re-
cently, generative ZSL approaches [4, 67, 55, 11, 50, 46]
have emerged as a new trend of ZSL strategy by exploit-
ing the successful generative models, e.g., variational au-
toencoders (VAE) [18, 35], generative adversarial networks
(GAN) [13, 28], etc, to learn mappings from class-level se-
mantic features (e.g., attributes or description embeddings)
to visual features. The synthetic visual features for unseen
classes through well-trained generative models establish the
visual description of unseen classes and make the conven-
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tional supervised classification applicable. The quality of
generative ZSL approaches mainly depends on how well the
generative model can emulate the data distribution. GAN-
based methods [67, 55, 11] employ the conditional genera-
tor network which maps class-level semantic features along
with Gaussian white noise as latent factors to visual fea-
tures. The conditional generator is trained in an adversarial
manner where a well-designed discriminator network is re-
cruited to play a minimax game with the conditional gen-
erator. The adversarial training strategy gets around the
intractable inference of latent factors in training; however,
the imbalance between the discriminator and the generator
would lead to non-convergence and mode collapse issues.
VAE-based methods [50, 46] associate the conditional gen-
erator network with an additional encoder that approximates
the posterior distribution for the purpose of inference of la-
tent factors, and train both models by maximizing the varia-
tional lower bound. In this paper, we will show that neither
of these assisting networks is necessary for training the con-
ditional generator.

In our framework of generative ZSL, we adopt a con-
ditional generator as a feature-to-feature translator network
that translates the class-level semantic features along with
the instance-level latent factors to visual features as shown
in Figure 1. However, different from GAN and VAE-based
methods, we resort to a theoretically more accurate estima-
tor, maximum likelihood estimation (MLE) with EM-like
strategy [6], to train the network, without the requirement
of auxiliary networks for assistance. The hard nut to crack
in training latent variable models by MLE is the intractable
posterior distribution that is required for computing the gra-
dient of the observed-data log-likelihood. In the proposed
framework, we adopt Markov chain Monte Carlo (MCMC),
such as Langevin dynamics [51, 29], for computing the
posterior distribution. We show that the maximum likeli-
hood algorithm involves the computation of the gradient of
observed-data log-likelihood with respect to model param-
eters and the gradient with respect to latent factors, both of
which can be efficiently computed by back-propagation.

Specifically, the proposed translator is learned by alter-
nating back-propagation (ABP) algorithm, which iterates
the following two steps: (i) inferential back-propagation:
for each training example, inferring the continuous latent
factors by sampling from the current learned posterior dis-
tribution via Langevin dynamics, where the gradient of the
log joint density can be calculated by back-propagation, (ii)
learning back-propagation: updating the model parameters
given the inferred latent factors and the training examples
by gradient ascent, where the gradient of the log-likelihood
with respect to the model parameters can again be calcu-
lated by back-propagation.

The ABP algorithm was originally proposed for training
unconditional generator networks [ 15, 56]. In this paper, we

generalize ABP to learning conditional generator network
for feature-to-feature translation, where the class-level se-
mantic features play the role of condition.

It is worth mentioning that the proposed model is capa-
ble of learning from incomplete training examples, where
visual features are partially corrupted or inaccessible due to
occlusion in image space. Specifically, our model can learn
from incomplete data by making latent factors only explain
the visible parts of the visual features conditioned on class-
level semantic features, while GAN or VAE-based methods
can hardly deal with this situation.

Our contributions can be summarized as follows: (1)
We propose a feature-to-feature translator for generative
ZSL, where we learn a mapping from class-level seman-
tic features, along with instance-level latent factors fol-
lowing Gaussian white noise distribution, to visual fea-
tures. (2) We propose to learn the translator via alternat-
ing back-propagation (ABP) algorithm for maximum like-
lihood, without relying on other assisting networks, which
makes our framework more statistically rigorous and ele-
gant. (3) We show that the proposed framework can learn
from incomplete training examples where visual features
are partially visible due to corruption or occlusion in image
space. (4) Comprehensive experiments conducted on vari-
ous ZSL tasks show the state-of-the-art performance of our
framework, and a thorough analysis of the model demon-
strates the superiority of the proposed framework in differ-
ent aspects.

2. Related Work

X-to-Y Translation. We are not the first to apply condi-
tional generators to learn X-to-Y mapping. A text-to-image
translation is proposed for image synthesis from text de-
scription [33]. Zhu et al [66] has studied image-to-image
translation problem for different types of image processing
tasks, which include synthesizing photos from label maps
or edge maps and generating color images from their grey-
scaled versions. Recently, video-to-video translation prob-
lem has been tackled by learning a mapping function from
an input source video (e.g., a sequence of semantic seg-
mentation masks) to a target realistic video [49]. Our work
learns a feature-to-feature mapping for ZSL. Additionally,
all other works mentioned above are based on the frame-
work of GANs, which means that well-designed discrimi-
nator networks need to be resorted to in the training stage.
Our framework differs in that it is trained by an alternat-
ing back-propagation algorithm without incorporating any
extra assisting networks. This makes our framework con-
siderably simpler and computationally more efficient than
those based on GANS.

Generative Models. Our model is essentially a con-
ditional latent variable model. The alternating back-
propagation (ABP) training method for our model is re-

9845



lated to variational inference (e.g., VAE) and adversarial
learning (e.g., GAN), both of which require an extra as-
sisting network with a separate set of learning parameters
to avoid the explaining-away inference of latent variables
in the model. Unlike VAE and GAN, ABP does not involve
an auxiliary network and performs explicit explaining-away
inference by directly sampling from the posterior distribu-
tion via MCMC, such as Langevin dynamics, which is pow-
ered by back-propagation. Our model trained by ABP is
much simpler, more natural and statistically rigorous than
those trained by adversarial learning and variational infer-
ence schemes. ABP has been used to train general gener-
ators [15] and deformable generators [61] for image pat-
terns, as well as dynamic generators [56] for video patterns.
Our paper is a generalization of [15, 56] by applying ABP
to train a conditional version of the generator model for
feature-to-feature translation. The generative ConvNet [58]
and the Wasserstein INN [23] are two one-piece models that
learn energy-based generative models for data generation.
Both [58] and [23] generate data via iterative MCMC sam-
pling, while our model generates data via direct ancestral
sampling, which is much more efficient.

Zero-Shot Learning. Several pioneering works for ZSL
[21, 22] make use of class attributes as intermediate infor-
mation to classifiy images for unseen classes. Some ZSL
methods are based on the bilinear compatibility function
between the visual and semantic features, which can be
learned by using (a) the ranking loss (e.g., ALE [I] and
DeViSE [12]), (b) the structural SVM loss [2] or (c) the
ridge regression loss (e.g., ESZSL [36] and PTZSL [&]). To
enhance the expressive power of the models, several ZSL
approaches [53, 62, 25, 24, 68] learn non-linear multimodal
embedding. Taking advantage of the generative models in
data generation, several methods [67, 11, 52, 46, 4, 50] re-
sort to generating visual features from unseen classes for
ZSL. Both GAZSL [67] and FGZSL [52] pair a Wasser-
stein GAN [3, 14] with a classification loss as regulariza-
tion to increase the inter-class discrimination of synthetic
features. MCGZSL [1 1] adopts cycle consistency loss [66]
to regularize the generator for ZSL . [50, 46] employ condi-
tional VAEs [39] framework to learn feature generator. Our
model also learns to generate visual features from unseen
classes by a conditional generator, however, different from
the generative ZSL methods mentioned above, our model
is trained by alternating back-propagation, without the need
of assisting models for training.

3. Feature-to-Feature Translator

3.1. Conditional Latent Variable Model for Feature-
to-Feature Translation

Let S = {(X;,C;),i = 1,...,n} be the training data
of the seen classes, where X; € X'P is the D-dimensional

visual features (e.g., CNN features extracted from images)
for the i-th image and C; € CX is its K-dimensional class-
level semantic features (e.g., class attribute embedding).
Because one class usually corresponds to many image ex-
amples, we aim at finding a one-to-many class-to-instance
feature generator. Specifically, we try to learn a mapping
g:CK x 2% 5 XD that seeks to explain the visual features
X, extracted from each image by its corresponding class-
level features C; and a d-dimensional vector of latent factors
Z; € Z% that accounts for instance variations. We assume
Z; is sampled from a Gaussian prior distribution N (0, I),
where I stands for the d-dimensional identity matrix. Once
the generator g learns to generate image features from class
features, it can also generate X from any unseen classes.
Formally, the feature-to-feature mapping can be formulated
by a conditional latent variable model as follows:

Z ~ N(0,14),
X =g9(C,Z) + e,e ~ N(0,0%Ip),

where 6 contains all the learning parameters in the mapping
function g, and € is a D-dimensional noise vector follow-
ing Gaussian distribution. The mapping g can be any non-
linear mapping. In this paper we adopt the top-down MLP
parameterization of g, which is also called the conditional
generator network, to map the latent factors Z along with
the class features C' to the visual features X. Generally,
the model is defined by a prior distribution of latent fac-
tors Z ~ p(Z) and the conditional distribution to generate
visual features given the class features and the latent fac-
tors, i.e., [X|Z,C] ~ po(X|Z,C). Let qgaa(X|C) be the
true distribution that generates the training visual features
given their associated class features. The goal of learning
this model is to minimize the Kullback-Leibler divergence
KL(gdata (X |C) ||po (X ]C)) over 6.

ey

3.2. Learning by Alternating Back-Propagation
3.2.1 Maximum Likelihood Learning

The maximum likelihood estimation (MLE) of our model
po(X|C) is equivalent to minimizing the Kullback-Leibler
divergence KL(quaa(X|C)||pe(X|C)) over 6. The com-
plete data model is given by
log ps (X, Z|C) = log[ps(X|Z, C)p(Z)]
1 1 2
— 551X = (€, 2 = 511Z]1* + const,
where the constant term is independent of X, Z and 6. The
observed-data model or the log-likelihood is obtained by
integrating out the latent factors Z:

log po(X|C) = log/pe(X|Z, O)yp(2)dZ.  (3)

Suppose we observe the training data S =
{(X;,Cy),i = 1,...,n}, and [X|C] ~ pe(X|C), the goal
of MLE is to maximize the observed-data log-likelihood:
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= log ps(X;|Cy). )
i=1
Without loss of generality, we consider one observed pair
(X, C;) and omit subscript 4 for brevity. To maximize the
log-likelihood, we adopt gradient ascent strategy. The gra-
dient of the log-likelihood with respect to # can be calcu-
lated by the following equation:

10

0

pa(X|C)

0
=Ezpe(21x,0) % logpe (X, Z|C)| .
®)
3.2.2 Inferential Back-Popagation

Since the expectation with respect to the posterior distribu-
tion py(Z|X, C) in Equation (5) is analytically intractable,
we resort to the average of the MCMC samples to approx-
imate the expectation. Specifically, we employ Langevin
dynamics which carries out sampling by iterating:

2

0
Zrir = Zr + — 7 logpe(X, Z:|C) + sUs,

207
:ZT+SUT+ (6)
s2[1 8

where 7 denotes the time step for Langevin dynamics, U,
is the Gaussian white noise corresponding to the Brown-
ian motion, which is added to prevent the chain from being
trapped by local modes, and s is the step size.

Because of the high computational cost of MCMC, it is
infeasible to generate independent samples from scratch in
each learning iteration. In practice, the MCMC transition
of latent factors Z in the current iteration starts from the
previous updated result of Z, which is obtained from the
previous learning iteration. We initialize Z with Gaussian
white noise at the beginning. Persistent MCMC update with
such a warm start scheme is effective and efficient enough
to provide fair samples from the posterior distribution.

We infer the latent factors Z; for each observed
pair (X;,C;) by sampling a single copy of Z; from
po(Z;|X;, C;) via running finite steps of Langevin dynam-
ics starting from the current Z; (i.e., the warm start). This is
a conditional explaining-away inference solving an inverse
problem, which is that given the specific visual features of
an image and its associated class features, how to obtain its
corresponding latent factors. Unlike VAE, our model does
not need to recruit an extra network for inference.

3.2.3 Learning Back-Popagation

Once Z is inferred, we learn the model via stochastic gra-
dient algorithm by updating 6 based on the Monte Carlo

approximation of the gradient of L(¢) in Equation (5):

0
Orp1 = 0r + 71 (N

59 (),

where ¢ is the time step for the gradient algorithm, ; is the
learning rate, and

) Z” 0
a0 "0~ 2 g lospe(Xe 1[G
—‘Z 56553 1 Xi = 90(Ci, Z0)] ®)
_ — 00(Ci. 7)) 2 g0(C, Z).
E nalgg P

The Equation (7) corresponds to a non-linear regression
problem, where it seeks to find the 6 to predict visual fea-
tures X; by its corresponding observed class features C; and
the inferred latent factors Z;.

3.2.4 Alternating Back-Propagation Algorithm

The key to compute Equation (6) is to calculate
0g0(C, Z)/0Z, while the key to compute Equation (8) is
to calculate dgy(C, Z)/06. Both of them can be efficiently
computed by back-propagation. Algorithm | describes the
details of the learning and sampling algorithm.

Algorithm 1 Alternating back-propagation procedure for
learning feature-to-feature translator.

Input: training samples {(X;,C;),i = 1,...,n}, the max-
imal number of loops N, the number of Langevin
steps [, the learning rate ~y;.

Output: the learned parameters 6, the inferred latent fac-
tors {Z;,i =1,...,n}.

1: Initialize # and Z;, fori =1,...,n

fort=1,..., Nsp do

3:  Inferential back-propagation: For each i, run
l steps of Langevin dynamics to sample Z; ~
po(Z;|X;, C;) with warm start, i.e., starting from the
current Z;, each step follows equation (6).

4:  Learning back-propagation: Update 6 <+ 0 +
v L' (9), where L’ () is computed according to equa-
tion (8), with learning rate ;.

5: end for

»

3.3. Comparison with Variational Inference

Our learning algorithm presented in Algorithm 1 seeks
to minimize KL(qqa(X|C)|lpe(X|C)), while variational
auto-encoder (VAE) changes the objective to

i KL(qaua(X|C)pg (2| X, O)Ip(Z]C)pe(X|Z, C))
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by utilizing an extra inference model py(Z|X,C) with
parameter ¢ to infer latent variable /Z, where the infer-
ence model p,(Z|X,C) is an analytically tractable ap-
proximation to py(Z|X,C). Compared to the maximum
likelihood objective KL(ggaw(X|C)||pe(X|C)), which is
the KL-divergence between the marginal distributions of
X conditioned on C, while the VAE objective is the KL-
divergence between the joint distributions of (Z, X) condi-
tioned on C' (i.e., an upper bound of the maximum likeli-
hood objective.) as shown below:

KL(gaaa (X [C)ps (2|1 X, O)lpe (2, X|C)) =
KL(gaaa (X |C)[Ipe (X|C)) 4+ KL(py (2] X, O)[Ipe (2| X, C)).

The accuracy of variational inference depends on the accu-
racy of the inference model py(Z| X, C) as an approxima-
tion of the true posterior distribution py(Z|X, C). That is,
when KL(py(Z|X, C)|lpe(Z|X,C)) = 0, the variational
inference is equivalent to the maximum likelihood solution.
Therefore, our learning algorithm is more natural, straight-
forward, accurate, and computationally efficient than VAE.

4. Zero-Shot Learning
4.1. Classification in Zero-Shot Learning

The feature-to-feature translator that maps [C, Z] — X
can be considered as an explicit implementation of the lo-
cal linear embedding [37], where [C, Z] is the embedding
of X, with disentanglement of class features C' and non-
class features Z. Given any unseen class C* &€ CE, we
can generate arbitrarily many visual features for the unseen
class by first sampling Z from N(0, I;) and then mapping
(C*,Z) into X via the learned feature-to-feature transla-
tor X = go(C*, Z) + €. With generated data of unseen
classes, the labels of testing examples from unseen classes
can be predicted via any conventional supervised classifiers.
Here we employ a KNN classifier (K=20) for ZSL for its
simplicity and a softmax classifier for GZSL as suggested

in [55].
4.2. Learning from Incomplete Visual Features

The inferential back-propagation step performs an
explaining-away inference, where the latent factors com-
pete with each other to explain the observed visual features.
This is very useful in the scenario where the training vi-
sual features are incomplete. In this case, our model is still
able to learn from incomplete visual features via alternat-
ing back-propagation algorithm. The latent factors can still
be obtained by explaining the incomplete observed visual
features, and the model parameters can still be updated as
before. Taking the features in [67] as an example, Zhu et
al train a part detector to localize small semantic parts of
birds such as heads and tails, and concatenate the extracted

features of parts as the visual representation of the object
for ZSL. The part features are inaccessible in two cases: (a)
the semantic parts don’t appear in the images, for example,
no tails can be observed when birds are in front view; (b)
the detector fails to discover the parts. In these cases, ze-
ros are assigned to the corresponding bins of feature vector
for the missing parts. We can easily adapt our ABP algo-
rithm to the above situation by changing the computation of
| X —go(C, Z)||? to ||[Mo(X —go(C, Z))||?, where M is the
given binary indicator matrix with the same size of X, with
1 indicating “visible” and 0 indicating “missing”, and sign o
denotes element-wise matrix multiplication operation. The
indicator matrices M; vary for different visual features X;.
Note that GAN or VAE-based methods can hardly handle
learning from incomplete visual features.

5. Experiments
5.1. Experiment Settings

Datasets. We evaluate the proposed framework for gen-
erative ZSL on four widely used ZSL benchmark datasets
and compare it with a number of state-of-the-art baselines.
The datasets include: (1) Caltech-UCSD Birds-200-2011
(CUB) [48], (2) Animal with Attributes (AwA1) [22], (3)
Animal with Attributes 2 (AwA2) [54], (4) SUN attribute
(SUN) [31]. CUB is a fine-grained dataset of bird species
with 312 class-level attributes. AwAl is a coarse-grained
dataset including 50 classes of animals with 85 attributes.
Since the original images in AwA1 are not publicly avail-
able due to the copyright license issue, Xian et al [54] create
anew dataset AwA?2 by collecting new images for each class
in AwA1 while keeping the attribute annotations the same
as AwA1l. SUN contains 717 types of scenes with 102 at-
tributes. We follow the train/test split settings in [54], which
ensures that no unseen classes are included in the ImageNet
dataset where the visual feature extractor is pretrained, to
avoid violating the setting of ZSL. Besides, we also con-
duct experiments on a large-scale dataset, i.e., ImageNet-
21K [7]. In this challenging dataset, no attribute annota-
tions are available. We use the word embedding of the class
names as the semantic represention of the classes [5].

Implementation Details. Our translator is implemented
by a multilayer perceptron with a single hidden layer of
4,096 nodes. LeakyReLU and ReLU are used as nonlin-
ear activation functions on the hidden layer and the output
layer respectively. The dimension of latent factors z is set
to be 10. We fix 0 = 0.3, [ = 10 and s = 0.3. Our model
is trained with a batch size of 64 and the Adam optimizer
with a learning rate of 1073, 81 = 0.9, and B3 = 0.999. The
number of epochs is 50. Our model is implemented using
Pytorch framework [30] and trained on one NVIDIA TI-
TAN Xp GPU. Our code is publicly available online' .

Mttps://github.com/Ethanzhu90/ZSL_ABP
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Method CUB AwAl AwA2 SUN
DAP [22] 40.0 44.1 46.1 39.9
CMT [38] 346 395 379 399
LATEM [53] 49.3 55.1 55.8 553
ALE [1] 549 599 62.5 58.1
DEVISE [12] 520 542 59.7 565
d SJE [2] 539 65.6 619 537
ESZSL [36] 539 582 58.6 545
SYNC [5] 55.6  54.0 46.6 563
SAE [19] 333 53.0 54,1 403
DEM [62] 51.7  65.7 66.5 60.8
GFZSL [47] 49.3 68.3 63.8  60.6
VZSL [50] 563  67.1 66.8  59.0
GAZSL [67] 55.8  63.7 642  60.1
T | FGZSL [55] 577  65.6 669  58.6
MCGZSL [11] | 584  66.8 673  60.0
Ours 585 693 704 615

Table 1: Performance comparison for zero-shot learning on
CUB, AwAl, AwA2 and SUN datasets. The performance
is measured by average per-class top-1 accuracy (%). 1 and
§ indicate generative and non-generative methods, respec-
tively. The best and the second best results are marked in
bold and underlined respectively.

5.2. Zero-Shot Learning

As for zero-shot learning setting, we follow the evalua-
tion protocol used in [54], where results are measured by av-
erage per-class top-1 accuracy. We compare with 15 state-
of-the-art methods, including 11 non-generative ones and 4
generative ones which are separately shown in Table 1. For
GAZSL, FGZSL, and MCGZSL, we get results by running
their codes. We reimplement the VZSL by ourselves since
no code is publicly available. The results of other methods
are published in [54]. From Table 1, we can observe that: (i)
the generative methods have an overall performance supe-
rior to the non-generative ones (ii) our proposed model con-
sistently outperforms previous state-of-the-art methods and
shows great superiorities on AwA1 and AwA2, where the
improvements are up to 3.1%. This validates that our model
trained by alternating back-propagation is significantly ben-
eficial to ZSL tasks.

5.3. Generalized Zero-Shot Learning

In the generalized zero-shot learning setting, a test im-
age is classified to the union of seen and unseen classes.
This setting is more practical and difficult as it removes
the assumption that test images only come from unseen
classes. Following the protocol proposed by [54], we com-
pute the harmonic mean of accuracies on seen and unseen
classes: H = %, where As and A, denote the ac-
curacies of classifying images from seen classes and those
from unseen classes respectively. We evaluate our method

on four datasets and show the performance comparison with
13 state-of-the-art methods in Table 2. The experimental re-
sults show that non-generative methods achieving high per-
formance on seen classes perform badly on unseen classes,
indicating that those methods are biased in favor of seen
classes. In contrast, those generative methods can mitigate
the bias and perform well on both unseen and seen classes.
Compared with other generative ZSL methods, our method
obtains much higher accuracies on unseen classes and com-
parable accuracies on seen classes. It improves the state-of-
the-art performances by notable margins on most datasets
(e.g., 4.0% on AwA?2 in terms of harmonic mean), demon-
strating the capability for generalized zero-shot learning.

5.4. Large-Scale Experiments

We also evaluate the performance of our model on the
large-scale ImageNet-21K [7] dataset. The dataset contains
a total of 14 million images from more than 21K classes.
The relation among classes follows the WordNet [27] hier-
archy. Following the same protocol in [54, 5], we keep a
specific subset of 1K classes for training, and use either all
the remaining classes or a subset of it for testing. Specifi-
cally, the subsets for testing are determined according to the
hierarchical distance from the training classes, or their pop-
ulation. For example, 2Hop contains 1,509 unseen classes
that are within two tree hops of the seen 1K classes based
on the class hierarchy, while 3Hop increases the number of
unseen classes to 7,678 by extending the range to three tree
hops. M500, M1K and M5K contain 500, 1K, and 5K most
populated classes, while L500, LIK and L5K contain 500,
1K, and 5K least populated classes respectively.

We compare our method with three baseline methods,
which include a visual-semantic embedding-based method,
i.e., ALE, and two generative model-based methods, i.e.,
VZSL and FGZSL. The results are shown in Figure 2. A
notable observation is that all methods perform much bet-
ter in 2Hop subset than in 3Hop subset. Two vital factors
accounting for the observation are: in 3Hop subset, (i) the
unseen classes are semantically less related to the training
classes, making it difficult to transfer knowledge, (ii) a dra-
matic increase in the number of unseen classes (from 1, 509
to 7,678) makes the classification even harder. Generally,
it is evident that generative methods have superior perfor-
mances. Among the three generative methods, our proposed
method achieves the best accuracies in most cases, demon-
strating that it is very competitive in this realistic and chal-
lenging task.

5.5. Comparison with GAN & VAE-based Methods

To thoroughly evaluate the performance of our model,
we perform extensive ablation experiments. We study the
comparison of our method with GAN and VAE-based meth-
ods (i.e., FGZSL and VZSL) in terms of (i) the speed of
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CUB AwAl AwA?2 SUN

Method Ay As H Ay As H | Ay As H Ay As H

DAP [22] 1.7 679 33 0.0 887 00| 00 847 0.0 42 251 7.2
DEVISE [12] 23.8 53.0 328 | 134 68.7 224 | 17.1 747 278|169 274 209
CMT [38] 72 498 126 | 09 876 18| 05 90.0 1.0 81 218 118
SIE [2] 235 592 336|113 746 196 | 80 739 144|147 305 198

§ LATEM [53] 152 573 240 73 717 133 | 115 773 200 | 147 28.8 195
ESZSL [36] 126 63.8 21.0| 6.6 756 12.1 59 778 110 | 11.0 279 158
ALE [1] 237 628 344|168 76.1 275|140 81.8 239 |21.8 331 263
SAE [19] 7.8 54.0 13.6 1.8 77.1 3.5 1.1 822 22| 88 180 1138
DEM [62] 19.6 579 29.2 | 328 847 473|305 864 451|205 343 256
VZSL [50] 449 541 49.1 | 534 683 599 | 51.7 672 584|435 349 387
GAZSL [67] 265 574 362|328 847 473|599 683 534|217 345 26.7
FGZSL [19] 459 546 499 | 531 680 596|502 675 575|402 364 382

f MCGZSL [11] | 457 61.0 523 | 569 640 602|519 672 586|494 336 400
Ours 47.0 548 506|573 67.1 618|553 72.6 62.6 | 453 368 40.6

Table 2: Performance comparison for generalized zero-shot learning. 1 and § indicate generative and non-generative model-
based methods respectively. The best and the second best results are marked in bold and underlined respectively.

Top-1 Acc.(in %)
Top-1 Acc.(in %)
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Figure 2: ZSL and GZSL results on ImageNet. For GZSL,
Ay is reported.
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Figure 3: Convergence comparison: top-1 accuracies in the
validation set over different numbers of training epochs.

the convergence, (ii) the number of model parameters, (iii)
ZSL performance when generating different numbers of
features for unseen classes, (iv) ZSL performance under dif-
ferent numbers of seen classes for training.

Comparison (i) To investigate the advantage of our pro-
posed method, we display the convergence curves of dif-
ferent models. We reserve a subset of seen classes as the
validation set, and the remaining seen classes are used for

training. Considering that various loss functions used in dif-
ferent methods are not comparable, we instead use the aver-
age per-class top-1 accuracy of the validation set as the con-
vergence indicator. Figure 3 shows classification accura-
cies over different numbers of training epochs on CUB and
AwAL datasets. The convergence trends on both datasets
are similar. Among these three methods, ours converges
fastest, while the GAN-based method is the slowest one.

Dataset # of Parameters | # of Mult-Adds
FGZSL [55] 20.62M 41.23M
VZSL [50] 21.90M 43.78M
Ours 9.71M 19.42M

Table 3: Comparison of the number of parameters and
the computational cost among three generative model-based
ZSL methods that are applied to CUB dataset.

Comparison (ii) Another advantage of our proposed
model is the small number of parameters, or equivalently,
the low computational load. We compare our method with
FGZSL and VZSL for the CUB dataset in terms of the num-
ber of parameters and the number of element-wise multipli-
cation and addition operations in Table 3. Note that these
numbers might get changed when the methods are applied
to other datasets, because different datasets may have vari-
ous dimensions of semantic and visual features. Due to the
incorporation of auxiliary networks in VAE and GAN-based
methods (i.e., the encoder in VAE and the discriminator in
GAN), these models require more parameters and computa-
tions. Our method only contains one single conditional gen-
erator, therefore its parameter size and computational cost
are only half of those in GAN and VAE-based frameworks.
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Figure 4: Comparison of top-1 per-class accuracies of un-
seen classes with different numbers of synthetic features per
class.

Comparison (iii) Figure 4 shows the accuracies of three
methods with different numbers of synthetic features for
each unseen class. The same curve trends appear on both
CUB and AwA1 datasets. The results are better with larger
number of synthetic samples. When the number increases
to 300, all the performances are similar and stable, indi-
cating that each of the models is saturated as no improve-
ment appears with more samples. Compared with FGZSL,
our model performs much better with fewer samples (e.g.,
50.1% v.s. 29.1% on CUB and 60.1% v.s. 38.9% on AwA1
with only 1 sample). The VZSL model performs slightly
worse than ours.

Comparison (iv) As pointed out in [40], the number of
unseen classes usually dramatically surpasses that of seen
classes in the real world. However, most ZSL benchmark
datasets are far away from this situation. For instance, only
72 out of 717 classes on the SUN dataset are specified as
unseen classes. This motivates us to investigate how mod-
els perform with different numbers of seen classes for train-
ing. We conduct experiments on the SUN dataset as it con-
tains more classes than other datasets. We keep the unseen
classes the same and randomly sample different numbers of
seen classes for training. To make the experiments closer
to the real world situation, we report the performance in
the generalized ZSL setting, as shown in Figure 5. As the
number of seen classes increases, the accuracies of seen
classes of all methods consistently decrease, indicating the
increasing difficulty in discriminating seen class examples.
From another perspective, more seen classes can provide
more knowledge to associate the visual and semantic fea-
tures, resulting in the improvement in the performance on
unseen classes. Compared with other generative methods,
our model achieves the best A;; while keeping decent As.

5.6. Learning from Incomplete Visual Features

Zhu et al [8, 67] propose to use concatenated part fea-
tures for ZSL, where those part features are either from
groundtruth part annotations or extracted by a learned part
detector, denoted as GTA and DET features respectively.
The missing ratio in GTA is 9.3%, while the ratio decreases

o
—— Ay FGZSL  -*- AsFGZSL
32.5 == Au VZSL ke Ag VZSL
—— Au Ours %= As Ours

100 200 300 400 500 600
# of seen classes

Figure 5: Comparison of top-1 per-class accuracies of un-
seen classes among different methods with different num-
bers of seen classes in training.

DET*

Method GTA DET | 30% 50% 70% 90%
GAZSL [67] 741 727 | 685 63.7 556 37.7
Ours 76.7 752 | 729 713 648 51.6

Table 4: Zero-shot learning performance (top-1 accuracy
%) of the models trained on incomplete visual features with
different missing ratios.

to 4.0% in DET due to the high recall of their part detec-
tor. We first evaluate the performance of our model and
GAZSL [67] with GTA features and DET features. As
shown in Table 4, our method outperforms GAZSL by 2.6%
and 2.5% using GTA and DET features respectively. To
further analyze the power of our model in dealing with in-
complete visual features, we increase the missing ratio of
the DET features by randomly masking some valid feature
values. As the missing ratio increases, the performances
of both methods drop due to the reason that less and less
useful information can be used. However, our method can
still achieve a decent performance of 51.6% in the most
challenging situation where the missing ratio reaches 90%,
while the accuracy of GAZSL is only 37.7%. This confirms
the claimed power of our model in learning from incomplete
visual features for ZSL.

6. Conclusion

We propose a feature-to-feature translator learned by
an alternating back-propagation algorithm as a general-
purpose solution to zero-shot learning. Unlike other gener-
ative models, such as GAN and VAE, our method is sim-
ple yet effective, and does not rely on any assisting net-
works for training. The alternating back-propagation al-
gorithm iterates the inferential back-propagation for infer-
ring the instance-level latent factors and the learning back-
propagation for updating the model parameters. We present
a solution to learning from incomplete visual features for
ZSL. We show that our framework outperforms the existing
generative ZSL methods.
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