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Abstract

Unsupervised approaches to learning in neural networks

are of substantial interest for furthering artificial intelli-

gence, both because they would enable the training of net-

works without the need for large numbers of expensive

annotations, and because they would be better models of

the kind of general-purpose learning deployed by humans.

However, unsupervised networks have long lagged behind

the performance of their supervised counterparts, espe-

cially in the domain of large-scale visual recognition. Re-

cent developments in training deep convolutional embed-

dings to maximize non-parametric instance separation and

clustering objectives have shown promise in closing this

gap. Here, we describe a method that trains an embedding

function to maximize a metric of local aggregation, caus-

ing similar data instances to move together in the embed-

ding space, while allowing dissimilar instances to separate.

This aggregation metric is dynamic, allowing soft clusters

of different scales to emerge. We evaluate our procedure

on several large-scale visual recognition datasets, achiev-

ing state-of-the-art unsupervised transfer learning perfor-

mance on object recognition in ImageNet, scene recognition

in Places 205, and object detection in PASCAL VOC.

1. Introduction

Deep convolutional neural networks (DCNNs) have

achieved great success on many tasks across a variety of

domains, such as vision [41, 64, 26, 25, 8], audition [29, 23,

12, 51], and natural language processing [73, 32, 10, 42].

However, most successful DCNNs are trained in a super-

vised fashion on labeled datasets [41, 64, 26, 11, 29], requir-

ing the costly collection of large numbers of annotations.

There is thus substantial interest in finding methods that can

train DCNNs solely using unlabeled data, which are often

readily available. Over many decades of work, substantial

progress has been achieved using a wide variety of unsuper-

vised learning approaches [7, 72, 76, 40, 14, 16, 75, 52, 68,

53]. Nevertheless, unsupervised networks are still signifi-

cantly lower performing than their supervised counterparts,

and are rarely used in real-world applications [7, 51, 8].

In contrast to the inefficiency of unsupervised learning in

artificial neural networks, humans and non-human primates

develop powerful and domain-general visual systems with

very few labels [46, 6, 70, 1, 24, 5, 65]. Although the mech-

anisms underlying this efficiency still remain largely un-

known [6], researchers reliably report that infants as young

as three months can group perceptually similar stimuli [50],

even for unfamiliar stimulus types to the infants. Moreover,

this ability arises long before these infants appear to have

an explicit concept of object category [50, 58, 34, 9]. These

findings suggest that biological unsupervised learning may

take advantage of inherent visual similarity, without requir-

ing sharp boundaries between stimulus categories.

Inspired by these results, we propose a novel unsuper-

vised learning algorithm through local non-parametric ag-

gregation in a latent feature space. First, we non-linearly

embed inputs in a lower-dimensional space via a neural

network. We then iteratively identify close neighbors sur-

rounding each example in the embedding space, while op-

timizing the embedding function to strengthen the degree

of local aggregation. Our procedure, which we term Local

Aggregation (LA), causes inputs that are naturally dissim-

ilar to each other to move apart in the embedding space,

while allowing inputs that share statistical similarities to ar-

range themselves into emergent clusters. By simultaneously

optimizing this soft clustering structure and the non-linear

embedding in which it is performed, our procedure exposes

subtle statistical regularities in the data. The resulting rep-

resentation in turn robustly supports downstream tasks.

Here, we illustrate the LA procedure in the context of

large-scale visual learning. Training a standard convolution

neural network with LA using images from ImageNet [11]

significantly outperforms current state-of-art unsupervised

algorithms on transfer learning to classification tasks on

both ImageNet and the Places 205 dataset [77]. In addition,

LA shows consistent improvements as the depth of the em-

bedding function increases, allowing it to achieve 60.2%
top-1 accuracy on ImageNet classification. This is, as far

as we know, the first time an unsupervised model has sur-

passed the milestone AlexNet network trained directly on
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the supervised task. We also show that, through further fine-

tuning, LA trained models obtain state-of-the-art results on

the PASCAL object detection task.

The remainder of this paper is organized as follows: in

section 2, we discuss related work; in section 3, we describe

the LA method; in section 4, we show experimental results;

in section 5, we present analyses illustrating how this algo-

rithm learns and justifying key parameter choices.

2. Related Work

Unsupervised learning methods span a very broad spec-

trum of approaches going back to the roots of artificial neu-

ral networks [57, 43, 3, 62, 30, 45, 31, 33, 27], and are

too numerous to fully review here. However, several recent

works have achieved exciting progress in unsupervised rep-

resentation learning [7, 72, 76]. Although the LA method

draws inspiration from these works, it differs from them in

some important conceptual ways.

DeepCluster. DeepCluster [7] (DC) trains a DCNN in a

series of iterative rounds. In each round, features from the

penultimate layer of the DCNN from the previous round

are clustered, and the cluster assignments are used as self-

generated supervision labels for further training the DCNN.

Like DC, LA also uses an iterative training procedure, but

the specific process within each iteration differs signifi-

cantly. First, unlike the clustering step of DC where all

examples are divided into mutually-exclusive clusters, our

method identifies neighbors separately for each example, al-

lowing for more flexible statistical structures. Indeed, as

shown in Section 5.2, the use of individual semantic neigh-

bor identifiers rather than global clustering is important for

performance improvement. Secondly, LA optimizes a ob-

jective function which is different from DC. Specifically,

DC optimizes the cross-entropy loss between predicted and

ground truth cluster labels, requiring an additional and com-

putationally expensive readout layer. Moreover, due to ar-

bitrary changes in the cluster label indices across iterative

rounds, this additional readout layer needs to be frequently

recomputed. In contrast, LA employs an objective func-

tion that directly optimizes a local soft-clustering metric,

requiring no extra readout layer and only a small amount of

additional computation on top of the feature representation

training itself. These differences lead both to better final

performance and substantially improved training efficiency.

Instance Recognition. Instance Recognition [72] (IR)

treats each example as its own “category” and optimizes

the DCNN to output an embedding in which all examples

are well-separated from each other. LA uses a similar em-

bedding framework, but achieves significantly better per-

formance by pursuing a distinct optimization goal. Specif-

ically, while IR optimizes for equally separating all exam-

ples, LA encourages a balance between separation and clus-

tering on a per-example basis, as measured by the local ag-

gregation criterion. For this reason, LA can be thought of

as a principled hybrid between DC and IR.

Self-supervised “missing-data” tasks. These tasks

build representations by hiding some information about

each example input, and then optimizing the network to

predict the hidden information from the visible information

that remains. Examples include context prediction [14],

colorization of grayscale images [14], inpainting of miss-

ing portions of images [56], predicting rotations of im-

ages [20], spotting artifacts of images [36], and the Split-

Brain method [76]. However, it is ultimately unclear

whether these tasks are perfectly aligned with the needs

of robust visual representation. Indeed, it has been found

that deeper networks better minimizing the loss functions

used in such tasks gain little transfer learning performance

on object recognition tasks [15]. Moreover, most missing-

data tasks rely on structures that are specific to visual

data, making them potentially less general than the embed-

ding/clustering concepts used in DC, IR or our LA method.

Generative models. Another broad class of unsuper-

vised learning algorithm, often termed deep generative

models, focuses on reconstructing input images from a bot-

tlenecked latent representation. The latent representation

is then used for other tasks, including object recognition.

These learning methods include classical ones such as Re-

stricted Boltzman Machines [30, 45] as well as more recent

ones such as Variational Auto-Encoders [39] and Genera-

tive Adversarial Networks [16, 22]. Although the features

learned by generative models have been put to a wide vari-

ety of exciting uses [44, 74, 13, 47, 37], their power as latent

representations for downstream visual tasks such as object

recognition has yet to be fully realized.

Information based methods. Several concurrent meth-

ods [67, 2, 28] optimizing mutual information of represen-

tations from different views of the same image achieve com-

parable performances to LA while using significantly larger

architectures. These methods can be complementary to LA

as they aim at the consistency between multiple variants of

the same image and LA focus on the local aggregation of

embeddings of many images.

3. Methods

Our overall objective is to learn an embedding func-

tion fθ (realized via a neural network) that maps images

I = {x1,x2, ...,xN} to features V = {v1,v2, ...,vN}
with vi = fθ(xi) in a compact D-dimension representation

space where similar images are clustered while dissimilar

images are separated. To achieve this objective, we design

an iterative procedure to bootstrap the aggregation power of

a deep non-linear embedding function. More specifically, at

any given stage during training the embedding function, we

dynamically identify two sets of neighbors for an xi and its

embedding vi: close neighbors Ci and background neigh-
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bors Bi. Intuitively, close neighbors are those whose em-

beddings should be made similar to vi, while background

neighbors are used to set the distance scale with respect

to which the judgement of closeness should be measured.

To help better understand these two sets, we provide a

schematic illustration in Fig. 1, and describe the details of

how they are defined mathematically in section 3.1. Using

Bi and Ci, we then define the level of local aggregation

L(Ci,Bi|θ,xi) near each input xi, which characterizes the

relative level of closeness within Ci, compared to that in

Bi. The parameters θ of the neural network realizing the

embedding function are then tuned over the course of train-

ing to maximize L(Ci,Bi|θ,xi).

3.1. Neighbor Identification

We first describe how the neighbor types Bi and Ci are

defined. Nearest-neighbor based identification for Bi: At

any given step of optimization, the background neighbors

for a given embedded point vi are simply defined as the k
closest embedded points Nk(vi) within V, where distance

is judged using the cosine distance on the embedding space.

The number k of background neighbors to be used is a hy-

perparameter of the algorithm. Robustified clustering-based

identification for Ci: To identify close neighbors, we first

apply an unsupervised clustering algorithm on all embed-

ded points V to cluster the representations into m groups

G = {G1, G2, ..., Gm}. Let g(vi) denote the cluster label

of vi in this clustering result, i.e. i ∈ Gg(vi). In the sim-

plest version of our procedure, we then define Ci to be the

set Gg(vi). However, because clustering can be a noisy and

somewhat arbitrary process, we compute multiple cluster-

ings under slightly different conditions, and then aggregate

neighbors across these multiple clusterings to achieve more

stable results. Specifically, let {G(j)} be clusters for H

distinct clusterings, where G
(j) = {G

(j)
1 , G

(j)
2 , ..., G

(j)

m(j)}

with j ∈ {1, 2, ..., H}, and {g(j)} defined accordingly. We

then define Ci =
⋃H

j=1 G
(j)

g(j)(vi)
. The number m of clus-

ters and number H of clusterings are hyperparameters of

the algorithm. In this work, we use k-means clustering as

the standard unsupervised algorithm.

Intuitively, background neighbors are an unbiased sam-

ple of nearby points that (dynamically) set the scale at

which “close-ness” should be judged; while close neigh-

bors are those that are especially nearby, relative to those

in other clusters. The mathematical definitions above rep-

resent just one specific way to formalize these ideas, and

many alternatives are possible. In Section 5.2, we show that

our choices are not arbitrary by exploring the consequences

of making alternate decisions.

3.2. Local Aggregation Metric

Given the definition of Bi and Ci, we describe the for-

mulation of our local aggregation metric, L(Ci,Bi|θ,xi).

We build our formulation upon a non-parametric softmax

operation proposed by Wu et al. in [72]. In that work, the

authors define the probability that an arbitrary feature v is

recognized as the i-th image to be:

P (i|v) =
exp(vT

i v/τ)∑N

j=1 exp(v
T
j v/τ)

(1)

where τ ∈ [0, 1] is a fixed scale hyperparameter, and where

both {vi} and v are projected onto the L2-unit sphere in the

D-dimensional embedding space (e.g. normalized such that

‖v‖2 = 1).

Following equation 1, given an image set A, we then

define the probability of feature v being recognized as an

image in A as:

P (A|v) =
∑

i∈A

P (i|v) (2)

Finally, we formulate L(Ci,Bi|θ,xi) as the negative

log-likelihood of vi being recognized as a close neighbor

(e.g. is in Ci), given that vi is recognized as a background

neighbor (e.g. is in Bi):

L(Ci,Bi|θ,xi) = −log
P (Ci ∩Bi|vi)

P (Bi|vi)
(3)

The loss to be minimized is then:

Li = L(Ci,Bi|θ,xi) + λ‖θ‖22 (4)

where λ is a regularization hyperparameter.

Discussion. Because the definition of L(Ci,Bi|θ,xi)
is somewhat involved, we describe a simple conceptual

analysis that illustrates the intuition for why we chose it

as a measure of local aggregation. Letting C
c
i denote the

complement of Ci in I, we have P (Bi|vi) = P (Cc
i ∩

Bi|vi) + P (Ci ∩ Bi|vi). Thus, from equation 3, we see

that L(Ci,Bi|θ,xi) is minimized when P (Ci ∩ Bi|vi) is

maximized and P (Cc
i ∩ Bi|vi) is minimized. It is easy

to understand the meaning of minimizing P (Cc
i ∩ Bi|vi):

this occurs as the distances between vi and its non-close

background neighbors are maximized. The consequences of

maximizing P (Ci∩Bi|vi) are a bit more subtle. As shown

empirically in [71] (albeit in the supervised context), as long

as the scaling parameter τ ≪ 1, maximizing P (A|vi) for

any set A causes the emergence of natural “sub-categories”

in (the embeddings of) A, and encourages vi to move closer

to one of these sub-categories rather than their overall av-

erage. This empirical result can be intuitively understood

by recognizing the fact that exp(vT
i v/τ) increases expo-

nentially when v
T
i v approaches 1, suggesting that P (A|vi)

will approach 1 when A includes a small cluster of features

that are all very close to v. Putting these observations to-

gether, the optimized representation space created by min-

imizing L(Ci,Bi|θ,xi) is, intuitively, like that shown in

Fig. 1: a set of embedded points that have formed into small

clusters at a distribution of natural scales.
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Figure 1. Illustration of the Local Aggregation (LA) method. For each input image, we use a deep neural network to embed it into a lower

dimension space (”Embedding Space” panel). We then identify its close neighbors (blue dots) and background neighbors (black dots). The

optimization seeks to push the current embedding vector (red dot) closer to its close neighbors and further from its background neighbors.

The blue arrow and black arrow are examples of influences from different neighbors on the current embedding during optimization. The

”After Optimization” panel illustrates the typical structure of the final embedding after training.

3.3. Memory Bank

As defined above, the neighbor identification procedures

and the loss function implicitly describe computations in-

volving all the embedded features V, which soon becomes

intractable for large datasets. To address this issue, we fol-

low [72, 71] and maintain a running average for V, which

is called the memory bank, denoted V̄ = {v̄1, v̄2, ..., v̄N}.
Similarly to [72, 71], we initialize the memory bank with

random D-dimensional unit vectors and then update its val-

ues by mixing v̄i and vi during training as follows:

v̄i ← (1− t)v̄i + tvi (5)

where t ∈ [0, 1] is a fixed mixing hyperparameter. With the

help of V̄, we can then rewrite the neighbor identification

procedures and equation 1 by replacing the feature sets V

with V̄. In particular for Ci, the cluster label function g is

applied to v̄i by index identification, ensuring the chosen

cluster includes the index i itself. After this replacement, it

is no longer necessary to recompute V before every step to

identify (good approximations of) Ci and Bi.

4. Results

In this section, we describe tests of the LA method on

visual representation learning and compare its performance

to that of other methods.

4.1. Experiment Settings

We first list key parameters used for network training.

Following [72], we set parameter τ = 0.07, D = 128,

λ = 0.0001, and t = 0.5. For all network structures, we

use SGD with momentum of 0.9 and batch size 128. Initial

learning rates are set to 0.03, and dropped by a factor of 10

when validation performances saturate, typically leading to

training for 200 epochs with two learning rate drops. Most

of these parameters are taken from [72], as our conceptual

framework is similar, but a further hyper-parameter search

might lead to better results, given that our optimization goal

differs substantially.

As a warm start for our models, we begin training using

the IR loss function for the first 10 epochs, before switch-

ing over to using the LA method. Following the methods

of [7], for AlexNet [41] and VGG16 [64] architectures, we

add batch normalization (BN) layers [35] after all convolu-

tion and fully-connected layers, before ReLu operations, to

allow a higher learning rate and a faster convergence speed.

Though adding BN is known to improve convergence speed

but not typically to lead to higher final ImageNet perfor-

mance levels using supervised training regimes, it is unclear

whether this remains true when using unsupervised train-

ing methods. Importantly, the potentially competitive IR

method [72] did not originally include BN in their AlexNet

and VGG16, so to ensure that we have fairly compared that

method to LA or DC, we also train AlexNet and VGG16

with BN on the IR task. For all structures, we replace the fi-

nal category readout layer with a linear layer with D output

units, followed by a L2-normalization operation to ensure

that the output is a unit vector.

We set k = 4096 for computing Bi using the near-

est neighbors procedure. In computing Ci, we use k-

means [48] implemented in Faiss [38] as the standard unsu-

pervised clustering algorithm, generating multiple cluster-

ings for robustness via different random initializations. Us-

ing the notation of Section 3, AlexNet is trained with H =
3,m = 30000, VGG16 is trained with H = 6,m = 10000,

all ResNet structures are trained with H = 10,m = 30000.

We justify all parameter choices and intuitively explain why

they are optimal in Section 5.2. All code for reproduc-

ing our training is available at: https://github.com/

neuroailab/LocalAggregation.
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4.2. Transfer Learning Results

After fully training networks on ImageNet, we then test

the quality of the learned visual representations by evalu-

ating transfer learning to other tasks, including ImageNet

classification on held-out validation images, scene classi-

fication on Places205 [77], and object detection on PAS-

CAL VOC 2007 [18]. For classification tasks, we also re-

port K-nearest neighbor (KNN) classification results using

the embedding features, acquired via a method similar to

that in [72]. Specifically, we take top K nearest neighbors

NK for the feature v either (for ImageNet) from the saved

memory bank or (for Places) from the computed network

outputs for center crops of training images. Their labels are

then weighted by exp(vT
i v/τ) and combined to get final

predictions. We report results for K = 200 as in [72].

Object Recognition. To evaluate transfer learning for

the ImageNet classification task, we fix network weights

learned during the unsupervised procedure, add a linear

readout layer on top of each layer we want to evaluate, and

train the readout using cross-entropy loss together with L2

weight decay. We use SGD with momentum of 0.9, batch

size 128, and weight decay 0.0001. Learning rate is ini-

tialized at 0.01 and dropped by a factor of 10 when per-

formance saturates, typically leading to 90 training epochs

with two learning rate drops. We report 10-crop validation

performances to ensure comparability with [7]. Single-crop

performances can be found in the supplementary material.

Performance results in Table 1 show that LA significantly

outperforms other methods with all architectures, espe-

cially in deeper architectures. LA-trained AlexNet reaches

42.4%, which is 1.4% higher than previous state-of-the-

art. Improvements over previous unsupervised state-of-the-

art are substantially larger for VGG16 (+4.9%), ResNet-

18 (+3.7%), and ResNet-50 (+6.2%). In particular, LA-

trained ResNet-50 achieves 60.2% top-1 accuracy on Im-

ageNet classification, surpassing AlexNet trained directly

on the supervised task. Using KNN classifiers, LA out-

performs the IR task by a large margin with all architec-

tures. There is a consistent performance increase for the

LA method both from overall deeper architectures, and

from earlier layers to deeper layers within an architecture.

Most alternative training methods (e.g. [55, 49, 14, 75]) do

not benefit significantly from increasing depth. For exam-

ple, ResNet-101 trained using Color [75] can only achieve

39.6% and the best performance using ResNet-101 with un-

supervised task is only 48.7% with CPC [54].

Scene Categorization. To test the generalization abil-

ity of the learned representations to a data distribution dis-

tinct from that used in training, we assessed transfer to the

Places [77] dataset, which includes 2.45M images labelled

with 205 scene categories. As in the previous section, we

train linear readout layers for the scene categorization task

on top of the pretrained ImageNet model, using training

Method conv1 conv2 conv3 conv4 conv5 KNN

AlexNet

Random 11.6 17.1 16.9 16.3 14.1 3.5

Context [14] 16.2 23.3 30.2 31.7 29.6 –

Color [75] 13.1 24.8 31.0 32.6 31.8 –

Jigsaw [52] 19.2 30.1 34.7 33.9 28.3 –

Count [53] 18.0 30.6 34.3 32.5 25.7 –

RotNet [20] 18.8 31.7 38.7 38.2 36.5 –

SplitBrain [76] 17.7 29.3 35.4 35.2 32.8 11.8

IR [72] 16.8 26.5 31.8 34.1 35.6 31.3

IR(with BN)* 18.4 30.1 34.4 39.2 39.9 34.9

DC [7] 13.4 32.3 41.0 39.6 38.2 –

LA (ours) 18.7 32.7 38.1 42.3 42.4 38.1

VGG16

IR 16.5 21.4 27.6 35.1 39.2 33.9

IR(with BN)* 13.2 18.7 27.3 39.8 50.4 42.1

DC* 18.2 27.5 41.5 51.3 52.7 –

LA (ours) 14.3 23.4 28.3 44.5 57.6 46.6

ResNet-18

IR 16.0 19.9 29.8 39.0 44.5 41.0

DC* 16.4 17.2 28.7 44.3 49.1 –

LA (ours) 9.1 18.7 34.8 48.4 52.8 45.0

ResNet-50

IR 15.3 18.8 24.9 40.6 54.0 46.5

DC* 18.9 27.3 36.7 52.4 44.2 –

LA (ours) 10.2 23.3 39.3 49.0 60.2 49.4
Table 1. ImageNet transfer learning and KNN classifier perfor-

mance. Numbers within the red box are the best for the given

architecture. Performances of most methods using AlexNet are

taken from [7, 72]. *: performance number produced by us, please

refer to the supplementary material for training details.

procedures and hyper-parameters identical to those used in

ImageNet transfer learning. Results shown in Table 2 il-

lustrate that the LA method surpasses previous methods in

transfer learning performance with all architectures, espe-

cially with deeper networks. Please refer to the supplemen-

tary material for K-nearest neighbor classification perfor-

mance. These result indicate strong generalization ability

of the visual representations learned via the LA method.

Object Detection. The results presented in Table 1

and 2 illustrate the utility of LA for learning representations

for visual categorization tasks. However, visual challenges

faced in real life also include other tasks, such as object

detection. Therefore, we also evaluate the transfer learn-

ing ability of our models to the object detection task in the

PASCAL VOC 2007 [18] dataset. The typical PASCAL

detection task evaluation procedure [7, 76, 72, 69] fine-

tunes unsupervised architectures using the Fast RCNN [21]

method. However, Fast RCNN is substantially less com-

putationally efficient than more recently proposed pipelines

such as Faster RCNN [59] or Mask RCNN [25], and is
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Method conv1 conv2 conv3 conv4 conv5

AlexNet

Random 15.7 20.3 19.8 19.1 17.5

Context [14] 19.7 26.7 31.9 32.7 30.9

Color [75] 22.0 28.7 31.8 31.3 29.7

Jigsaw [52] 23.0 32.1 35.5 34.8 31.3

SplitBrain [76] 21.3 30.7 34.0 34.1 32.5

IR [72] 18.8 24.3 31.9 34.5 33.6

IR(with BN)* 21.3 33.0 36.5 39.2 38.7

DC [7] 19.6 33.2 39.2 39.8 34.7

LA (ours) 18.7 32.7 38.2 40.3 39.5

VGG16

IR 17.6 23.1 29.5 33.8 36.3

IR(with BN)* 17.3 22.9 27.3 39.3 45.8

DC* 21.5 31.6 40.9 45.2 44.2

LA (ours) 20.1 25.9 31.9 44.0 50.0

ResNet-18

IR 17.8 23.0 30.1 37.0 38.1

DC* 16.4 22.5 30.5 40.4 41.8

LA (ours) 18.9 26.7 36.5 44.7 45.6

ResNet-50

IR 18.1 22.3 29.7 42.1 45.5

DC* 20.1 29.1 35.3 43.2 38.9

LA (ours) 20.4 32.7 39.9 47.2 50.1

Table 2. Places transfer learning performance. *: performances

produced by us, please refer to the supplement for details.

less well-supported by validated reference implementations

in common deep learning frameworks. To ensure training

efficiency and correctness, in this work we have used the

Faster RCNN pipeline from validated implementations in

both TensorFlow and Pytorch. However, because the per-

formance achieved by Faster RCNN can vary somewhat

from that of Fast RCNN, direct comparison of these results

to numbers generated with Fast RCNN may be mislead-

ing. For this reason, we have additionally evaluated models

trained with IR and DC using Faster RCNN where possible.

For implementation details, please refer to the supplemen-

tary material. Results are shown in Table 3, illustrating that

the LA method achieves state-of-the-art unsupervised trans-

fer learning for the PASCAL detection task. Interestingly,

the performance gaps between the best unsupervised meth-

ods and the supervised controls are comparatively smaller

for the PASCAL task than for the classification tasks.

5. Analysis

5.1. Visualizations

In this subsection, we analyze the embedding space

through visualizations.

Density distribution in the embedding space. The LA

Method AFast AFaster VFast VFaster RFaster

Supervised 56.8 54.3 67.3 70.0 74.6

Jigsaw [52] 53.2 – – – –

Video [68] 47.2 – 60.2 – –

Context [14] 51.1 – 61.5 – –

Trans [69] – – 63.2 – –

IR [72] 48.1 53.1 60.5 65.6 65.4

DC 55.4 – 65.9 – –

LA (ours) – 53.5 – 68.4 69.1

Table 3. PASCAL VOC 2007 detection mAP. A=AlexNet,

V=VGG16, and R=ResNet50. Bold numbers are the best in their

columns. Performances with Faster RCNN are produced by us,

except that of ResNet50 of IR, which is as reported in [72]. Most

numbers using Fast RCNN are taken from [7, 72]. For numbers

produced by us, we show the averages of three independent runs.

Standard deviations are close to 0.2% in all cases.
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Figure 2. Distributions across all ImageNet training images of

local and background densities for feature embeddings. We com-

pare features from ResNet-18 (orange bars) and Resnet-50 (green

bars) architectures as trained by the LA method, as well as that of

a ResNet-18 architecture trained by the Instance Recognition (IR)

method (blue bars). The local and background densities at each

embedded vector are estimated by averaging dot products between

that vector and, respectively, its top 30 or its 1000th-4096th, near-

est neighbors in V̄. See supplementary material for more detail.

optimization objective seeks to minimize the distances be-

tween vi and Ci while maximizing those between vi and

Bi, intuitively leading to an embedding that is locally dense

at some positions but generally sparse across the space. In-

deed, Figure 2 shows that the local density of the LA em-

bedding is much higher than that created by the IR method,

while the background density is only slightly higher (note

differing x-axis scales in the figure). Moreover, insofar as

deeper networks achieve lower minimums of the LA ob-

jective, we expect that their embeddings will exhibit higher

local density and lower background density as compared to

shallower networks. By comparing the density distributions

of the ResNet-18 embedding to that of ResNet-50, Figure 2

shows that this expectation is confirmed. These results help

better characterize the LA optimization procedure.

Success and failure examples. To help qualitatively il-

lustrate the successes and failures of the LA objective, Fig-

ure 3 shows nearest neighbors in the training set for sev-

eral validation images, both correctly and incorrectly clas-
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Figure 3. For each of several validation images in the left-most

column, nearest neighbors in LA-trained RestNet-50 embedding,

with similarity decreasing from left to right. The three top columns

are successfully-classified cases, with high KNN-classifier con-

fidence, while the lower three are failure cases, with low KNN-

classifier confidence.

sified according to the nearest-neighbor classifier. Unsur-

prisingly, the successful examples show that the LA-trained

model robustly groups images belonging to the same cat-

egory regardless of backgrounds and view points. Interest-

ingly, however, the network shows substantial ability to rec-

ognize high-level visual context. This is even more obvious

for the failure cases, where it can be seen that the network

coherently groups images according to salient characteris-

tics. In fact, most failure cases produced by the LA model

appear to be due to the inherently ill-posed nature of the

ImageNet category labelling, in which the category label is

only one of several potentially valid object types present in

the image, and which no unsupervised method could unam-

biguously resolve. To further illustrate this point, we use the

multi-dimensional scaling (MDS) algorithm [4] to visualize

part of the embedding space (see Fig. 4). In particular, the

LA successfully clusters images with trombones regardless

of background, number of trombones, or viewpoint, while

it (perhaps inevitably) distinguishes those images from im-

ages of humans playing trombones.

5.2. Ablations

In this subsection, we empirically justify the design of

the LA procedure by ablating or modifying several key fea-

High Accuracy Classes Low Accuracy Classes

Figure 4. Multi-dimensional scaling (MDS) embedding results

for network outputs of classes with high validation accuracy (left

panel) and classes with low validation accuracy (right panel). For

each class, we randomly choose 100 images of that class from

the training set and apply the MDS algorithm to the resulting 600

images. Dots represent individual images in each color-coded cat-

egory. Gray boxes show examples of images from a single class

(”trombone”) that have been embedded in two distinct subclusters.

Choice of Bi {1, 2, ..., N} Cluster-based N4096

NN performance 30.2 33.2 35.7
Table 4. Nearest neighbor validation performances of ResNet-18

trained with different choices of Bi. We use H = 3 and m =
1000 for cluster-based Bi to make the number of neighbors in Bi

comparable to 4096. In all experiments, we use cluster-based Ci

with H = 1 and m = 10000.

tures of the procedure. We also provide analyses suggesting

intuitive reasons underlying the meaning and influence of

parameters on final performance. Please refer to the supple-

mentary material for further analyses.

Dynamic Locality for Background Neighbors. We

chose a nearest-neighbor based procedure for identifying

Bi to embody the idea of dynamically rescaling the local

background against which closeness is judged. We tested

two ablations of our procedure that isolate the relevance of

this choice, including (i) simply using all inputs for back-

ground, or (ii) using a fixed clustering-based identification

procedure. (See supplement for details on how these were

defined.) Experiments show that the local dynamic nearest-

neighbor procedure is substantially more performant than

either ablation (see Table 4). The desirability of a lo-

cal rather than global background measurement is consis-

tent with the observation that the density of features varies

widely across the embedding space (see Figure 2). That

the dynamic nature of the computation of the background is

useful is illustrated by the comparison of results from com-

puting neighbors in an online fashion from vi, relative to

the cluster-based procedure depending only on V̄.

Robust Clustering for Close Neighbors. We also

sought to understand the importance of the specific cluster-
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Ci {i} Nk′ (1, 10k) (3, 10k) (10, 10k) (10, 30k)

NN 33.9 0.1 35.7 36.2 36.1 37.9
Table 5. Nearest neighbor validation performances of ResNet-18

trained with different choices of Ci. All experiments use N4096

as Bi. {i} means Ci only includes vi itself. (1, 10k) means

clustering-based Ci with H = 1 and m = 10000. Other pairs

have similar meanings. See the supplementary material for details.

ing procedure for defining close neighbors Ci. One alter-

native to using cluster-based identification would be to in-

stead identify “especially close” neighbors as those within

a neighborhood Nk′ , for some k′ ≪ k. Using this in the

definition of Ci is equivalent to optimizing the embedding

to bring especially close neighbors closer together, while

somewhat further away neighbors are moved apart. While

this approach would have been a conceptually simpler way

to define local aggregation than the cluster-based definition

of close neighbors, it turns out to be substantially less effec-

tive in producing a useful representation (see Table 5).

Given the need for cluster-based identification, a variety

of alternative approaches to k-means are theoretically pos-

sible, including DBSCAN [17], Affinity Propagation [19],

spectral methods [63, 66], and gaussian mixtures [60, 61].

However, our present context is strongly constrained by the

requirement that the clustering algorithm scale well to large

datasets, effectively limiting the options to k-means and

DBSCAN. Unfortunately, DBSCAN is known to perform

poorly in settings with high ambient dimensions or highly

variable density distributions [17], both of which are char-

acteristics of the embedding space we work with here (see

Figure 2). Indeed, we find that replacing k-means with DB-

SCAN leads to trivial representations, across a wide variety

of parameter settings (see supplement for details).

The robust clustering procedure described in Section 3.1

has several hyperparameters, including number of clusters

m and number of clusterings H . To intuitively understand

their effect, we performed a set of network characterization

experiments (see supplement). These experiments indicated

that two basic factors were of importance in creating clus-

terings that lead to good representations: the skewness of

the cluster of close neighbors around its intended target, as

measured by the distance from the cluster center to the em-

bedded vector vi, and the size of the cluster, as measured

by its cardinality as a set. We found that (i) clusterings

of close neighbors with lower skewness were robustly as-

sociated with better performance, indicating that skewness

should be minimized whenever possible; and (ii) there was

an optimal size for the set of close neighbors that scaled

with the representation capacity (i.e. depth) of the under-

lying network. Both of these facts are consistent with a

picture in which the ideal embedding is one in which each

category is equally likely to occur and in which each ex-

ample of each category is equally “representative” – e.g. in

which clusters of points corresponding to natural categories

occupy isotropic spheres of equal size. Networks of smaller

capacity that cannot completely achieve the optimal distri-

bution will (poorly) approximate the optimal embedding by

fracturing their embeddings of single categories into subsets

that maintain isotropy by reducing the relative size of clus-

ters, each containing only part of the true category. These

considerations help explain the optimal settings for parame-

ters H and m: higher H (i.e. more clusterings) will tend to

produce more isotropic clusters, as outliers due to random-

ness are averaged out. However, increasing H beyond a

point set by the capacity of the network will lead to clusters

of too large a size for the network to handle (see supple-

ment Figure 1, from A to B, or from B to C). This nega-

tive influence can be shown in Table 5 by the slight perfor-

mance drop from (3, 10k) to (10, 10k). Increasing m (e.g.

the number of clusters) can then compensate by decreasing

the neighborhood size without increasing cluster anisotropy

(see supplement Figure 1, from C to D). This conpensation

can be shown in Table 5 by the performance increase from

(10, 10k) to (10, 30k). More details are shown in the sup-

plementary material.

6. Discussion

In this work, we have introduced a local aggregation

(LA) objective for learning feature embeddings that seeks to

discover a balance between bringing similar inputs together

and allowing dissimilar inputs to move apart, embodying a

principled combination of several key ideas from recent ad-

vances in unsupervised learning. We have shown that when

applied to DCNNs, the LA objective creates representations

that are useful for transfer learning to a variety of challeng-

ing visual tasks. We also analyze aspects of our procedure,

giving an intuition for how it works.

In future work we hope to improve LA along a vari-

ety of directions, including incorporating non-local mani-

fold learning-based priors for detecting similarity, improv-

ing identification of dissimilarity via measures of represen-

tational change over multiple steps of learning, and extend-

ing to the case of non-deterministic embedding functions.

We also seek to apply the LA objective beyond the image

processing domain, including to video and audio signals.

Finally, we hope to compare LA to biological vision sys-

tems, both in terms of the feature representations learned

and the dynamics of learning during visual development.
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