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Abstract

Estimating 3D hand pose from single RGB images is a

highly ambiguous problem that relies on an unbiased train-

ing dataset. In this paper, we analyze cross-dataset general-

ization when training on existing datasets. We find that ap-

proaches perform well on the datasets they are trained on,

but do not generalize to other datasets or in-the-wild sce-

narios. As a consequence, we introduce the first large-scale,

multi-view hand dataset that is accompanied by both 3D

hand pose and shape annotations. For annotating this real-

world dataset, we propose an iterative, semi-automated

‘human-in-the-loop’ approach, which includes hand fitting

optimization to infer both the 3D pose and shape for each

sample. We show that methods trained on our dataset con-

sistently perform well when tested on other datasets. More-

over, the dataset allows us to train a network that predicts

the full articulated hand shape from a single RGB image.

The evaluation set can serve as a benchmark for articulated

hand shape estimation.

1. Introduction

3D hand pose and shape estimation from a single RGB

image has a variety of applications in gesture recognition,

robotics, and AR. Various deep learning methods have ap-

proached this problem, but the quality of their results de-

pends on the availability of training data. Such data is cre-

ated either by rendering synthetic datasets [4, 6, 19, 20, 33]

or by capturing real datasets under controlled settings typi-

cally with little variation [7, 22, 27]. Both approaches have

limitations, discussed in our related work section.

Synthetic datasets use deformable hand models with tex-

ture information and render this model under varying pose

configurations. As with all rendered datasets, it is difficult

to model the wide set of characteristics of real images, such

as varying illumination, camera lens distortion, motion blur,

depth of field and debayering. Even more importantly, ren-

Figure 1: We create a hand dataset via a novel iterative pro-

cedure that utilizes multiple views and sparse annotation

followed by verification. This results in a large scale real

world data set with pose and shape labels, which can be

used to train single-view networks that have superior cross-

dataset generalization performance on pose and shape esti-

mation.

dering of hands requires samples from the true distribution

of feasible and realistic hand poses. In contrast to human

pose, such distributional data does not exist to the same ex-

tent. Consequently, synthetic datasets are either limited in

the variety of poses or sample many unrealistic poses.

Capturing a dataset of real human hands requires anno-

tation in a post-processing stage. In single images, manual

annotation is difficult and cannot be easily crowd sourced

due to occlusions and ambiguities. Moreover, collecting

and annotating a large scale dataset is a respectable effort.

In this paper, we analyze how these limitations affect the

ability of single-view hand pose estimation to generalize

across datasets and to in-the-wild real application scenarios.

We find that datasets show excellent performance on the re-

spective evaluation split, but have rather poor performance

on other datasets, i.e., we see a classical dataset bias.

As a remedy to the dataset bias problem, we created

a new large-scale dataset by increasing variation between

samples. We collect a real-world dataset and develop a

methodology that allows us to automate large parts of the

labeling procedure, while manually ensuring very high-

fidelity annotations of 3D pose and 3D hand shape. One of
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Training Set Evaluation Set

Figure 2: Examples from our proposed dataset showing images (top row) and hand shape annotations (bottom row). The

training set contains composited images from green screen recordings, whereas the evaluation set contains images recorded

indoors and outdoors. The dataset features several subjects as well as object interactions.

the key aspects is that we record synchronized images from

multiple views, an idea already used previously in [2, 22].

The multiple views remove many ambiguities and ease both

the manual annotation and automated fitting. The second

key aspect of our approach is a semi-automated human-

in-the-loop labeling procedure with a strong bootstrapping

component. Starting from a sparse set of 2D keypoint anno-

tations (e.g., finger tip annotations) and semi-automatically

generated segmentation masks, we propose a hand fitting

method that fits a deformable hand model [21] to a set of

multi-view input. This fitting yields both 3D hand pose and

shape annotation for each view. We then train a multi-view

3D hand pose estimation network using these annotations.

This network predicts the 3D hand pose for unlabeled sam-

ples in our dataset along with a confidence measure. By ver-

ifying confident predictions and annotating least-confident

samples in an iterative procedure, we acquire 11592 anno-

tations with moderate manual effort by a human annotator.

The dataset spans 32 different people and features fully

articulated hand shapes, a high variation in hand poses and

also includes interaction with objects. Part of the dataset,

which we mark as training set, is captured against a green

screen. Thus, samples can easily be composed with varying

background images. The test set consists of recordings in

different indoor and outdoor environments; see Figure 2 for

sample images and the corresponding annotation.

Training on this dataset clearly improves cross-dataset

generalization compared to training on existing datasets.

Moreover, we are able to train a network for full 3D hand

shape estimation from a single RGB image. For this task,

there is not yet any publicly available data, neither for train-

ing nor for benchmarking. Our dataset is available on our

project page and therefore can serve both as training and

benchmarking dataset for future research in this field.

2. Related Work

Since datasets are crucial for the success of 3D hand pose

and shape estimation, there has been much effort on acquir-

ing such data.

In the context of hand shape estimation, the majority of

methods fall into the category of model-based techniques.

These approaches were developed in a strictly controlled

environment and utilize either depth data directly [24, 25,

28] or use multi-view stereo methods for reconstruction [2].

More related to our work are approaches that fit statistical

human shape models to observations [3, 17] from in-the-

wild color images as input. Such methods require semi-

automatic methods to acquire annotations such as keypoints

or segmentation masks for each input image to guide the

fitting process.

Historically, acquisition methods often incorporated

markers onto the hand that allow for an easy way to esti-

mate pose afterwards. Common choices are infrared mark-

ers [9], color coded gloves [29], or electrical sensing equip-

ment [32]. This alters hand appearance and, hence, makes

the data less valuable for training discriminative methods.

Annotations can also be provided manually on hand im-

ages [20, 23, 30]. However, the annotation is limited to vis-

ible regions of the hand. Thus, either the subject is required

to retain from complex hand poses that result in severe self-

occlusions, or only a subset of hand joints can be annotated.

To avoid occlusions and annotate data at larger scale,

Simon et al. [22] leveraged a multi-view recording setup.

They proposed an iterative bootstrapping approach to detect

hand keypoints in each view and triangulate them to gener-

ate 3D point hypotheses. While the spirit of our data collec-

tion strategy is similar, we directly incorporate the multi-

view information into a neural network for predicting 3D

keypoints and our dataset consists of both pose and shape

annotations.
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train

eval
STB RHD GAN PAN LSMV FPA HO-3D Ours

Average

Rank

STB [30] 0.783 0.179 0.067 0.141 0.072 0.061 0.138 0.138 6.0
RHD [33] 0.362 0.767 0.184 0.463 0.544 0.101 0.450 0.508 2.9
GAN [19] 0.110 0.103 0.765 0.092 0.206 0.180 0.087 0.183 5.4
PAN [11] 0.459 0.316 0.136 0.870 0.320 0.184 0.351 0.407 3.0
LSMV [7] 0.086 0.209 0.152 0.189 0.717 0.129 0.251 0.276 4.1

FPA [5] 0.119 0.095 0.084 0.120 0.118 0.777 0.106 0.163 6.0
HO-3D [8] 0.154 0.130 0.091 0.111 0.149 0.073 - 0.169 6.1

Ours 0.473 0.518 0.217 0.562 0.537 0.128 0.557 0.678 2.2

Table 1: This table shows cross-dataset generalization measured as area under the curve (AUC) of percentage of correct

keypoints following [33]. Each row represents the training set used and each column the evaluation set. The last column

shows the average rank each training set achieved across the different evaluation sets. The top-three ranking training sets for

each evaluation set are marked as follows: first, second or third. Note that the evaluation set of HO-3D was not available at

time of submission, therefore one table entry is missing and the other entries within the respective column report numbers

calculated on the training set.

Since capturing real data comes with an expensive an-

notation setup and process, more methods rather deployed

synthetic datasets recently [20, 33].

3. Analysis of Existing Datasets

We thoroughly analyze state-of-the-art datasets used for

3D hand pose estimation from single RGB images by test-

ing their ability to generalize to unseen data. We identify

seven state-of-the-art datasets that provide samples in the

form of an RGB image and the accompanying 3D keypoint

information as shown in Table 2.

3.1. Considered Datasets

Stereo Tracking Benchmark (STB) [30] dataset is one

of the first and most commonly used datasets to report per-

formance of 3D keypoint estimation from a single RGB im-

age. The annotations are acquired manually limiting the

setup to hand poses where most regions of the hands are

visible. Thus, the dataset shows a unique subject posing

in a frontal pose with different background scenarios and

without objects.

The Panoptic (PAN) dataset [11] was created using a

dense multi-view capture setup consisting of 10 RGB-D

sensors, 480 VGA and 31 HD cameras. It shows humans

performing different tasks and interacting with each other.

There are 83 sequences publicy available and 12 of them

have hand annotation. We select 171204 pose3 to serve as

evaluation set and use the remaining 11 sequences from the

range motion, haggling and tools categories for training.

Garcia et al. [5] proposed the First-person hand action

benchmark (FPA), a large dataset that is recorded from an

egocentric perspective and annotated using magnetic sen-

sors attached to the finger tips of the subjects. Wires run

along the fingers of the subject altering the appearance of

the hands significantly. 6 DOF sensor measurements are uti-

lized in an inverse kinematics optimization of a given hand

model to acquire the full hand pose annotations.

Using the commercial Leap Motion device [18] for key-

point annotation, Gomez et al. [7] proposed the Large-scale

Multiview 3D Hand Pose Dataset (LSMV). Annotations

given by the device are transformed into 4 calibrated cam-

eras that are approximately time synchronized. Due to the

limitations of the sensor device, this dataset does not show

any hand-object interactions.

The Rendered Hand Pose Dataset (RHD) proposed by

Zimmermann et al. [33] is a synthetic dataset rendered from

20 characters performing 31 different actions in front of a

random background image without hand object interaction.

Building on the SynthHands [20] dataset Mueller et al.

[19] presented the GANerated (GAN) dataset. SynthHands

was created by retargeting measured human hand articula-

tion to a rigged meshed model in a mixed reality approach.

This allowed for hand object interaction to some extend, be-

cause the subject could see the rendered scene in real time

and pose the hand accordingly. In the following GANerated

hand dataset, a CycleGAN approach is used to bridge the

synthetic to real domain shift.

Recently, Hampali et al. [8] proposed an algorithm

for dataset creation deploying an elaborate optimization

scheme incorporating temporal and physical consistencies,

as well as silhouette and depth information. The resulting

dataset is referred to as HO-3D.

3.2. Evaluation Setup

We trained a state-of-the-art network architecture [10]

that takes as input an RGB image and predicts 3D keypoints

on the training split of each of the datasets and report its

performance on the evaluation split of all other datasets. For

each dataset, we either use the standard training/evaluation

split reported by the authors or create an 80%/20% split
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dataset num. num. real obj- shape labels

frames subjects ects

STB [30] 15 k / 3 k 1 ✓ ✗ ✗ manual

PAN [33] 641 k / 34 k > 10 ✓ ✓ ✗ MVBS [22]

FPA [5] 52 k / 53 k 6 ✓ ✓ ✗ marker

LSMV [7] 117 k / 31 k 21 ✓ ✗ ✗ leapmotion

RHD [33] 41 k / 2.7 k 20 ✗ ✗ ✗ synthetic

GAN [19] 266 k / 66 k - ✗ ✓ ✗ synthetic

HO-3D [8] 11 k / - 3 ✓ ✓ ✓ automatic [8]

Ours 33 k / 4 k 32 ✓ ✓ ✓ hybrid

Table 2: State-of-the-art datasets for the task of 3D keypoint

estimation from a single color image used in our analysis.

We report dataset size in number of frames, number of sub-

jects, if it is real or rendered data, regarding hand object in-

teraction, if shape annotation is provided and which method

was used for label generation.

otherwise; see the supplementary material for more details.

The single-view network takes an RGB image I as input

and infers 3D hand pose P = {pk} with each pk ∈ R
3,

representing a predefined landmark or keypoint situated on

the kinematic skeleton of a human hand. Due to scale ambi-

guity, the problem to estimate real world 3D keypoint coor-

dinates in a camera centered coordinate frame is ill-posed.

Hence, we adopt the problem formulation of [10] to es-

timate coordinates in a root relative and scale normalized

fashion:

pk = s · p̂k = s ·





x̂k

ŷk
ẑk



 =





x̂k

ŷk
ẑrel
k + ẑroot



 , (1)

where the normalization factor s is chosen as the length of

one reference bone in the hand skeleton, ẑroot is the root

depth and ẑrel
k the relative depth of keypoint k. We define

the resulting 2.5D representation as:

p̂relk =
(

x̂k, ŷk, ẑ
rel
k

)T
. (2)

Given scale constraints and 2D projections of the points in

a calibrated camera, 3D hand pose P can be recovered from

P̂rel. For details about this procedure we refer to [10].

We train the single-view network using the same hyper-

parameter choices as Iqbal et al. [10]. However, we use only

a single stage and reduce the number of channels in the net-

work layers, which leads to a significant speedup in terms

of training time at only a marginal decrease in accuracy.

We apply standard choices of data augmentation including

color, scale and translation augmentation as well as rotation

around the optical axis. We apply this augmentation to each

of the datasets.

3.3. Results

It is expected that the network performs the best on the

dataset it was trained on, yet it should also provide reason-

able predictions for unseen data when being trained on a

dataset with sufficient variation (e.g., hand pose, viewpoint,

shape, existence of objects, etc.).

Table 1 shows for each existing training dataset the net-

work is able to generalize to the respective evaluation split

and reaches the best results there. On the other hand, per-

formance drops substantially when the network is tested on

other datasets.

Both GAN and FPA datasets appear to be especially hard

to generalize indicating that their data distribution is sig-

nificantly different from the other datasets. For FPA this

stems from the appearance change due to the markers used

for annotation purposes. The altered appearance gives the

network trained on this dataset strong cues to solve the task

that are not present for other datasets at evaluation time.

Thus, the network trained on FPA performs poorly when

tested on other datasets. Based on visual inspection of the

GAN dataset, we hypothesize that subtle changes like miss-

ing hand texture and different color distribution are the main

reasons for generalization problems. We also observe that

while the network trained on STB does not perform well on

remaining datasets, the networks trained on other datasets

show reasonable performance on the evaluation split of

STB. We conclude that a good performance on STB is not

a reliable measure for how a method generalizes to unseen

data.

Based on the performance of each network, we compute

a cumulative ranking score for each dataset that we report

in the last column of Table 1. To calculate the cumulative

rank we assign ranks for each column of the table sepa-

rately according to the performance the respective training

sets achieve. The cumulative rank is then calculated as av-

erage over all evaluation sets, i.e. rows of the table. Based

on these observations, we conclude that there is a need for

a new benchmarking dataset that can provide superior gen-

eralization capability.

We present the FreiHAND Dataset to archieve this goal.

It consists of real images, provides sufficient viewpoint

and hand pose variation, and shows samples both with and

without object interactions. Consequently, the single-view

network trained on this dataset achieves a substantial im-

provement in terms of ranking for cross-dataset generaliza-

tion. We next describe how we acquired and annotated this

dataset.

4. FreiHAND Dataset

The dataset was captured with the multi-view setup

shown in Fig. 3. The setup is portable enabling both in-

door and outdoor capture. We capture hand poses from

32 subjects of different genders and ethnic backgrounds.

Each subject is asked to perform actions with and with-

out objects. To capture hand-object interactions, subjects

are given a number of everyday household items that allow

for reasonable one-handed manipulation and are asked to
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Figure 3: Recording setup with 8 calibrated and tempo-

rally synchronized RGB cameras located at the corners of

a cube. A green screen background can be mounted into the

the setup, enabling easier background subtraction.

demonstrate different grasping techniques. More informa-

tion is provided in the supplementary material.

To preserve the realistic appearance of hands, no mark-

ers are used during the capture. Instead we resort to post-

processing methods that generate 3D labels. Manual ac-

quisition of 3D annotations is obviously unfeasible. An al-

ternative strategy is to acquire 2D keypoint annotations for

each input view and utilize the multi-view camera setup to

lift such annotations to 3D similar to Simon et al. [22].

We found after initial experiments that current 2D hand

pose estimation methods perform poorly, especially in case

of challenging hand poses with self- and object occlusions.

Manually annotating all 2D keypoints for each view is pro-

hibitively expensive for large-scale data collection. Anno-

tating all 21 keypoints across multiple-views with a special-

ized tool takes about 15 minutes for each multi-view set.

Furthermore, keypoint annotation alone is not sufficient to

obtain shape information.

We address this problem with a novel bootstrapping pro-

cedure (see Fig. 4) composed of a set of automatic meth-

ods that utilize sparse 2D annotations. Since our data is

captured against a green screen, the foreground can be ex-

tracted automatically. Refinement is needed only to co-

align the segmentation mask with the hand model’s wrist.

In addition, a sparse set of six 2D keypoints (finger tips and

wrist) is manually annotated. These annotations are rela-

tively cheap to acquire at a reasonably high quality. For ex-

ample, manually correcting a segmentation mask takes on

average 12 seconds, whereas annotating a keypoint takes

around 2 seconds. Utilizing this information we fit a de-

formable hand model to multi-view images using a novel

fitting process described in Section 4.1. This yields candi-

dates for both 3D hand pose and shape labels. These can-
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Figure 4: The dataset labeling workflow starts from manual

annotation followed by the shape fitting process described

in 4.1, which yields candidate shape fits for our data sam-

ples. Sample fits are manually verified allowing them to be

accepted, rejected or queued for further annotation. Alter-

natively a heuristic can accept samples without human inter-

action. The initial dataset allows for training the networks

involved, which for subsequent iterations of the procedure,

can predict information needed for fitting. The labeling pro-

cess can be bootstrapped, allowing more accepted samples

to accumulate in the dataset.

didates are then manually verified, before being added to a

set of labels.

Given an initial set of labels, we train our proposed

network, MVNet, that takes as inputs multi-view images

and predicts 3D keypoint locations along with a confidence

score, described in Section 4.2. Keypoint predictions can

be used in lieu of manually annotated keypoints as input for

the fitting process. This bootstrapping procedure is iterated.

The least-confident samples are manually annotated (Sec-

tion 4.3). With this human-in-the-loop process, we quickly

obtain a large scale annotated dataset. Next we describe

each stage of this procedure in detail.

4.1. Hand Model Fitting with Sparse Annotations

Our goal is to fit a deformable hand shape model to ob-

servations from multiple views acquired at the same time.

We build on the statistical MANO model, proposed by

Romero et al. [21], which is parameterized by θ ∈ R
61. The

model parameters θ = (α,β,γ)T include shape α ∈ R
10,

articulation β ∈ R
45 as well as global translation and ori-

entation γ ∈ R
6. Using keypoint and segmentation infor-

mation we optimize a multi-term loss,

L = L2D
kp + L3D

kp + Lseg + Lshape + Lpose, (3)

to estimate the model parameters θ̃, where the tilde indi-

cates variables that are being optimized. We describe each

of the terms in (3) next.

2D Keypoint Loss L2D
kp : The loss is the sum of distances

between the 2D projection Πi of the models’ 3D keypoints
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p̃k ∈ R
3 to the 2D annotations qi

k over views i and visible

keypoints k ∈ Vi:

L2D
kp = w2D

kp ·
∑

i

∑

k∈Vi

·
∥

∥qi
k −Πi(p̃k)

∥

∥

2
. (4)

3D keypoint Loss L3D
kp : This loss is defined in a similar

manner as (4), but over 3D keypoints. Here, pk denotes

the 3D keypoint annotations, whenever such annotations are

available (e.g., if predicted by MVNet),

L3D
kp = w3D

kp ·
∑

i

∑

k∈Vi

‖pk − p̃k‖2 . (5)

Segmentation Loss Lseg: For shape optimization we use a

sum of l2 losses between the model dependent mask M̃ i

and the manual annotation M i over views i:

Lseg = wseg ·
∑

i

(
∥

∥

∥M
i − M̃ i

∥

∥

∥

2

+
∥

∥

∥EDT(M i) · M̃ i
∥

∥

∥

2

).

(6)

Additionally, we apply a silhouette term based on the Eu-

clidean Distance Transform (EDT). Specifically, we apply

a symmetric EDT to M i, which contains the distance to the

closest boundary pixel at every location.

Shape Prior Lshape: For shape regularization we employ

Lshape = wshape ·
∥

∥

∥
β̃

∥

∥

∥

2

, (7)

which enforces the predicted shape to stay close to the mean

shape of MANO.

Pose Prior Lpose: The pose prior has two terms. The first

term applies a regularization on the PCA coefficients aj
used to represent the pose α̃ in terms of PCA basis vectors

cj (i.e., α̃ =
∑

j ãj · cj). This regularization enforces pre-

dicted poses to stay close to likely poses with respect to the

PCA pose space of MANO. The second term regularizes the

distance of the current pose α̃, to the N nearest neighbors

of a hand pose dataset acquired from [5]:

Lpose = wpose ·
∑

j

‖ãj‖2 + wnn ·
∑

n∈N

‖αn − α̃‖
2

. (8)

We implement the fitting process in Tensorflow [1] and

use MANO to implement a differentiable mapping from θ̃

to 3D model keypoints p̃k and 3D model vertex locations

Ṽ ∈ R
778×3. We adopt the Neural Renderer [14] to render

the segmentation masks M̃ i from the hand model vertices

Ṽ and use the ADAM optimizer [15] to minimize:

θ = argmin
θ̃

(L(θ̃)) (9)

Figure 5: MVNet predicts a single hand pose P using im-

ages of all 8 views (for simplicity only 2 are shown). Each

image is processed separately by a 2D CNN that is shared

across views. This yields 2D feature maps fi. These are in-

dividually reprojected into a common coordinate frame us-

ing the known camera calibration to obtain Fi = Π−1(fi).
The Fi are aggregated over all views and finally a 3D CNN

localizes the 3D keypoints within a voxel representation.

4.2. MVNet: Multiview 3D Keypoint Estimation

To automate the fitting process, we seek to estimate

3D keypoints automatically. We propose MVNet shown in

Fig. 5 that aggregates information from all eight camera im-

ages Ii and predicts a single hand pose P = {pk}. We

use a differentiable unprojection operation, similar to Kar et

al. [13], to aggregate features from each view into a com-

mon 3D volume.

To this end, we formulate the keypoint estimation prob-

lem as a voxel-wise regression task:

LMVNet =
1

K

∑

k

∥

∥

∥
Sk − S̃k

∥

∥

∥

2

, (10)

where S̃k ∈ R
N×N×N represents the prediction of the net-

work for keypoint k and Sk is the ground truth estimate we

calculate from validated MANO fits. Sk is defined as a nor-

malized Gaussian distribution centered at the true keypoint

location. The predicted point p̃k is extracted as maximal

location in S̃k. Furthermore, we define the confidence c of

a prediction as maximum along the spatial and average over

the keypoint dimension:

c =
1

K

∑

k

(max
i,j,l

S̃k(i, j, l)). (11)

Additional information can be found in the supplemental

material.

4.3. Iterative Refinement

In order to generate annotations at large scale, we pro-

pose an iterative, human-in-the-loop procedure which is vi-

sualized in Fig. 4. For initial bootstrapping we use a set

of manual annotations to generate the initial dataset D0. In

iteration i we use dataset Di, a set of images and the corre-

sponding MANO fits, to train MVNet and HandSegNet [33].

MVNet makes 3D keypoint predictions along with confi-

dence scores for the remaining unlabeled data and Hand-
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Method mesh error ↓ F@5mm ↑ F@15mm ↑

Mean shape 1.78 0.300 0.808
MANO Fit 1.45 0.415 0.884

MANO CNN 1.16 0.484 0.925

Table 3: This table shows shape prediction performance on

the evaluation split of FreiHAND after rigid alignment. We

report two measures: The mean mesh error and the F-score

at two different distance thresholds.

SegNet predicts hand segmentation masks. Using these pre-

dictions, we perform the hand shape fitting process of Sec-

tion 4.1. Subsequently, we perform verification that either

accepts, rejects or partially annotates some of these data

samples.

Heuristic Verification. We define a heuristic consisting

of three criteria to identify data samples with good MANO

fits. First, we require the mean MVNet confidence score to

be above 0.8 and all individual keypoint confidences to be

at least 0.6, which enforces a minimum level of certainty

on the 3D keypoint prediction. Second, we define a min-

imum threshold for the intersection over union (IoU) be-

tween predicted segmentation mask and the mask derived

from the MANO fitting result. We set this threshold to be

0.7 on average across all views while also rejecting samples

that have more than 2 views with an IoU below 0.5. Third,

we require the mean Euclidean distance between predicted

3D keypoints and the keypoints of the fitted MANO to be at

most 0.5 cm where no individual keypoint has a Euclidean

distance greater than 1 cm. We accept only samples that

satisfy all three criteria and add these to the set Dh
i .

Manual Verification and Annotation. The remain-

ing unaccepted samples are sorted based on the confidence

score of MVNet and we select samples from the 50th per-

centile upwards. We enforce a minimal temporal distance

between samples selected to ensure diversity as well as

choosing samples for which the current pose estimates are

sufficiently different to a flat hand shape as measured by the

Euclidean distance in the pose parameters. We ask the an-

notators to evaluate the quality of the MANO fits for these

samples. Any sample that is verified as a good fit is added

to the set Dm
i . For remaining samples, the annotator has

the option of either discarding the sample in which case is

marked as unlabeled or provide additional annotations (e.g.,

annotating mislabeled finger tips) to help improve the fit.

These additionally annotated samples are added to the set

Dl
i.

Joining the samples from all streams yields a larger la-

beled dataset

Di+1 = Di +Dh
i +Dm

i +Dl
i (12)

which allows us to retrain both HandSegNet and MVNet.

We repeated this process 4 times to obtain our final dataset.

5. Experiments

5.1. Cross­Dataset Generalization of FreiHAND

To evaluate the cross-dataset generalization capability of

our dataset and to compare to the results of Table 1, we de-

fine the following training and evaluation split: there are

samples with and without green screen and we chose to use

all green screen recordings for training and the remainder

for evaluation. Training and evaluation splits contain data

from 24 and 11 subjects, respectively, with only 3 subjects

shared across splits. The evaluation split is captured in 2
different indoor and 1 outdoor location. We augmented the

training set by leveraging the green screen for easy and ef-

fective background subtraction and creating composite im-

ages using new backgrounds. To avoid green color bleeding

at the hand boundaries we applied the image harmonization

method of Tsai et al. [26] and the deep image colorization

approach by Zhang et al. [31] separately to our data. Both

the automatic and sampling variant of [31] were used. With

the original samples this quadruples the training set size

from 33 k unique to 132 k augmented samples. Examples

of resulting images are shown in Fig. 2.

Given the training and evaluation split, we train the sin-

gle view 3D pose estimation network on our data and test it

across different datasets. As shown in Table 1, the network

achieves strong accuracy across all datasets and ranks first

in terms of cross-dataset generalization.

5.2. 3D Shape Estimation

Having both pose and shape annotations, our acquired

dataset can be used for training shape estimation models in

a fully supervised way. In addition, it serves as the first real

dataset that can be utilized for evaluating shape estimation

methods. Building on the approach of Kanazawa et al. [12],

we train a network that takes as input a single RGB image

and predicts the MANO parameters θ̃ using the following

loss:

L = w3D ‖pk − p̃k‖2 + w2D ‖Π(pk)−Π(p̃)‖
2
+

wp

∥

∥

∥
θ − θ̃

∥

∥

∥

2

. (13)

We deploy l2 losses for 2D and 3D keypoints as well as the

model parameters and chose the weighting to w3D = 1000,

w2D = 10 and wp = 1.

We also provide two baseline methods, constant mean

shape prediction, without accounting for articulation

changes, and fits of the MANO model to the 3D keypoints

predicted by our single-view network.

For comparison, we use two scores. The mesh error

measures the average Euclidean distance between corre-

sponding mesh vertices in the ground truth and the predicted

hand shape. We also evaluate the F -score [16] which, given

a distance threshold, defines the harmonic mean between
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recall and precision between two sets of points [16]. In our

evaluation, we use two distances: F@5mm and F@15mm

to report the accuracy both at fine and coarse scale. In order

to decouple shape evaluation from global rotation and trans-

lation, we first align the predicted meshes using Procrustes

alignment as a rigid body transformation. Results are sum-

marized in Table 3. Estimating MANO parameters directly

with a CNN performs better across all measures than the

baseline methods. The evaluation reveals that the difference

in F -score is more pronounced in the high accuracy regime.

Qualitative results of our network predictions are provided

in Fig. 6.

Figure 6: Given a single image (top rows), qualitative re-

sults of predicted hand shapes (bottom rows) are shown.

Please note that we don’t apply any alignment of the pre-

dictions with respect to the ground truth.

5.3. Evaluation of Iterative Labeling

In the first step of iterative labeling process, we set

w2D
kp = 100 and w2D

kp = 0 (since no 3D keypoint an-

notations are available), wseg = 10.0, wshape = 100.0,

wnn = 10.0, and wpose = 0.1. (For subsequent iterations

we set w2D
kp = 50 and w3D

kp = 1000.) Given the fitting re-

sults, we train MVNet and test it on the remaining dataset.

After the first verification step, 302 samples are accepted.

Validating a sample takes about 5 seconds and we find that

the global pose is captured correctly in most cases, but in or-

der to obtain high quality ground truth, even fits with minor

inaccuracies are discarded.

Dataset D0 D1 D2 D3 D4

#samples 302 993 1449 2609 4565
RHD 0.244 0.453 0.493 0.511 0.518
PAN 0.347 0.521 0.521 0.539 0.562

Table 4: Bootstrapping convergence is evaluated by report-

ing cross-dataset generalization to RHD and PAN. The mea-

sure of performance is AUC, which shows monotonous im-

provement throughout.

We use the additional accepted samples to retrain MVNet

and HandSegNet and iterate the process. At the end of the

first iteration we are able to increase the dataset to 993 sam-

ples, 140 of which are automatically accepted by heuristic,

and the remainder from verifying 1000 samples. In the sec-

ond iteration the total dataset size increases to 1449, 289 of

which are automatically accepted and the remainder stems

from verifying 500 samples. In subsequent iterations the

complete dataset size is increased to 2609 and 4565 sam-

ples, where heuristic accept yields 347 and 210 samples re-

spectively. This is the dataset we use for the cross-dataset

generalization (see Table 1) and shape estimation (see Ta-

ble 3) experiments.

We evaluate the effectiveness of the iterative labeling

process by training a single view 3D keypoint estimation

network on different iterations of our dataset. For this pur-

pose, we chose two evaluation datasets that reached a good

average rank in Table 1. Table 4 reports the results and

shows a steady increase for both iterations as our dataset

grows. More experiments on the iterative procedure are lo-

cated in the supplemental material.

6. Conclusion

We presented FreiHAND, the largest RGB dataset with

hand pose and shape labels of real images available to date.

We capture this dataset using a novel iterative procedure.

The dataset allows us improve generalization performance

for the task of 3D hand pose estimation from a single im-

age, as well as supervised learning of monocular hand shape

estimation.

To facilitate research on hand shape estimation, we plan

to extend our dataset even further to provide the community

with a challenging benchmark that takes a big step towards

evaluation under realistic in-the-wild conditions.
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