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Abstract

The detection and removal of cloud in remote sens-

ing images are essential for earth observation applica-

tions. Most previous methods consider cloud detection as a

pixel-wise semantic segmentation process (cloud v.s. back-

ground), which inevitably leads to a category-ambiguity

problem when dealing with semi-transparent clouds. We

re-examine the cloud detection under a totally different

point of view, i.e. to formulate it as a mixed energy sepa-

ration process between foreground and background images,

which can be equivalently implemented under an image

matting paradigm with a clear physical significance. We

further propose a generative adversarial framework where

the training of our model neither requires any pixel-wise

ground truth reference nor any additional user interactions.

Our model consists of three networks, a cloud generator

G, a cloud discriminator D, and a cloud matting network

F , where G and D aim to generate realistic and physi-

cally meaningful cloud images by adversarial training, and

F learns to predict the cloud reflectance and attenuation.

Experimental results on a global set of satellite images

demonstrate that our method, without ever using any pixel-

wise ground truth during training, achieves comparable and

even higher accuracy over other fully supervised methods,

including some recent popular cloud detectors and some

well-known semantic segmentation frameworks.

1. Introduction

The rapid development of remote sensing technology has

opened a door for people to better understand the earth. Re-

mote sensing satellites fly around the earth several times a

day, providing up-to-date information for human activities

in all walks of life, such as disaster relief, land monitoring,

and military reconnaissance. Despite its wide applications,

as reported by C. Stubenrauch et al [37], on average of more

than half of the earth’s surface is covered by clouds every

*Corresponding author: Zhengxia Zou (zzhengxi@umich.edu)

Figure 1. An overview of the proposed method. Our model con-

sists of a cloud generator G, a cloud discriminator D, and a cloud

matting network F . On one hand, G and D contradict each other

to generate realistic and physically meaningful cloud images. On

the other hand, F predicts the cloud reflectance and attenuation so

that the background under the cloud can be recovered.

day, which has greatly limited the data accessibility and has

increased difficulty in data analysis. The research on cloud

detection and removal thus has received great attention in

recent years.

Clouds in an image may visually present various trans-

parency, where in most cases, the energy received by an

imaging sensor can be approximated by a linear combina-

tion of the reflected energy of the clouds and the ground

objects [27, 38]. In recent years, most of the cloud detec-

tion methods frame the detection as a pixel-wise classifica-

tion process (cloud vs background), i.e. to generate binary

masks of the predicted foreground (cloud) and background

regions. Some commonly used methods include the band

grouping/thresholding methods [13, 15, 20, 45, 48, 49], and

the semantic segmentation based methods [1, 18, 39, 41,

43, 44]. As most of these methods are borrowed from the

computer vision community without considering the mech-

anism behind the imaging process, the pixel-wise classifi-

cation based paradigm will inevitably lead to a category-

ambiguity in terms of detecting semi-transparent clouds
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(thin clouds). In addition, current cloud detection and cloud

removal methods [8, 21, 24, 28, 34, 40] are separately in-

vestigated despite the high correlation between them.

In this paper, we reformulate cloud detection and re-

moval as a mixed energy separation between foreground

and background images. This idea can be equivalently im-

plemented under an image matting framework [17, 31, 42,

50] by predicting of multiple outputs, including the “fore-

ground cloud map” and the “alpha matte” (attenuation).

Most of the recent image matting methods consider the

learning and prediction of the alpha matte under a regres-

sion paradigm in a fully supervised way [3, 5, 35, 42]. Al-

though it proves to be effective for traditional matting prob-

lems, for a cloud image, it is difficult to obtain the ground

truth of foreground map and alpha matte as it involves quan-

titatively determining some important physical parameters

such as cloud reflectance and atmospheric attenuation. To

this end, we further propose a generative adversarial train-

ing framework to achieve weakly supervised matting of a

cloud image by incorporating the physics behind it. Partic-

ularly, the training of our framework does not require any

pixel-wise ground truth references.

Our model consists of three networks: a cloud generator

G, a cloud discriminator D and a cloud matting network F ,

as shown in Fig. 1. On one hand, the G takes in a pair of

cloud and background images, and generates a new cloud

image and its “ground truth”. D takes in the generated im-

age to discriminate it is real or fake and feeds this informa-

tion back to G to further make the generated images indis-

tinguishable. On the other hand, the cloud matting network

F takes in the cloud image and produce matting outputs:

the predicted cloud reflectance and attenuation maps. The

learning of F is instructed by the “ground truth” generated

by G so that this process can be easily implemented under

a standard regression paradigm. The three networks can be

jointly trained in an end-to-end fashion with a clear physical

significance.

Our contributions are summarized as follows:

1) Current cloud detection methods frame the detec-

tion as a pixel-wise classification problem, which inevitably

leads to the defect of category ambiguity when dealing with

the semi-transparent clouds. This paper reformulates both

of the cloud detection and cloud removal as a foreground-

background energy separation process, which can be equiv-

alently implemented under an image matting framework.

2) We propose a weakly supervised method for cloud im-

age matting based on generative adversarial training. The

training of our method does not require on any pixel-wise

ground truth reference. The proposed method is able to

generate realistic cloud images with a clear physical sig-

nificance.

2. Related work

2.1. Image matting

Image matting refers to a group of the methods that aim

to extract the foreground from an image [17, 31, 42, 50],

which is important in image and video editing. The mat-

ting task usually produces an “alpha matte” that can be

used to separate foreground from the background in a given

image, which naturally corresponds to the cloud detection

and removal process. Traditional image matting methods

can be divided into two groups: 1) sampling-based meth-

ods [9, 11, 33] and 2) propagation-based methods [6, 17,

46], where the former produces the alpha matte by a prede-

fined metric given a set of the foreground and background

sampling regions, while the latter formulates the prediction

as the propagation of the foreground and background re-

gions. As the matting is an ill-posed problem, some meth-

ods also take in the user interactions (e.g. trimap [31, 42]

or scribbles [17]) as additional inputs which specify the

predefined foreground, background, and unknown regions

to produce more accurate predictions. In recent years, the

deep learning techniques have greatly promoted the image

matting research progress [3, 5, 35, 42] and most of these

methods are built under a regression paradigm. Different

from all the above approaches, our method takes advantage

of the recent popular adversarial training, neither relying on

any pixel-wise ground truth reference, nor any additional

user interactions.

2.2. Generative adversarial networks

The Generative Adversarial Network (GAN) [10] has

received great attention in recent years, and has achieved

impressive results in various tasks such as image genera-

tion [7, 30], image style transfer [14, 47] and image super-

resolution [16]. A typical GAN consists of two neural net-

works: a generator network and a discriminator network,

where the former learns to map from a latent space to a par-

ticular data distribution of interest, while the latter aims to

discriminate between instances from the true data distribu-

tion and those generated. The key to GAN’s success is the

idea of an adversarial training framework under which the

two networks will contest with each other in a minimax two-

player game and forces the generated data to be, in princi-

ple, indistinguishable from real ones. Very recently, S. Lutz

et al. has adopted GAN to improve image matting [25]. In

their method, the generator network is trained to improve

the prediction of alpha matte by considering the adversarial

loss from the discriminator to distinguish well-composited

images. However, this method still requires the pixel-wise

ground truth and additional user interaction for training,

which is not suitable for our tasks because our ground truth

cannot be directly obtained.
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Figure 2. An illustration of the imaging model of cloud im-

ages [27, 38]. The energy E received by a sensor per unit time

can be approximated by a linear combination of Ec: the reflectance

energy of the cloud, and Eg: the radiation of ground objects.

3. Imaging model

When a satellite or an aircraft flies over the clouds, the

onboard imaging sensor receives the energy of ground ob-

jects and clouds at the same time. The amount of energy E
received per unit of time can be approximately considered

as a linear combination of three components [27, 38], 1)

the reflected energy of the clouds Ec, 2) the reflected energy

of the ground objects Egr, and 3) the radiation of ground

objects Egs:

Esensor = Ec + (1− α)(Egr + Egs)

= Ec + (1− α)Eg
(1)

where α is defined as an atmospheric attenuation factor

(α ∈ [0, 1]): the larger the α is, the thicker the cloud will

be: α = 0 indicates there is no cloud, while α = 1 indi-

cates the ground objects are completely occluded. Here we

refer rc = Ec and rg = Eg the “reflectance”, as we assume

the solar radiation is set to a constant and thus can be ne-

glected. In this way, a cloud image y can be expressed as

a linear combination of a cloud reflectance map rc and a

background image rg:

y = rc + (1− α)rg. (2)

Notice that this equation is quite similar with the well-

known “matting function” [17], and therefore, we can sim-

ply consider rc as the “foreground image”, α as the “alpha

matte”, and rg as the clear “background image” to be recov-

ered. According to the above imaging model, we are able

to deal with cloud detection and cloud removal in a unified

image matting framework:

I. Cloud detection. As rc and α correspond to how

much energy is reflected and attenuated by clouds, either

of them can be used as an indicator of how much clouds is

covering on the ground objects. The cloud detection task

thus can be considered as a prediction of rc and α given

an input image y. When α is set to 1, the prediction will

degenerate to a traditional binary classification based cloud

detection method.

II. Cloud removal. Cloud removal is essentially a back-

ground recovery problem. According to Eq. 2, the back-

ground image can be easily derived by:

rg = (y − rc)/(1− α), 0 ≤ α < 1. (3)

This means once we have obtained rc and α, the cloud can

be easily removed and background images can be thus re-

covered. Notice that when α is close to 1, the ground re-

flectance is completely lost and thus cannot be recovered.

4. Method

In this paper, we frame the prediction of cloud re-

flectance rc and attenuation α under a deep learning based

regression paradigm. As it is difficult to obtain the ground

truth references, we propose a new adversarial training

framework for weakly supervised matting by generating

cloud images and the corresponding “ground truth”.

4.1. Adversarial training

Our model consists of three networks: a cloud generator

G, a cloud discriminator D and a cloud matting network F ,

as is shown in Fig. 1. Suppose X represents the cloud image

domain, Y represents background image domain, and xi ∈
X and yj ∈ Y are their training samples.

Instead of leaning a mapping directly from X to Y as is

suggested by previous GAN-based image translation meth-

ods [14, 47], we learn their intermediate states rc and α
with our generator. Fig. 3 shows the processing flow of our

method. Specifically, G takes in two images: a clear back-

ground image x and a cloud image y, and “creates” a new

cloud image ŷ = G(x, y) according to (2):

G(x, y) = r̂c + (1− α̂)x

= g1(x, y) + (1− g2(x, y))x,
(4)

where g1(x, y) = r̂c and g2(x, y) = α̂ represents the map-

pings from the input image pair (x, y) to the generated

cloud reflectance r̂c and attenuation α̂. After we obtain the

synthesized image ŷ, the discriminator D is introduced to

distinguish between the synthesized images ŷ and the real

ones y. We express the objective function as follows:

Ladv(G,D) = Ey∼p(y){logD(y)}

+ Ex,y∼p(x,y){log(1−D(G(x, y)))},
(5)

where the generator G is trained to capture the distribu-

tion of real cloud images and make ŷ cannot be distin-

guished from real images. Meanwhile, the discriminator

D is trained to do as well as possible at detecting the fake
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Figure 3. In our method, the cloud generator G takes in a clear background image y and a cloud image x, and generates a cloud reflectance

map r̂c and an attenuation map α̂, which are then used to synthesize a new cloud image ŷ based on the imaging model ŷ = r̂c + (1− α̂)x.

A cloud discriminator D is trained to discriminate whether its input (y or ŷ) is real or fake, and the generator, G, learns to fool the

discriminator. The cloud matting network, F , takes in ŷ as its input, and produce multiple outputs: the predicted cloud reflectance rc
and attenuation α, where we use r̂c and α̂ as its “ground truth” so that F can be trained under a standard regression paradigm. The three

networks can be jointly trained in an end-to-end fashion with a clear physical significance.

ones. The adversarial training process of G and D can be

essentially considered as a minimax optimization process,

where G tries to minimize this objective while D tries to

maximize it: G⋆ = argminG maxD Ladv(G,D).

4.2. Cloud matting

We consider the learning of our cloud matting network F
as a standard regression problem. As the adversarial train-

ing progresses, the generated cloud images ŷ are fed to the

cloud matting network, meanwhile, the generated cloud re-

flectance r̂c and the attenuation α̂ are used as its “ground

truth”.

Suppose rc and α are the predicted cloud reflectance and

attenuation maps and F represents their mapping functions:

(rc, α) = F (ŷ). The regression loss Lmatt for the matting

network therefore can be expressed as the summary of two

terms: 1) the loss for cloud reflectance prediction Lr and 2)

the loss for attenuation Lα prediction:

Lmatt(F ) = Lr + Lα

= Ex,y∼p(x,y){‖rc − r̂c‖1 + ‖α− α̂‖1}.
(6)

We use l1 distance rather than l2 as the regression loss since

the l1 encourages less blurring.

During the training process, the three networks G, D and

F can be alternatively updated under a unified objective.

Our final objective function is defined as follows:

L(D,G, F ) = Ladv(D,G) + βLmatt(F ), (7)

where β > 0 controls the balance between the adversarial

training and the cloud matting. We aim to solve:

G⋆, F ⋆ = argmin
G,F

max
D

L(D,G, F ). (8)

By taking advantage of the adversarial training and the

physics behind the imaging process, the learning of the mat-

ting network can be well instructed even there is no pixel-

wise ground truth available. This makes the training ex-

tremely efficient because the manual labeling of the data

is no longer required. As the training of our model only

requires image-level annotations (i.e., an image belongs to

X or Y ), we refer to our method as a “weakly supervised”

cloud matting method.

4.3. Implementation details

1) Architecture of the networks. Our cloud genera-

tor G consists of an eight-layer encoder and an eight-layer

decoder. We add skip connections between all channels at

layer i and layer n − i, following the general configura-

tion of the “U-Net” [32] for building both of the high-level

semantic features and low-level details. Our cloud discrim-

inator D is a standard convolutional network with 10 con-

volutional layers followed by 2 fully-connected layers. Our

cloud matting network F takes similar configurations with

G, but only different in terms of the number of layers and

the number of filters.

2) Saturation penalty. As the clouds are mostly in white

color, the r-g-b channels of the generated cloud reflectance

map should be close to each other. To improve the training

stability, we add an additional saturation penalty term to the

objective of G, i.e. to compute the saturation value of each

pixel and penalize those pixels with large saturation values:

µ(s) = γ‖s‖22, (9)

where s = (max(r, g, b) − min(r, g, b))/max(r, g, b). To

test the importance of this additional constraint, we also
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Figure 4. (Better viewed in color) A global distribution of our ex-

perimental data. The dataset covers the most types of ground fea-

tures over a worldwide distribution, such as city, ocean, plains,

plateaus, glacier, desert, gobi, and etc.

Figure 5. The first row shows some real cloud images of GF-1

satellite. The second row shows our generated images. Samples

are fair random draws, not cherry-picked.

compare to an un-penalized variant in which the generator

does not takes the saturation prior into consideration (see

Section 5.4 for more details).

3) Training details. The Batch-normalization and ReLU

activation function are embedded in G, D and F after all

convolution layers, except for their outputs. For the last

layer of G and D, we use the sigmoid function to convert

the output logits to probabilities. To increase the diversity of

the generated images, the background images X and cloud

images Y are randomly rotated, flipped and cropped dur-

ing training. We set the weight for saturation penalty as

γ = 1.0. We use the Adam optimizer for training, with

batch size = 4. We use Xavier initialization for all net-

works. For the first 10 training epochs, we set β = 0. The

learning rates are set to 10−5 for G and 10−6 for D. For

the next 80 epochs, we set β = 1.0. The learning rate of F
is set to 10−4 and we reduce the learning rates of (G,D) to

their 1/10. All images are resized to 512× 512 for training

and evaluation.

To verify the stability of our training framework, we also

take the recent two improvements of GAN into considera-

tion, i.e. WGAN [2] and LSGAN [26].

5. Experimental results and analysis

5.1. Dataset and Metrics

Our experimental dataset consists of 1,209 remote sens-

ing images that are captured by two cameras on Gaofen-1

satellite: the panchromatic and multi-spectral (PMS) sen-

sor with the image size of about 4500×4500 pixels, and the

wide field-of-view (WFV) sensors with the image size of

about 12000×13000 pixels. There are 681 images in our

training set and 528 in our testing set, where each of them

is further split into three subsets: a “thick cloud set”, a “thin

cloud set” and a “background set”. Since the raw images

have four bands (blue, green, red, and infrared) and are in

16-bit depth, all images are converted to 8-bit RGB images

before fed into the networks. Apart from that, we did not

perform any other pre-processing operations. The dataset

covers the most types of ground features over a worldwide

distribution, such as city, ocean, plains, plateaus, glacier,

desert, gobi, and etc, as is shown in Fig. 4. It should be no-

ticed that although there are some publicly available cloud

detection datasets [19, 20], we do not make evaluations on

them because they are too small (only about 100 images) to

obtain statistically significant results.

For the cloud detection task, the Precision-Recall (PR)

curve and the “Average Precision (AP)” score are used as

our evaluation metrics. All images in our dataset have been

manually labeled with pixel-wise binary cloud masks as

their ground truth in spite of the fact that we did not use

this information for training.

For the cloud removal task, three different scores are

evaluated, including the Mean Absolute Error (MAE),

Mean Squared Error (MSE), and Mean Absolute Percent-

age Error (MAPE). These metrics are defined as follows:

MAE = 1
N
‖y − ŷ‖1, MSE = 1

N
‖y − ŷ‖22, MAPE =

1
N
‖(y − ŷ)/ŷ‖1, where y is the predicted output, ŷ is the

ground truth, and N is the total number of pixels. Besides,

since the backgrounds under thick cloud regions cannot be

fully recovered, the above metrics are only evaluated on

those pixels whose ground truth attention value is smaller

than 0.5.

5.2. Cloud detection results

We compare our method with some recent popular

cloud detection methods, including Scene Learning [1],

Fully Convolutional Networks based pixel-wise Classifica-

tion (FCN+Cls) [44], and Progressive Refinement Detec-

tion [45] on our test set. As these methods are all essentially

performing binary classification on each image pixel, we

also compare with some well-known semantic segmenta-

tion frameworks, including Deeplab-v3 [4], and UNet [32].

Fig. 6 shows some cloud detection examples, where the dif-

ferent columns correspond to the input image and the out-

puts of different detection methods.

Table 1 shows their corresponding AP scores on “thick

cloud set” and “thin cloud set”. Fig. 7 shows the comparison

of their PR curves. As the Progressive Refinement [45] is a

thresholding-based method and only produce binary masks,

the PR curve becomes a single point thus we can not com-
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Figure 6. Some examples of the cloud detection results of different methods, where Scene Learning [1], FCN+Cls [44], and Progress-

Refine [45] are recent published cloud detection methods. Deeplab-v3 [4] and UNet [32] are two well-known semantic segmentation

methods.

Figure 7. (Better viewed in color) The precision-recall curves of different cloud detection methods on (a) thick-cloud set, (b) thin-cloud set

and (c) ablation studies. A higher curve or a higher AP score suggests a better detection result.

pute AP score based on its result. In this experiment, we

also compare our methods on two variants of adversarial

objective functions: WGAN [2] and LSGAN [26]. Notice

that Deeplab-v3 are built on larger backbone networks, for a

fair comparison, we further replace the encoder of our cloud

matting network F with VGG [36] and Resnet50 [12] while

keeping other parameter configurations unchanged.

It can be seen from Table 1 and Fig. 7 that our method

achieves a higher cloud detection accuracy especially for

those thin cloud images. As for their overall perfor-

mances, our method achieves comparable performance with

FCN+Cls [44] and UNet [32], and outperforms other cloud

detection methods and semantic segmentation methods. We

also notice that deeplab-v3 [4] has a relatively low detec-

tion accuracy. This is simply because it down-samples the

input x8, which produces very coarse outputs. The advan-

tage of our method is not only suggested by the metrics but

also in terms of the interpretation of some causal factors

(reflectance and attenuation) of the imaging process. Al-

though our model is trained without the help of any pixel-

wise labels, the experimental result still demonstrates that it

achieves comparable and even higher accuracy with other

popular cloud detection methods, which are trained in a

fully supervised manner.

5.3. Cloud removal results

Once we have obtained the cloud reflectance and atten-

uation maps, the background can be easily recovered by

using Eq. 3. In this experiment, we compare our method

with a classical cloud removal method: Homomorphic Fil-

ter [24], and two recent proposed methods: Deformed-

Haze [28] and Adaptive Removal [40]. We further compare

our method with a sota image-to-image translation method,

CycleGAN [47]. Fig. 8 shows some example results. It

can be seen that the thin cloud has nicely been removed

by our method and the ground object has been recovered.

As the CycleGAN is essentially performing “style trans-

fer” rather than cloud removal, it may introduce unexpected
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Figure 8. Some example results of the thin cloud removal by different methods. As the Homomorphic Filter (HF) [24] is designed to simply

remove the low-frequency components of an image, it wrongly removes all backgrounds while removing the clouds. Deformed-Haze [28]

and Adaptive Removal [40] performs better than HF but still suffers from a color distortion problem. For our method, the thin cloud has

been removed and the ground object has been nicely recovered.

Method APthick APthin APavg

Scene Learning [1] 0.9027 0.9457 0.9242

FCN+Cls [44] 0.9463 0.9643 0.9553

Progressive Refine. [45] – – –

Deeplab-v3 [4] 0.8287 0.9320 0.8804

UNet [32] 0.9434 0.9791 0.9613

Ours: VanillaGan+UNet 0.9262 0.9662 0.9462

Ours: WGan+UNet 0.9327 0.9629 0.9478

Ours: LSGAN+UNet 0.9336 0.9709 0.9523

Ours: LSGAN+VGG 0.9344 0.9732 0.9538

Ours: LSGAN+Resnet50 0.9341 0.9711 0.9526

Table 1. A Comparison of cloud detection results of different

methods. A higher score suggests a better result. The top-3 best

results in each entry are marked as bold. As the Progressive Re-

fine [45] is a thresholding-based method and only produces binary

outputs, we can not compute AP based on its detection results.

“color shift”. Another disadvantage of the CycleGAN is it

cannot generate the cloud reflectance/attenuation as it ig-

nores the physics behind.

As there is no ground truth for the cloud removal task,

to make a quantitative comparison of different methods, we

run cloud generator G on our testing set to randomly syn-

thesize 1,390 cloud images and use the original background

image as their “ground truth” for evaluation. Table 2 shows

the quantitative comparison results of the proposed method

and other three cloud removal methods, in which we can see

our method performs better than the other three methods un-

der all metrics. We do not further compare with other recent

image matting methods [3, 5, 35, 42] because the training

of these methods requires the ground truth of alpha matte or

the user interactions.

Method MAE MSE MAPE

Homomorphic Filter [24] 0.2374 0.0731 0.4312

Deformed-Haze [28] 0.1820 0.0441 0.3645

Adaptive Removal [40] 0.1290 0.0230 0.2774

Cycle GAN [47] 0.0904 0.0153 0.2404

Ours: VanillaGan+UNet 0.0720 0.0088 0.1735

Ours: WGAN+UNet 0.0706 0.0086 0.1704

Ours: LSGAN+UNet 0.0753 0.0095 0.1791

Ours: LSGAN+VGG 0.0759 0.0096 0.1791

Ours: LSGAN+Resnet50 0.0753 0.0095 0.1790

Table 2. Comparison of different methods on cloud removal task.

Lower scores indicate better. The top-3 best results in each entry

are marked as bold.

Ablations Accuracy

Adv S-p E2E Bg APthick APthin APavg

× × × X 0.9061 0.9608 0.9335

X × × X – – –

X X × X 0.9230 0.9630 0.9430

X X X × 0.9307 0.9658 0.9483

X X X X 0.9336 0.9709 0.9523

Table 3. Ablation studies of four technical components of our

method 1) adversarial training (Adv), 2) saturation penalty (S-p),

3) end-to-end training (E2E), and 4) background input (BG) on

cloud detection task. Higher scores indicate better. We observe

when do not apply S-p, the training does not converge and the out-

puts of G collapse to a single nonsensical image.

5.4. Ablation analyses

The ablation analyses are conducted on the cloud detec-

tion task to analyze the importance of each component of
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Figure 9. (a) Input high-resolution images from Google Earth. (b)

augmented cloud images with our method.

the proposed framework, including 1) adversarial training,

2) saturation penalty, 3) end-to-end training, and 4) back-

ground input. The baseline methods are first evaluated, then

we gradually integrate these techniques. All evaluations of

this experiment are performed on basis of our “LSGAN +

UNet” implementation.

1) w/o adversarial training (Adv). This ablation set-

ting corresponds to our baseline method, where we train our

cloud matting network F without any help of adversarial

training. Since there is no ground truth for the matting task,

we manually synthesized a set of images and corresponding

ground truth for training.

2) w/o saturation penalty (S-p). To test the importance

of “saturation penalty” of our method, we simply remove

the term of Eq. 9 in our objective function while keeping

other settings unchanged and test its performance.

3) w/o end-to-end training (E2E). We also compare

with another variant of our method, in which the (G,D)
and F are separately trained based on their own objectives.

We first train (G,D) for the first 10 epochs, then, we freeze

their weights and train F for the next 80 epochs.

4) w/o background input (BG). While it may be possi-

ble for us to remove the BG from the G, we found the joint

input helps improve the results and can be considered as an

integration of geographical domain knowledge. This is be-

cause the cloud and its BG are not completely independent

of each other (e.g., deserts tend to have less thick clouds

than other areas).

Table 3 shows their evaluation accuracy. As we can see,

the integration of the “adversarial training” and “end-to-end

training” yields noticeable improvements of the detection

accuracy. We also notice that when we do not apply the

“saturation penalty”, the training does not converge and the

outputs of G collapse to a single nonsensical image. We

further evaluate our method w/o the help of a BG input,

and we observe the cloud detection accuracy drops 0.4%

compared with our full implementation.

5.5. Cloud montage

The proposed framework can be further applied to gen-

erate cloud on a given background image, or to “transplant”

the cloud in one image to another. We refer to this process

Object detectors w/o augm. w/ augm.

SSD [23] (VGG) 78.9% 81.7%

RetinaNet [22] (Resnet-50) 83.3% 87.3%

Table 4. Comparison of the object detection results (VOC2012-

AP) on the occluded target detection dataset [29]. There are no-

ticeable improvements over the two baseline detectors by perform-

ing “cloud augmentation” based on the proposed method.

as “cloud montage”. This can be considered as a new way

of performing data augmentation and may have great po-

tential for improving the performance of many applications

such as occluded object detection, scene recognition, and

image segmentation. Fig. 9 shows some examples of our

image augmentation results, where the clouds are generated

on some very high-resolution aerial images from Google

Earth.

5.6. Improving occluded target detection

In this experiment, we choose airplane detection as an

example to evaluate the effectiveness of the above data aug-

mentation on occluded target detection. Specifically, we

train two well-known object detector, SSD [23] and reti-

naNet [22] as our baseline detectors. We use VGG [36]

and Resnet-50 [12] as their backbones. The baseline detec-

tors are trained on LEVIR dataset [51] (consists of 22,000

images and 7,749 annotated targets), and then evaluated on

a publicly available occluded target detection dataset [29]

(consists of 47 images and 184 annotated targets where 96

are occluded). We compare our baseline detectors with their

enhanced versions, in which the detectors are trained with

the augmented training configuration. Table 4 shows their

average precision scores. We observe noticeable improve-

ments over the baseline detectors with the help of “cloud

augmentation”.

6. Conclusion

We propose a weakly supervised method for the detec-

tion and removal of clouds in remote sensing images based

on adversarial training. The proposed method inherently in-

corporates the cloud imaging mechanism and considers our

task as a cloud-background energy separation problem. Our

experimental results demonstrate that without ever using

any pixel-wise ground truth references during training, our

method achieves comparable or even better performance

over other methods, which are trained in a fully supervised

manner. In addition, the proposed framework can be used

for generating cloud images of various styles on any given

backgrounds. This can be viewed as a new way of perform-

ing data augmentation and has great potential for improving

occluded object detection and recognition.
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