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Abstract

Heatmap regression-based models have significantly ad-

vanced the progress of facial landmark detection. However,

the lack of structural constraints always generates inaccu-

rate heatmaps resulting in poor landmark detection per-

formance. While hierarchical structure modeling methods

have been proposed to tackle this issue, they all heavily rely

on manually designed tree structures. The designed hierar-

chical structure is likely to be completely corrupted due to

the missing or inaccurate prediction of landmarks. To the

best of our knowledge, in the context of deep learning, no

work before has investigated how to automatically model

proper structures for facial landmarks, by discovering their

inherent relations. In this paper, we propose a novel Hi-

erarchical Structured Landmark Ensemble (HSLE) model

for learning robust facial landmark detection, by using it

as the structural constraints. Different from existing ap-

proaches of manually designing structures, our proposed

HSLE model is constructed automatically via discovering

the most robust patterns so HSLE has the ability to robustly

depict both local and holistic landmark structures simulta-

neously. Our proposed HSLE can be readily plugged into

any existing facial landmark detection baselines for fur-

ther performance improvement. Extensive experimental re-

sults demonstrate our approach significantly outperforms

the baseline by a large margin to achieve a state-of-the-art

performance.

1. Introduction

Facial landmark detection, known as face alignment, is

essential to many facial analysis tasks including face recog-

nition [35, 64, 30], face modeling [17, 24]. Due to the large

variability of face shapes, head poses, lighting conditions,

and background occlusions, facial landmark detection still

*Jiahuan Zhou is the corresponding author.

Figure 1: Two examples of abnormal situations. Left: a

lip landmark in a facial image with exaggerated expres-

sion. Right: a cheek landmark in a facial image with occlu-

sion. Row.1 results are from a landmark detector without

structural constraints, Row.2 results are from a landmark

detector with manually designed structural constraints and

Row.3 results are from a landmark detector with our pro-

posed HSLE structural constraints. Red and Green dots rep-

resent predictions and groundtruth respectively.

remains challenging.

Recently, the heatmap regression-based models [49, 57,

36, 52, 51] advance the progress of facial landmark detec-

tion. The success of heatmap regression-based models owes

to the utilization of likelihood heatmaps to represent the

probability distributions of landmark locations. However,

inaccurate heatmaps (e.g. heatmaps with deviations or dis-

tractions) would be generated if abnormal situations occur

(e.g. occlusion, illumination, noise, or unconstrained

pose/expression variations, and etc.) which result in inac-

curate or even incorrect localizations of facial landmarks

(Figure 1.Row1) due to their low reliability or insufficient

discrimination. To address this issue, structure modeling
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in heatmap regression-based models has been proposed and

achieved promising performance in facial landmark detec-

tion, since the aforementioned inaccurate/ambiguous land-

marks could be amended and correctly reconstructed by uti-

lizing structural constraints of facial landmarks. However,

existing holistic structure modeling is sensitive to the land-

mark prediction quality, the constructed structure may be

completely invalid due to the missing or inaccurate detec-

tion of landmarks caused by unconstrained abnormal situa-

tions as shown in Figure 1.Row2.

Therefore, by simultaneously modeling both holistic and

local structures of landmarks, the localization of facial land-

marks becomes more robust. Instead of using a holis-

tic dense connected graph to simultaneously modeling the

holistic and local structures of facial landmarks which is

neither resource efficient nor feasible to inference, a hierar-

chical structure model is utilized for effective local structure

modeling. In the community of facial landmark detection,

few works [20, 9, 52] have been proposed to explore the

hierarchical modeling of facial landmarks which all heav-

ily rely on the manually designed tree-based hierarchical

structure. However, their performance is not robust to the

detection of facial landmarks since the manually designed

tree structure will be totally corrupted because of the failure

detection of landmarks. Therefore, in this work, we try to

answer an important question: can we automatically con-

struct a more suitable hierarchical structure for learn-

ing robust facial landmark detection?

In this paper, we propose a novel Hierarchical Struc-

tured Landmark Ensembles (HSLE) model to hierarchically

represent both holistic and local structures for facial land-

marks. In this work, we initially cluster landmarks into dif-

ferent groups, each of which shares the same landmarks that

makes our model hierarchical. HSLE, a directed graph in

essence, is constructed for each group automatically then.

Each node in the HSLE denotes a predefined landmark and

relationships from information passing between connected

nodes are represented as edges in the HSLE. To construct

the most reliable structure of the HSLE, a limited Cover-

ing Set model is utilized to discover the most robust con-

nections of nodes. Due to the structural constraints propa-

gated from the HSLE, a baseline facial landmark detector

becomes more robust by trained jointly with the HSLE in

an end-to-end fashion (Figure 1.Row3).

In this work, our contributions are four-fold: (1) We pro-

pose a novel Hierarchical Structured Landmark Ensembles

(HSLE) model to hierarchically depict holistic and local

structures for facial landmarks. Our proposed HSLE can

be readily plugged into any existing facial landmark de-

tection baselines for further performance improvement. (2)

Due to the structural constraints propagated from the HSLE,

the baseline facial landmark detector becomes more robust

by trained jointly with the HSLE in an end-to-end fashion.

(3) Compared with the aforementioned manual structure

design-based methods, our automatically learned hierarchi-

cal structure is more reliable and robust to failure landmark

detections, because structural constraints are automatically

mined from data via discovering the most robust patterns.

(4) Our approach significantly outperforms the baseline by

a large margin to achieve a state-of-the-art result. The ef-

fectiveness of our model has been verified by extensive ex-

periments on the 300W dataset [40, 41, 42] and the AFLW

dataset [34].

2. Related Works

A large number of impressive achievements in the lit-

erature of facial landmark detection have been made since

1992. Because only landmarks with sufficient discrimi-

nation (e.g. corners of the ocular, corners of the mouse,

and nose tip etc.) can be reliably located, structural con-

straints are usually adopted by former classic artworks, in-

cluding Active Shape Models[13, 10, 37, 12], Active Ap-

pearance Models[11, 18, 43, 23, 46, 31], Constrained Lo-

cal Models[14, 29, 44, 2, 28, 45], and Cascade Regression

Models[6, 58, 65, 39, 7, 8, 25, 47, 66, 22, 55, 54, 56, 67, 19,

51]. Most of these methods start from an initial shape (e.g.

mean facial shape[3]) or use the Point Distribution Model

(e.g. [5, 60]) to enforce such a constraint.

Recently, Deep Convolutional Neural Networks (CNN)

have advance the progress of facial landmark detection [48,

61, 62, 63, 59, 55, 50, 33]. Especially, state-of-the-art per-

formance on facial landmark detection is achieved mostly

by using heatmap regression models[49, 57, 36, 52, 51].

Merget et al. [36] introduced a fully-convolutional local-

global context network, and a simple PCA-based 2D shape

model is fitted as a holistic structural constraint. Wu et al.

[52] proposed a boundary-aware face alignment model by

utilizing boundary lines as the geometric structure.

Few existing works [20, 9] focus on hierarchically mod-

eling both holistic and local structures. Ghiasiet al. [20]

proposed a hierarchical deformable part model for localiz-

ing facial landmarks, which consists of a manually designed

tree of parts. Each part is connected to a set of landmarks in

a star topology. Their model would fail if the root node of

the tree missed. Chu et al. [9] proposed a structured feature

learning framework to reason the correlations among body

joints in human pose estimation. A bi-directional tree struc-

tured model, which is also adopted by [52], is designated by

hand for passing information between the neighbor joints.

Since the number of facial landmarks is much more than

the number of joints used in pose estimation, passing infor-

mation between so many facial landmarks cannot be solved

by a manually designed tree structure which is not robust

enough either. Different from [20] and [9], our proposed

HSLE model is constructed automatically via discovering

the most robust patterns. Therefore, our HSLE is able to
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robustly depict both local and holistic landmark structures

simultaneously. To the best of our knowledge, our work

is the first one to automatically model proper structures for

landmarks, by discovering their inherent relations.

3. Our Method

As mentioned in the introduction, simultaneously mod-

eling both holistic and local structures would be helpful for

localizing facial landmarks more robustly. We propose a Hi-

erarchical Structured Landmark Ensemble (HSLE) model

for learning robust facial landmark detection by using it

as structural constraints. The framework of the proposed

approach is illustrated in Figure 2. The entire model can

be jointly learned in an end-to-end fashion. The proposed

HSLE model served as hierarchical structural constraints of

facial landmarks.

Let L = {l1, l2, ..., lm} denotes landmarks, lt ∈ R
2 in-

dicates a landmark located at (x, y). The location of a land-

mark lx in image I ∈ R
W×H is determined by:

l∗t = argmaxφt(I; θ) + H̃t (1)

where φ(·) could be an arbitrary landmark detector, e.g.

Stacked Hourglass[38] model. The output of φt(·) is a

heatmap Ht ∈ R
W×H×1 of landmark t in L. H̃t ∈

R
W×H×1, the output of HSLE, is expressed as the sum of

a set of structural constraints of landmark t regularized by

other landmarks. θ is the parameter of φ(·).
In this section, we initially propose our Hierarchical

Structured Landmark Ensemble (HSLE) model after recap-

ping the traditional Covering Set model. Then we present

the strategy for clustering landmarks into ensembles. Fi-

nally, we introduce the pattern discovery method for con-

structing the HSLE model, as well as some training issues.

3.1. Hierarchical Structured Landmark Ensemble

Based on the above concepts, both holistic and local

structural constraints are useful for making facial landmark

detection more robust. But since the number of facial land-

marks is huge, it would be neither resource efficient nor fea-

sible to inference, if a holistic dense connected graph were

adopted for simultaneously modeling both holistic and local

structures of landmarks. HSLE model is proposed to handle

this issue.

HSLE means clustering landmarks into different groups,

connecting these landmarks within each group on the ba-

sis of specific structures, and passing information from one

landmark to another through these structures. It is notewor-

thy that different ensembles may share the same landmarks

which makes this model hierarchical. Hierarchical struc-

tural constraints represented by the HSLE model would

help make landmark detection more robust by propagating

these constraints to the landmark detector when training.

3.1.1 Brief Overview of Covering Set

However, inappropriate landmark structures will make

structural constraints useless. For example, there are two

inappropriate landmark ensembles as shown in Figure 3(a)

and Figure 3(b). In Figure 3(a), other nodes would not re-

ceive any information if node “C” missed. In Figure 3(b),

other nodes would be misled if node “C” missed, since other

nodes can only receive information from just one node. Dai

et al. [15] introduce an idea named Covering Set for de-

tector ensemble. A (n, t,m) Covering Set is a n-elements

set composed of several m-elements substructures. For any

t elements, there must exist at least one m-elements sub-

structure whose elements are all belonged to those t ele-

ments. That is, there will exist at least one substructure if

no more than (n − t) nodes missed. Figure 3(c) and Fig-

ure 3(d) illustrate two different (5, 4, 3) Covering Sets, and

Figure 3(e) shows a fully connected graph which is also a

(5, 3, 3) Covering Set.

3.1.2 Formation of HSLE

Structure. Some extreme cases may be generated by the

traditional Covering Set model. Figure 3(c) shows an ex-

ample of a traditional (5, 4, 3) Covering Set. In this ex-

treme case, node “B” can not receive any information from

other nodes, since node “B” doesn’t belong to any substruc-

ture. To avoid this situation, owing to the property of the

Covering Set model, a collection of limited Covering Set

models is used to establish the structure of the HSLE, all el-

ements in this collection together constitute the structure of

the HSLE. The most robust structure C∗ can be determined

by:

C∗ = argmin
C

N
∑

i=1

∑

Si
j
∈Ci

κsi
j
,

⎛

⎝C∗
i = argmin

Ci

∑

Si
j
∈Ci

κsi
j

⎞

⎠

s.t.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

K(Ci) ≥ ni − ti

Ci ⊂ Ti

∀lx ∈ Ci,
m
∑

j=1

1
(

lx ∈ Si
j

)

�= 0

(2)

where C = {C1, ..., CN} illustrates a collection of limited

Covering Sets from all ensembles, N is the total number of

ensembles, Ci is one of the C consisted of substructures,

K(Ci) is the components missing tolerance number of Ci,
and Ti =

{

Si
1, ..., S

i
m

}

is a collection of all substructure

candidates of ensemble i respectively, κsi
j

is the error mea-

sure (e.g. mean inter-ocular normalized point-to-point Eu-

clidean error of training set) of substructure Si
j , ni and ti

are model parameters as described above. 1(∆) = 1 if ∆ is

TRUE else 1(∆) = 0.
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Figure 2: The framework of the proposed approach. The Hierarchical Structured Landmark Ensemble (HSLE) model is first

constructed automatically by discovering the most robust patterns. The baseline facial landmark detector is trained jointly

with the HSLE model in an end-to-end fashion then. The HSLE model is used to represent holistic and local structural

constraints of facial landmarks. Structural constraints, outputs of the HSLE, are expressed as a set of feature maps have

the same 2D shape as heatmaps generated by the baseline model. In inference, the output of the entire model is a set

of landmark coordinates directly derived from final heatmaps according to Equation 1. Please note that, in the inference

session, since parameters of the baseline model has been learned jointly at feature level under the supervision of structural

constraints propagated from HSLE, heatmaps generated by the baseline model no longer indicate probability distributions of

landmark locations.

Nodes & Edges. As described above, HSLE is a directed

graph model in essence. Each node in HSLE denotes a pre-

defined landmark. Relationships represented by informa-

tion passing between connected nodes are denoted as edges

in HSLE. We implement information passing as convolu-

tional kernels following [9].

This limited Covering Set model enforces that each land-

mark should be included in at least one substructure. An

example of a constructed Landmark Ensemble is illustrated

in Figure 3(f).
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Figure 3: (a), (b), (c), (d), and (e): Illustration of different

ideas about ensembles. (f): One example of a constructed

landmark ensemble. Red squares illustrate heatmaps. Yel-

low squares illustrate convolutional kernels. Green circles

illustrate convolution operations.

3.2. Landmark Clustering Strategy

Landmarks with stable relative relations (the relationship

between a pair of landmarks should be invariant to head

pose or facial expression to some extent) are preferred to

be clustered into the same ensemble. The objective func-

tion of the landmark clustering operation could be written

as:

E =

K
∑

k=1

M−1
∑

i=1

M
∑

j=i+1

1 ({i, j} , k) ·
(

αsi,j + βv2i,j
)

+ γV2,

⎧

⎪

⎨

⎪

⎩

si,j =
∑

P
p=1

‖lpi−lpj‖2/P

v2i,j =
∑

P
p=1

(‖lpi−lpj‖2−si,j)
2

/P

V2 =
∑M

i=1 (ei − ē)
2
/M

, s.t.
M
∏

i=0

ei �= 0

(3)

where K is the total number of ensembles. M is the total

number of landmarks. P is the total number of training im-

ages (a subset of the entire training set). 1 ({i, j} , k) =
{

1, if {i, j} ∈ ensemble k

0, if {i, j} /∈ ensemble k
. ‖li − lj‖2 is the point-to-

point Euclidean distance between landmark i and j. ei is

the number of selected times of landmark i. ē is the average

selected times of all landmarks. α, β and γ are weights.

To solve this problem, we first randomly pick one of

training images. Landmarks in that image are clustered into
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different groups by leveraging K-means[32]. A landmark

might be clustered into different groups at the same time

if the difference were less than a threshold. Distances be-

tween landmarks and clustering centers would be refined

by V2, to satisfy the constraints defined in Equation 3. E
is calculated for the current clustering result. We run this

entire procedure multiple times, the clustering result with

the minimal E is selected as the final clustering result for

constructing the HSLE.

3.3. Pattern Discovery for HSLE Construction

Since solving Equation 2 is a combinatorial optimiza-

tion problem, randomized method inspired by [15] would

be adopted to find the most robust structure for the HSLE.

The limited Covering Set of each ensemble is initialized

into a fully connected graph. In each step we would ran-

domly remove one edge from an arbitrary limited Cover-

ing Set if the constraints defined in Equation 2 were satis-

fied. Edges between landmarks with higher error measures

within ensembles containing more edges have a larger prob-

ability to be removed. This procedure ends until a collec-

tion of minimal limited Covering Sets are obtained. All el-

ements in this collection together constitute the structure of

HSLE. To achieve the most robust structure, similar to the

landmark clustering strategy, we run this entire procedure

multiple times. The collection of minimal limited Covering

Sets with the least error measure in total would be selected

for constructing the structure of HSLE.

Structure construction procedure is summarized as Al-

gorithm 1, f(·) is a function for counting the number of

remaining edges.

3.4. Model Training

The loss of a baseline landmark detector could be sim-

plified as:

L = ‖φ(I; θ)− G‖
2
2 (4)

where φ(·) ∈ R
W∗H∗C is the output of the baseline land-

mark detector. I ∈ R
W ′∗H′

is the input image. θ is param-

eters of the φ(·). G ∈ R
W∗H∗C is the groundtruth heatmap

generated by groundtruth coordinates with a Gaussian dis-

tribution. C is the total number of landmarks.

To regularize the model with structural constraints deter-

mined by the HSLE, we can rewrite the loss as:

L′ =
∑C

t=1

∥

∥

∥

∥

φt(I; θ) +
∑P t

p=1
H̃p

t − Gt

∥

∥

∥

∥

2

2

(5)

where H̃p
t ∈ R

W∗H is the pth structure constraint, ex-

pressed by the HSLE, regularized by another landmark. P t

is the total number of structural constraints of landmark t
regularized by other landmarks.

The entire model is then trained in an end-to-end fashion

by minimizing Equation 5.

Algorithm 1 Structure construction for HSLE.

Input:

The total number of ensembles: N

N limited Covering Sets: C = {C1, ..., CN}
N fully connected graphs: F = {F1, ...,FN}
The error measure of substructure Si

j of ensemble i:
κsi

j
, the error measure of edge i: κi

The number of repetitions: R

Output:

The optimal collection of minimal limited Covering

Sets: C∗

1: C∗ = F , κmin = ∞
2: for r in range(R) do

3: for n in range(N) do

4: Cn = Fn

5: end for

6: while ∃Ci ∈ C, Ci �= C∗
i do

7: Find all removable edges {Er1, Er2, ..., Ert} de-

fined in Equation 2

8: Calculate removal probabilities for each edge

{Pr1,Pr2, ...,Prt}, Prj = μκErj /y + λf(Ci)/z,

with y, z are normalization factors and μ, λ are

constants

9: Remove Erx with probability Prx

10: end while

11: κ = 0
12: for n in range(N) do

13: κ = κ+
∑

Sn
j
∈Cn

κsn
j

14: end for

15: if κ < κmin then

16: κmin = κ, C∗ = C
17: end if

18: end for

4. Experiment

4.1. Implementation Details

We evaluate our model on two datasets to verify the ef-

fectiveness of our model. 300W[40, 41, 42]: 3148 images

for training and 689 images for testing. The testing dataset

is split into three subsets: common subset (554 images),

challenge subset (135 images) and the full set (689 im-

ages). Each image is annotated with 68 landmarks. AFLW-

Full[67]: 20k images for training and 4386 images for test-

ing. Each image is annotated with 19 landmarks.

For a trade-off between accuracy and efficiency, 17 en-

sembles are used to hierarchically depict the structure of

68 facial landmarks on 300W dataset, 4/5/8/11/14 ensem-

bles are used to hierarchically depict the structure of 19

facial landmarks on AFLW dataset respectively. Each en-

semble consists of a (6, 4, 3) limited Covering Set com-
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posed of 13 3-elements substructures. “max-pooling →
5 × 5-conv → nearest-upsampling” operations are adopted

for information passing. All training images are cropped

and resized to 256× 256 according to the revised bounding

boxes by enlarging about 14% ( 256224 ) on the basis of pro-

vided groundtruth bounding boxes. All experiments have

been carried out with the settings described in this section.

The entire end-to-end model is trained from scratch. All our

models are trained with Tensorflow[1].

4.2. Quantitative Results

We firstly compare our end-to-end trained model against

the state-of-the-art methods on 300W[40, 41, 42] dataset.

We report average point-to-point Euclidean errors normal-

ized by both inter-pupil distance (ipd-norm) and inter-

ocular distance (iod-norm), and median point-to-point Eu-

clidean errors normalized by inter-ocular distance (iod-

norm). For the comparison with all the other methods, we

show the original results published in the literature.

The results are shown in Table 1. Experimental re-

sults demonstrate our approach consistently and signifi-

cantly outperforms 3 different state-of-the-art baselines by

a large margin to achieve a comparable result against the

state-of-the-art methods. That is, due to the structural con-

straints propagated from the HSLE, the baseline facial land-

mark detectors become more robust by trained jointly with

the HSLE. This phenomenon indicates that facial land-

mark detection can be more robust via learning from hi-

erarchical structural constraints. We plot Cumulative Error

Distributions curves of our proposed model against the 8-

Stacked Hourglass[38] baseline model on the 300W dataset,

as shown in Figure 4.

Figure 4: Cumulative Error Distributions curves of pro-

posed model against the baseline model on the 300W

dataset. Best viewed in color.

Since different facial landmarks have different discrim-

inations, higher weights should be assigned to landmarks

that are more discriminative. To this end, we report

weighted mean iod-norm errors on 300W dataset. We di-

vide 68 facial landmarks into three categories according to

SC Com. Chal. Full

mean iod-norm error

PCD-NN[27] M 3.67 7.62 4.44

SAN[16] N 3.34 6.60 3.98

DAN[26] I 3.19 5.24 3.59

LAB[52] M 2.98 5.19 3.49

DU-Net-BW-α[49] N 3.00 5.36 3.46

DU-Net[49] N 2.82 5.07 3.26

DCFE[51] I 2.76 5.22 3.24

HG[38]∗ N 3.30 5.69 3.77

HG-HSLE (ours) A 2.85 5.03 3.28

DU-NET[49]∗ N 3.07 5.13 3.47

DU-NET∗-HSLE(ours) A 2.88 5.01 3.30

Merget et al. [36]∗ N 3.76 6.32 4.26

Merget∗-HSLE(ours) A 3.21 5.69 3.70

mean ipd-norm error

MDM[50] I 4.83 10.14 5.88

TCDCN[63] N 4.80 8.60 5.54

CFSS[66] I 4.73 9.98 5.76

RCN[21] A 4.67 8.44 5.41

DAN[26] I 4.42 7.57 5.03

TSR[33] M 4.36 7.56 4.99

RAR[55] A 4.12 8.35 4.94

SHN[57] N 4.12 7.00 4.68

DVLN[53] N 3.94 7.62 4.66

DCFE[51] I 3.83 7.54 4.55

LAB[52] M 3.42 6.98 4.12

HG[38]∗ N 4.56 8.18 5.27

HG-HSLE (ours) A 3.94 7.24 4.59

median iod-norm error

TCDCN[63] N 4.11 6.87 -

CLNF[4] I 3.47 6.37 -

CFSS[66] I 3.20 5.97 -

CE-CLM[60] I 3.13 5.62 -

Merget et al. [36] N 3.04 5.55 -

Merget et al. [36](fit) I 2.86 5.29 -

HG[38]∗ N 3.17 5.42 -

HG-HSLE (ours) A 2.72 4.86 -

DU-Net[49]∗ N 2.79 4.75 -

DU-NET∗-HSLE(ours) A 2.73 4.67 -

Merget et al. [36]∗ N 3.10 5.54 -

Merget∗-HSLE(ours) A 2.87 5.07 -

Table 1: Mean/Median point-to-point Euclidean errors (%)

normalized by ipd or iod on 300W dataset. HG[38]∗, DU-

Net[49]∗ and Merget et al. [36]∗ are selected as the base-

lines. OURS and the BEST performance (besides ours) are

highlighted in bold and underlined respectively. “*” in-

dicates results re-implemented by ourselves with the code

provided by the authors. SC indicates the adopted structure

constraint (N for none or not mentioned, M for manually de-

signed, I for initial shape, A for automatically constructed).
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their discriminations (Figure 5). Category a contains land-

marks with lowest discriminations (e.g. outlines), category

c contains landmarks with highest discriminations (e.g. cor-

ners of ocular), and category b contains all other remaining

landmarks. We assign different weights to landmarks ac-

cording to their category. Results are shown in Table 2.

Numbers in the first column indicate the relevant weights.

What could be learned from Table 2 is that facial landmarks

with higher discriminations could achieve more improve-

ments by our HSLE model, makes our proposed idea more

sense for most applications.

Figure 5: Divide 68 facial landmarks into three categories

(a, b and c) according to their discriminations.

common improvement challenge improvement

BASE-0-0-1 2.90
12.76%

5.25
15.05%

HSLE-0-0-1 2.53 4.46

BASE-0-1-0 3.05
15.41%

5.33
13.32%

HSLE-0-1-0 2.58 4.62

BASE-1-0-0 4.12
10.68%

6.81
6.46%

HSLE-1-0-0 3.68 6.37

Table 2: Weighted mean iod-norm Error (%) of proposed

model against the baseline model. “BASE” indicates the

baseline model and “HSLE” indicates the proposed model.

BASE/HSLE-a-b-c denote the weights a, b and c assigned

to categories a, b and c respectively. 8-stacked Hourglass

model is selected as the baseline model in this experiment.

4.3. Qualitative Results

Some qualitative results on the 300W dataset are pre-

sented in Figure 6. Images with different color borders are

results derived from one baseline and the proposed HSLE

model respectively. The results from images with uncon-

strained situations demonstrate that the baseline facial land-

mark detector becomes much more robust by trained jointly

with HSLE in an end-to-end fashion, due to the structural

constraints propagated from the HSLE model.

5. Discussion

In order to make a clearer study of the impact of the

HSLE model on the overall performance, we further con-

ducted supplementary experiments on AFLW dataset [34].

For evaluation, the AFLW-Full protocol has been used [67].

As shown in Table 3, our method can achieve consistent im-

provements.

Line Model MEAN IOD-NORM ERROR

BASELINE: 4-stack hourglass network

1 BASE-S4 7.84

2 TREE-S4 7.64

3 HSLE-S4-E5 7.52

BASELINE: 8-stack hourglass network

4 BASE-S8 7.64

5 TREE-S8 7.56

6 HSLE-S8-E17 7.24

HSLE with different settings

7 HSLE-S4-E4 7.60

8 HSLE-S4-E5 7.52

9 HSLE-S4-E8 7.47

10 HSLE-S4-E11 7.51

11 HSLE-S4-E14 7.52

Table 3: Quantitative results on AFLW dataset. “BASE” is

the baseline model Stacked Hourglass. “TREE” is a manu-

ally designed bi-directional tree structured model proposed

by [9]. “HSLE” is the proposed model. “S4/S8” mean

stacking 4/8 hourglass modules respectively. “ EX” means

“X” ensembles are used to hierarchically depict the struc-

tural constraints.

Experiments with different baselines. We have re-

ported results with 3 different state-of-the-art baselines in

Table 1. Experimental results verify the effectiveness of

our method. We further conducted experiments using the

Stacked Hourglass as the baseline but stacking different

number of hourglass modules. Line 1/3 and Line 4/6 in Ta-

ble 3 show the proposed HSLE model consistently outper-

forms the baselines stacked 4/8 hourglass modules respec-

tively, which also verifies that explicitly applying structural

constraints as proposed outperforms implicitly incorporat-

ing it by stacking multiple hourglasses.

Compare with manually designed structural con-

straints methods. The bottleneck of manually structural

constraints is the difficulty to be applied to a large num-

ber of landmarks, therefore manually designed structural

constraints, such as [9], are not suitable for the 300W

dataset (annotated with 68 landmarks per image). As for

the AFLW-Full dataset with 19 landmarks per image, we re-

implemented a manually designed 19-nodes bi-directional

tree structured model(Figure 7(b)) refer to [9]. Line 2/3

and Line 5/6 in Table 3 and Figure 7(a) show our pro-

posed model consistently outperforms the manually de-

signed structural constraints, which demonstrates the auto-
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Figure 6: Qualitative results on the 300W. Images with green borders (row 1) are results derived from a baseline model

directly. Images with blue borders (row 2) are results derived from our HSLE model. Images with yellow borders (row 3)

and images with gray borders (row 4) are local enlarged image patches from the baseline and ours respectively. BLUE curves

and RED dots are predictions. GREEN curves are groundtruth.

matically learned hierarchical structural constraints by our

method are not only much more suitable for a large num-

ber of landmarks, but also more robust than the manually

designed constraints.

1
0

2 3
4

5

6 7 8 9 10 11

12 1413

15 16 17

18

(b)(a)

Figure 7: (a) CED curves on AFLW-Full dataset. (b) The

diagram of the structure and the information flow of the re-

implemented manually structured model.

HSLE with different settings. We evaluated our model

using different x − (n, t,m) settings (4/5/8/11/14 −
(6, 4, 3)) on AFLW dataset, and the results show our model

always improves the baseline. The complexity of our model

grows with the increase of x, n and the decrease of t, and

the continuing increase of parameter size would not further

improve the performance, as shown in Line 7∼11, Table 3.

Moreover, to depict the structural constraints for 68 land-

marks, when applying the 17 − (6, 4, 3) setting, the num-

ber of parameters has increased by 35802, there are 221

substructures for passing information. If a fully connected

graph, or the so called 1 − (68, 3, 3) setting, is applied, the

number of parameters will increase by 8118792, and there

will be 50116 substructures for passing information. For

a trade-off between accuracy and efficiency, we mainly re-

ported the results with 5− (6, 4, 3) setting for 19 landmarks

and 17− (6, 4, 3) setting for 68 landmarks.

6. Conclusion

In this paper, we present a Hierarchical Structured Land-

mark Ensemble (HSLE) model for learning robust facial

landmark detection. Due to the structural constraints propa-

gated from the HSLE, the baseline facial landmark detectors

consistently become more robust by trained jointly with the

HSLE in an end-to-end fashion. The effectiveness of our

idea has been verified by extensive experiments, indicates

that facial landmark detection can be more robust via learn-

ing from hierarchical structural constraints.

Compared with the baseline model, the runtime of the

proposed model for inference (68 landmarks) has increased

by about 36ms on Intel i7-9700K (3.60GHz ×8) CPU and

Nvidia GeForce GTX 1080Ti (11GB) GPU.

Acknowledgment

This work was supported in part by National Sci-

ence Foundation grant IIS-1619078, IIS-1815561, the

Army Research Office ARO W911NF-16-1-0138, the Na-

tional Science Foundation for Young Scientists of China

grant 61806081 and the China Postdoctoral Science Foun-

dation grant 2018M632858.

148



References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian

Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath

Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
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