
Learning Implicit Generative Models by Matching Perceptual Features

Cicero Nogueira dos Santos∗, Youssef Mroueh∗, Inkit Padhi∗, Pierre Dognin∗

IBM Research, T.J. Watson Research Center, NY

{cicerons,mroueh,pdognin}@us.ibm.com, inkit.padhi@ibm.com

Abstract

Perceptual features (PFs) have been used with great suc-

cess in tasks such as transfer learning, style transfer, and

super-resolution. However, the efficacy of PFs as key source

of information for learning generative models is not well

studied. We investigate here the use of PFs in the con-

text of learning implicit generative models through moment

matching (MM). More specifically, we propose a new effec-

tive MM approach that learns implicit generative models by

performing mean and covariance matching of features ex-

tracted from pretrained ConvNets. Our proposed approach

improves upon existing MM methods by: (1) breaking away

from the problematic min/max game of adversarial learn-

ing; (2) avoiding online learning of kernel functions; and

(3) being efficient with respect to both number of used mo-

ments and required minibatch size. Our experimental re-

sults demonstrate that, due to the expressiveness of PFs

from pretrained deep ConvNets, our method achieves state-

of-the-art results for challenging benchmarks.

1. Introduction

The use of features from deep convolutional neural net-

works (DCNNs) pretrained on ImageNet [37] has led to

important advances in computer vision. DCNN features,

usually called perceptual features (PFs), have been used in

tasks such as transfer learning [42, 17], style transfer [9]

and super-resolution [18]. While there have been previous

works on the use of PFs in the context of image genera-

tion and transformation [7, 18], exploration of PFs as key

source of information for learning generative models is not

well studied. Particularly, the efficacy of PFs for implicit

generative models trained through moment matching is an

open question.

Moment matching approaches for generative modeling

are based on the assumption that one can learn the data dis-

tribution by matching the moments of the model distribution

to the empirical data distribution. Two representative meth-

∗ Equal contribution.

ods of this family are based on maximum mean discrepancy

(MMD) [11, 12, 24] and the method of moments (MoM)

[35]. While MoM based methods embed a probability dis-

tribution into a finite-dimensional vector (i.e., matching of a

finite number of moments), MMD based methods embed a

distribution into an infinite-dimensional vector [35]. A chal-

lenge for MMD methods is to define a kernel function that is

statistically efficient and can be used with small minibatch

sizes [22]. A solution comes by using adversarial learning

for the online training of kernel functions [22, 3]. However,

this solution inherits the problematic min/max game of ad-

versarial learning. The main challenges of using MoM for

training deep generative networks consist in defining mil-

lions of sufficiently distinct moments and specifying an ob-

jective function to learn the desirable moments. Ravuri et

al. [35] addressed these two issues by defining the moments

as features and derivatives from a moment network that is

trained online (together with the generator) by using a spe-

cially designed objective function.

In this work we demonstrate that, by using PFs to per-

form moment matching, one can overcome some of the

difficulties found in current moment matching approaches.

More specifically, we propose a simple but effective mo-

ment matching method that: (1) breaks away from the prob-

lematic min/max game completely; (2) does not use on-

line learning of kernel functions; and (3) is very efficient

with regard to both number of used moments and required

minibatch size. Our proposed approach, named Generative

Feature Matching Networks (GFMN), learns implicit gen-

erative models by performing mean and covariance match-

ing of features extracted from all convolutional layers of

pretrained deep ConvNets. Some interesting properties of

GFMNs include: (a) the loss function is directly correlated

to the generated image quality; (b) mode collapsing is not

an issue; and (c) the same pretrained feature extractor can

be used across different datasets.

We perform an extensive number of experiments with

different challenging datasets: CIFAR10, STL10, CelebA

and LSUN. We demonstrate that our approach can achieve

state-of-the-art results for challenging benchmarks such as

CIFAR10 and STL10. Moreover, we show that the same

4461

z1

· · ·
zN

Generator
NN

x̃1

· · ·
x̃N

Feature
extractor NN

E1(x̃1)
· · ·

EM (x̃N)
L =

PM

j=1
||µj

pdata
−

1

N

PN

i=1
Ej(x̃i)||

2

Figure 1: GFMN Training: From z1, . . . zN noise signals, generator G creates N images x̃1, . . . x̃N . The fixed pretrained

feature extractor E is used to obtain Ej(x̃i) features. L is the L2-norm of the difference between extracted features means

of generated and real data, µj
pdata

. We precompute µj
pdata

on the entire real dataset (it does not change during training); the

mean of generated data is estimated on a minibatch of size N . The same strategy is used for variance terms in L.

feature extractor is effective across different datasets. The

main contributions of this work can be summarized as fol-

lows: (1) We propose a new effective moment matching-

based approach to train implicit generative models that

does not use adversarial or online learning of kernel func-

tions, provides stable training, and achieves state-of-the-art

results; (2) We show theoretical results that demonstrate

GFMN convergence under the assumption of the universal-

ity of perceptual features; (3) We propose an ADAM-based

moving average method that allows effective training with

small minibatches; (4) Our extensive quantitative and qual-

itative experimental results demonstrate that pretrained au-

toencoders and DCNN classifiers can be effectively used as

(cross-domain) feature extractors for GFMN training.

2. Generative Feature Matching Networks

2.1. The method

Let G be the generator implemented as a neural network

with parameters ✓, and let E be a pretrained neural network

with L hidden layers. Our proposed approach consists in

training G by minimizing the following loss function:

min
✓

M
X

j=1

||µj
pdata

� µj
pG

(✓)||2 + ||�j
pdata

� �j
pG

(✓)||2 (1)

where:

µj
pdata

= Ex⇠pdata
Ej(x) 2 R

dj

µj
pG

(✓) = Ez⇠N (0,Inz)
Ej(G(z; ✓)) 2 R

dj

�
j
pdata,`

= Ex⇠pdata
Ej,`(x)

2 � [µj,`
pdata

]2, ` = 1 . . . dj

�
j
pG,`(✓) = Ez⇠N (0,Inz)

Ej,`(G(z; ✓))2�[µj,`
pG

]2, `=1 . . . dj

and ||.||2 is the L2 loss; x is a real data point sampled from

the data generating distribution pdata; z 2 R
nz is a noise

vector sampled from the normal distribution N (0, Inz
);

Ej(x), denotes the output vector/feature map of the hid-

den layer j from E; M L is the number of hidden layers

used to perform feature matching. Note that �2
pdata

and �2
pG

denote the variances of the features from real data and gen-

erated data, respectively. We use diagonal covariance ma-

trices as computing full covariance matrices is impractical

for large numbers of features.

In practice, we train G by first precomputing estimates

of µ
j
pdata

and σ
j
pdata

on the training data, then running

multiple training iterations where we sample a minibatch of

generated (fake) data and optimize the parameters ✓ using

stochastic gradient descent (SGD) with backpropagation.

The network E is used for the purpose of feature extrac-

tion only and is kept fixed during the training of G. Fig. 1

presents GFMN training pipeline.

Autoencoder Features: A natural choice of unsupervised

method to train a feature extractor is the autoencoder (AE)

framework. The decoder part of an AE consists exactly of

an image generator that uses features extracted by the en-

coder. Therefore, by design, the encoder network should be

a good feature extractor for the purpose of generation.

Classifier Features: We experiment with different DCNN

architectures pretrained on ImageNet to play the role of the

feature extractor E. Our hypothesis is that ImageNet-based

PFs are informative enough to allow the training of (cross-

domain) generators by feature matching.

2.2. Matching Feat. with ADAM Moving Average

From feature matching loss to moving averages. In

order to train with a mean and covariance feature match-

ing loss, one needs large minibatches to obtain good mean

and covariance estimates. With images larger than 32⇥32,

DCNNs produce millions of features, resulting easily in

memory issues. We propose to alleviate this problem by

using moving averages of the difference of means (covari-

ances) of real and generated data. Instead of computing

the (memory) expensive feature matching loss in Eq. 1, we

keep moving averages vj of the difference of feature means

(covariances) at layer j between real and generated data.

We detail our moving average strategy for the mean fea-

tures only, but the same approach applies for the covari-

ances. The mean features from the first term of Eq. 1,

||µj
pdata

�Ez⇠N (0,Inz)
Ej(G(z; ✓))||2 can be approximated

by:

v>j

µ
j
pdata

�
1

N

N
X

k=1

Ej(G(zk; ✓))

!

,

where N is the minibatch size and vj is a moving average

on ∆j , the difference of the means of the features extracted

4462

by the j-th layer of E:

∆j = µ
j
pdata

�
1

N

N
X

k=1

Ej(G(zk; ✓)). (2)

Using these moving averages we replace the first term of the

loss given in Eq. 1 by

min
✓

M
X

j=1

v>j

µ
j
pdata

�
1

N

N
X

k=1

Ej(G(zk; ✓))

!

. (3)

The moving average formulation of features matching

above has a major advantage on the naive formulation of

Eq. 1 since we can now rely on vj to get better estimates

of the population feature means of real and generated data

while using a small minibatch of size N . For a similar result

using the feature matching loss given in Eq. 1, one would

need a minibatch with large size N , which is problematic

for large number of features.

ADAM moving average: from SGD to ADAM up-

dates. Note that for a rate ↵, the moving average vj has

the following update:

vj,new = (1� ↵) ⇤ vj,old + ↵ ⇤∆j , 8j = 1 . . .M

It is easy to see that the moving average is a gradient descent

update on the following loss:

min
vj

1

2
||vj �∆j ||

2. (4)

Hence, writing the gradient update with learning rate ↵ we

have equivalently:

vj,new = vj,old�↵⇤(vj,old�∆j) = (1�↵)⇤vj,old+↵⇤∆j .

With this interpretation of the moving average, we propose

to get a better moving average estimate by using the ADAM

optimizer [19] on the loss of the moving average given in

Eq. 4, such that

vj,new = vj,old � ↵ADAM(vj,old �∆j).

ADAM(x) function is computed as follows:

mt = �1 ⇤mt�1 + (1� �1) ⇤ x m̂t = mt/(1� �t
1)

ut = �2 ⇤ ut�1 + (1� �2) ⇤ x
2 ût = ut/(1� �t

2)

ADAM(x) = m̂t/(
p

ût + ✏),

where x is the gradient for the loss function in Eq. 4, t is the

iteration number, mt and ut are the first and second moment

vectors at iteration t, �1 = .9, �2 = .999 and ✏= 10�8 are

constants. m0 and u0 are initialized as proposed by [19].

We refer to [19] for a detailed ADAM optimizer description.

This moving average formulation, which we call ADAM

Moving Average (AMA) promotes stable training when us-

ing small minibatches. Although we detail AMA using

mean feature matching only, we use this approach for both

mean and covariance matching. The main advantage of

AMA over simple moving average (MA) is in its adaptive

first and second order moments that ensure stable estimation

of the moving averages vj . In fact, this is a non-stationary

estimation since the mean of the generated data changes in

the training, and it is well known that ADAM works well

for such online non-stationary losses [19].

In Section 5.3 we provide experimental results support-

ing: (1) The memory advantage that the AMA formulation

of feature matching offers over the naive implementation;

(2) The stability advantage and improved generation results

that AMA allows compared to the naive implementation.

We discuss in Appendix 2 the advantage of AMA on MA

from a regret bounds point of view [36].

3. Universality of PFs and GFMN Convergence

Our proposed approach is related to the recent body

of work on MMD or MM based generative models

[24, 8, 22, 3, 35]. We highlight the main differences

between MMD-GANs and GFMN in terms of requirements

on the kernel for MMD-GAN and on the feature map

(Extractor) for GFMN, that ensure convergence of the

generator to the data distribution. See Tab. 1 for a summary.

GMMN, MMD-GAN Convergence: MMD Matching

with Universal Kernels. We start by reviewing known re-

sults on MMD. Let Hk be a Reproducing Kernel Hilbert

Space (RKHS) defined with a continuous kernel k. Infor-

mally, k is universal if any bounded continuous function

can be approximated to an arbitrary precision in Hk (for-

mal definition in Appendix). Theorem 1 [12] shows that

the MMD is a well defined metric for universal kernels.

Theorem 1 ([12]). Given a kernel k, let p, q be two distri-

butions, their MMD is: MMD2(k, p, q) = ||µp � µq||
2
Hk

,
where µp = Ex⇠pkx is the mean embedding. If k is univer-

sal then MMD2(k, p, q) = 0 if and only if p = q.

Given a Universal kernel such as a Gaussian Kernel as

outlined in GMMN [24, 8], one can learn implicit Genera-

tive models G✓ that defines a family of distribution {q✓} by

minimizing the MMD distance:

inf
✓

MMD(k, pdata, q✓) (5)

Assuming pdata is in the family {q✓} (9✓
⇤, q✓∗ = pdata),

the infimum of MMD minimization for a universal ker-

nel is achieved for q✓ = pdata (immediate consequence

of Theorem 1). This elegant setup for MMD match-

ing with universal kernels, while avoiding the difficult

min/max game in GAN, does not translate into good

results in image generation. To remedy that, other

discrepancies introduced in [22, 3, 35] compose uni-

versal kernels k with a feature map � 2 Ψ as follows:

4463

Metric Kernel/Feature Map Generative M.

Convergence Conditions Optimization

GMMN [24, 8] MMD(k, p, q) Universal k min prob.

MMD-GAN DMMD(p, q) k � φ min /max prob.

[22, 3, 35] k Fixed universal & lipschitz

φ lipschitz learned

GFMN MMD(KΦ, p, q) Universal Feature Map Φ min prob.

(This work) Φ fixed µpdata
precomputed

Table 1: Comparison of different approaches using MMD matching for implicit generative modeling. GFMN has two

practical computational advantages it avoids the min/max game and allows to use a pre-computed mean embedding on the

real data. Theoretically GFMN converges to the real data distribution if the feature extractor used was universal (See text for

definition of Universal features as given in [28]) .

DMMD(p, q) = sup�2Ψ
MMD(k � �, p, q). For learn-

ing implicit generative models [22] replaces MMD in

Eq. (5) by DMMD. Under conditions on the kernel and

the learned feature map this discrepancy is continuous

in the weak topology (Prop. 2 in [1, 22]). Nevertheless,

learning generative models remains challenging with it

as it boils down to a min/max game as in original GAN [10].

GFMN Convergence: MMD Matching with Universal

Features. While universality is usually thought on the ker-

nel level, it is not straightforward to define universality for

kernels defined by feature maps. Micchelli et al. [28] define

universality of feature maps and how it connects to their cor-

responding kernels. Specifically for a fixed feature set on a

space X (space of images) S = {�j , j 2 I,�j : X ! R},

where I is a countable set of indices, define the kernel

K�(x, y) =
P

j2I �j(x)�j(y). Micchelli et al. [28] in

Thm. 7 show that this Kernel is universal if the set S is uni-

versal. Informally speaking, a feature set S is universal if

linear functions in this feature space (
P

j2I uj�j(x)), are

dense in the set of continuous bounded functions (formal

definition in Appendix 1).

This is of interest since GFMN corresponds to MMD

matching with a kernel KΦ defined on a fixed feature map

Φ(x)={�j(x)}j2I , where I is finite. We have KΦ(x, y)=
hΦ(x),Φ(y)i=

P

j2I �j(x)�j(y) and

MMD2(KΦ, p, q) = ||Ex⇠pΦ(x)� Ex⇠qΦ(x)||
2
.

For MMD2(KΦ, p, q) to be a metric it is enough to have the

set features S be universal (by Thm.1 and Thm. 7 in [28]).

Prop. 1 gives conditions for GFMN convergence:

Proposition 1. Assume pdata belongs to the family defined

by the generator {q✓}✓. GFMN converges to the real dis-

tribution by matching in a feature space S = {�j , j 2 I},

where I is a countable set, if the features set S is univer-

sal (informally means that any continuous functions can be

written as linear combination in the span of S) .

Proof. S is universal =) kΦ is universal [28]. Hence

MMD(kΦ, pdata, q✓) = 0 iff q✓ = pdata. GFMN solves

inf✓ MMD2(KΦ, pdata, q✓), and the infimum is achieved

for ✓ such that q✓ = pdata (pdata 2 {q✓}✓).

Remark 1. The analysis covers here mean matching but

the same applies to covariance matching considering S =
{�j ,�j�k, j, k 2 I}.

Universality of Perceptual Features in Computer Vision.

From Prop. 1 we see that for GFMN to be convergent with

pretrained feature extractors Ej that are perceptual fea-

tures (such as features from VGG or ResNet pretrained on

ImageNet), we need to assume universality of those fea-

tures in the image domain. We know from transfer learning

that features from ImageNet pretrained VGG/ResNet can

express any functions for a downstream task by finding a

linear weight in their span. Note that this is the definition

of universal feature as given in [28]: continuous functions

can be approximated in the linear span of those features.

Hence, assuming universality of PFs defined by ImageNet

pretrained VGG or ResNet, GFMN is guaranteed to con-

verge to the data distribution by Prop. 1. Our results com-

plement the common wisdom on “universality” of PFs in

transfer learning and style transfer by showing that they are

sufficient for learning implicit generative models.

4. Related work

GFMN is related to the recent body of work on MMD

and moment matching based generative models [24, 8, 22,

3, 35]. The closest to our method is the Generative Moment

Matching Network + Autoencoder (GMMN+AE) proposed

in [24]. In GMMN+AE, the objective is to train a gener-

ator G that maps from a prior uniform distribution to the

latent code learned by a pretrained AE, and then uses the

frozen pretrained decoder to map back to image space. As

discussed in Section 3 one key difference in our approach

is that, while GMMN+AE uses a Gaussian kernel to per-

form moment matching using the AE low dimensional la-

tent code, GFMN performs mean and covariance matching

in a PF space induced by a non-linear kernel function (a

DCNN) that is orders of magnitude larger than the AE latent

code, and that we argued is universal in the image domain.

4464

Li et al. [22] demonstrate that GMMN+AE is not com-

petitive with GANs for challenging datasets such as CI-

FAR10. MMD-GANs, discussed in Section 3, demon-

strated competitive results with the use of adversarial learn-

ing by learning a feature map in conjuction with a Gaussian

kernel [22, 3]. Finally, Ravuri et al. [35] recently proposed

a method to perform online learning of the moments while

training the generator. Our proposed method differs by us-

ing fixed pretrained PF extractors for moment matching.

Bojanowski et al. [4] proposed the Generative Latent

Optimization (GLO) model that jointly optimizes model pa-

rameters and noise input vectors z, while avoiding adver-

sarial training. Hoshen et al. [16] obtains better results than

GLO by combining it with IMLE [23]. Our work relates to

plug and play generative models of [32] where a pretrained

classifier is used to sample new images, using MCMC sam-

pling methods. Our work is also related to AE-based gen-

erative models variational AE (VAE) [20], adversarial AE

(AAE) [27] and Wasserstein AE (WAE) [40]. However,

GFMN is quite distinct from these methods because it uses

pretrained AEs to play the role of feature extractors only,

while these methods aim to impose a prior distrib. on the

latent space of AEs. Another recent line of work that in-

volves the use of AEs in generative models consists in ap-

plying AEs to improve GANs stability [44, 41]. Finally, our

loss function is related to the loss function in McGan [31].

5. Experiments

5.1. Experimental Setup

Datasets: We evaluate our proposed approach on images

from CIFAR10 [21] (50k train., 10k test, 10 classes), STL10

[6] (5k train., 8k test, 100k unlabeled, 10 classes), CelebA

[26] (200k) and LSUN bedrooms [43] datasets. STL10 im-

ages are rescaled to 32⇥32, while CelebA and LSUN im-

ages are rescaled to either 64⇥64 or 128⇥128, depending

on the experiment. CelebA images are center-cropped to

160⇥160 before rescaling.

GFMN Generator: In most of our experiments the gen-

erator G uses a DCGAN-like architecture [34]. For CI-

FAR10, STL10, LSUN and CelebA64⇥64, we use two extra

layers as commonly used in previous works [30, 13]. For

CelebA128⇥128 and some experiments with CIFAR10 and

STL10, we use a ResNet-based generator such as the one in

[13]. Architecture details are in the supplementary material.

Autoencoder Features: For most AE experiments, we use

an encoder network whose architecture is similar to the dis-

criminator in DCGAN (strided convolutions). We use batch

normalization and ReLU non-linearity after each convolu-

tion. We set the latent code size to 128, 128, and 512 for

CIFAR10, STL10 and CelebA, respectively. To perform

feature extraction, we get the output of each ReLU in the

network. Additionally, we also perform some experiments

where the encoder uses a VGG19 architecture. The decoder

network D uses a network architecture similar to our gen-

erator G. More details in the supplementary material.

Classifier Features: We perform our experiments on clas-

sifier features with VGG19 [39] and Resnet18 networks

[14] which we pretrained using the whole ImageNet dataset

[37] with 1000 classes. Pretrained ImageNet classifiers de-

tails can be found in the supplementary material.
GFMN Training: GFMNs are trained with an ADAM opti-

mizer; most hyperparameters are kept fixed across datasets.

We use nz = 100 and minibatch of 64. Dataset dependent

learning rates are used for updating G (10�4 or 5⇥10�5)

and AMA (5⇥10�5 or 10�5). We use AMA moving average

(Sec. 2.2) in all reported experiments.

5.2. Autoencoder Features vs. (Cross-domain)
Classifier Features

This section presents a comparative study on the use of

pretrained autoencoders and cross-domain classifiers as fea-

ture extractors in GFMN. Tab. 2 shows the Inception Score

(IS) [38] and Fréchet Inception Distance (FID) [15] for

GFMN trained on CIFAR10 using different feature extrac-

tors E. The two first rows in Tab. 2 correspond to GFMN

models that use pretrained encoders as E, while the last four

rows use pretrained VGG19/Resnet18 ImageNet classifiers.

We can see in Tab. 2 that there is a large boost in perfor-

mance when ImageNet classifiers are used as feature ex-

tractors instead of encoders. Despite the classifiers being

trained on a different domain (ImageNet vs. CIFAR10), the

classifier features are significantly more effective. While

the best IS with encoders is 4.95, the lowest IS with Im-

ageNet classifier is 7.88. Additionally, when using simul-

taneously VGG19 and Resnet18 as feature extractors (two

last rows), which increases the number of features to 832K,

we get even better performance. Finally, we achieve the best

performance in terms of both IS and FID (last row1) when

using a generator architecture that contains residual blocks,

similar to the one propose in [13].

Random samples from GFMNVGG19+Resnet18 trained with

CIFAR10 and STL10 are shown in Figs. 2a and 2b respec-

tively. Fig. 2c shows random samples from GFMNVGG19

trained with LSUN bedrooms dataset (resolution 64⇥64).

Fig. 3 presents samples from GFMNVGG19 trained with

CelebA dataset with resolution 128⇥128, which shows that

GFMN can achieve good performance with image resolu-

tions larger than 32⇥32. These results also demonstrate that:

(1) the same classifier (VGG19 trained on ImageNet) can be

successfully applied to train GFMN models across different

domains; (2) perceptual features from DCNNs encapsulate

enough statistics to allow the learning of good generative

models through moment matching.

Tab. 3 shows IS and FID for increasing number of layers

(i.e. number of features) in our extractor VGG19. We se-

1Average result of five runs with different random seeds.

4465

Table 2: CIFAR10 results for GFMN with different feature extractors.

E Type E Arch. Pre-trained On # features G Arch. IS FID (5K/50K)

Encoder DCGAN CIFAR10 60K DCGAN 4.51 ± 0.06 82.8 / 78.3

Encoder VGG19 ImageNet 296K DCGAN 4.95 ± 0.06 61.6 / 57.2

Classifier Resnet18 ImageNet 544K DCGAN 7.92 ± 0.10 29.1 / 24.3

Classifier VGG19 ImageNet 296K DCGAN 7.88 ± 0.08 25.5 / 20.8

Classifier VGG19 + Resnet18 ImageNet 832K DCGAN 8.08 ± 0.08 25.5 / 20.9

Classifier VGG19 + Resnet18 ImageNet 832K Resnet 8.27 ± 0.09 18.1 / 13.5

(a) CIFAR10 (b) STL10 (c) LSUN

Figure 2: Generated samples from GFMN that uses as feature extractor VGG-19+Resnet18 (2a, 2b) and VGG-19 net (2c).

Figure 3: Samples from GFMNVGG19 trained on CelebA

with image size 128⇥ 128.

lect up to 16 layers, excluding the output of fully connected

layers. Using more layers dramatically improves the per-

formance of the feature extractor, reaching IS and FID peak

performance when the maximum number of layers is used.

Note that the features are ReLU activation outputs, meaning

the encodings may be quite sparse. In Appendix 7 we show

qualitative results that corroborate these results.

To verify whether the number of features is the main fac-

tor for performance, we conducted an experiment where we

train an AE with an encoder using a VGG19 architecture.

This encoder is pretrained on ImageNet and produces a to-

tal of 296K features. The second row in Tab. 2 shows the

results for this experiment. Although there is improvement

in both IS and FID compared to the DCGAN encoder (first

row), the boost is not comparable to the one obtained with a

VGG19 classifier. In other words, features from classifiers

are significantly more informative than AEs features for the

purpose of training generators by feature matching.

Table 3: Impact of the number of layers/features used for

feature matching in GFMN (1K=210).

layers # features IS FID (5K / 50K)

1 64K 4.68 ± 0.05 118.6 / 114.8

3 160K 5.59 ± 0.08 83.2 / 78.2

5 208K 6.12 ± 0.05 53.8 / 49.3

7 240K 6.99 ± 0.06 39.4 / 34.9

9 264K 7.26 ± 0.06 32.3 / 27.7

11 280K 7.72 ± 0.08 29.6 / 25.0

13 290K 7.49 ± 0.09 29.2 / 24.8

15 294K 7.62 ± 0.04 27.6 / 22.7

16 296K 7.88 ± 0.08 25.5 / 20.8

5.3. AMA and Training Stability

This section presents experimental results that evidence

the advantage of our proposed ADAM moving average

(AMA) over the simple moving average (MA). The main

benefit of AMA is the promotion of stable training when

using small minibatches. The ability to train with small

minibatches is essential due to GFMN’s need for large num-

ber of features from DCNNs, which becomes a challenge in

4466

(a) MA - mbs 64 (b) MA - mbs 512 (c) AMA - mbs 64

Figure 4: Generated images from GFMN trained with either simple Moving Average (MA) (4a and 4b) or Adam Moving

Average (AMA) (4c), and various minibatch sizes (mbs). While small minibatch sizes have a big negative effect for MA, it

is not an issue for AMA.

terms of GPU memory usage. Our Pytorch [33] implemen-

tation of GFMN can only handle minibatches of size up to

160 when using VGG19 as a feature extractor and image

size 64⇥64 on a Tesla K40 GPU w/ 12GB of memory. A

more optimized implementation minimizing memory over-

head could, in principle, handle somewhat larger minibatch

sizes (as could a more recent Tesla V100 w/ 16 GB). How-

ever, with increase in image size or feature extractor size

the memory footprint increases quickly. We will always run

out of memory when using larger minibatches, regardless

of implementation or hardware.

All experiments in this section use CelebA training set,

and a feature extractor using the encoder from an AE fol-

lowing a DCGAN-like architecture. This feature extractor

is smaller than VGG19/Resnet18 allowing for minibatches

of size up to 512 for image size 64⇥64. Fig. 4 shows gen-

erated images from GFMN trained with either MA or our

proposed AMA. For MA, generated images from GFMN

trained with 64 and 512 minibatch size are presented in

Figs. 4a and 4b respectively. For AMA, Fig. 4c shows

results for minibatch size 64. In MA training, the minibatch

size has a tremendous impact on the quality of generated im-

ages: with minibatches smaller than 512, almost all images

generated are quite distorted. On the other hand, when us-

ing AMA, GFMN generates much better images with mini-

batch size 64 (Fig. 4c). For AMA, increasing the minibatch

size from 64 to 512 does not improve the quality of gener-

ated images for the given dataset and feature extractor. In

the supplementary material, we show a comparison between

MA and AMA with VGG19 ImageNet classifier as feature

extractor for a minibatch size of 64. AMA also displays a

very positive effect on the quality of generated images when

a stronger feature extractor is used. An alternative for train-

ing with larger minibatches would be the use of multi-GPU,

multi-node setups. However, performing large scale exper-

iments is beyond the scope of the current work. Moreover,

many practitioners do not have access to a GPU cluster, and

the development of methods that can also work on a single

GPU with small memory footprint is essential.

Figure 5: Loss as a function of training epochs with exam-

ple of generated faces.

An important advantage of GFMN over adversarial

methods is its training stability. Fig. 5 shows the evolu-

tion of the generator loss per epoch and generated examples

when using AMA. There is a clear correlation between the

quality of generated images and the loss. Moreover, mode

collapsing was not observed in our experiments with AMA.

5.4. Comparison to the State-of-the-art

In Tab. 4, we compare GFMN results with different ad-

versarial and non-adversarial approaches for CIFAR10 and

STL10. In the middle part of the table, we report re-

sults for recent unsupervised models that use a DCGAN-

like architecture in the generator. Despite using a frozen

cross-domain feature extractor, GFMN outperforms the un-

supervised systems in IS and FID for both datasets. The

bottom part of Tab. 4 includes results for supervised ap-

proaches. Some of these models use a Resnet architecture

in the generator as indicated in parenthesis. Note that GAN-

based methods that perform conditional generation use di-

rect feedback from the labels in the form of log likelihoods

4467

Table 4: Inception Score and FID of different generative models for CIFAR10 and STL10.

Model CIFAR 10 STL 10

IS FID (5K / 50K) IS FID (5K / 50K)

Real data 11.24±.12 7.8 / 3.2 26.08±.26 8.08 / 4.0

No Adversarial Training

GMMN [22] 3.47±.03

GMMN+AE [22] 3.94±.04

(ours) GFMNVGG+Resnet 8.08 ± 0.08 25.5 / 20.9 8.57 ± 0.08 34.2 / 17.2

(ours) GFMNVGG+Resnet (Resnet G) 8.27 ± 0.09 18.1 / 13.5 9.12 ± 0.09 31.6 / 13.9

Adversarial Training & Online Moment Learning Methods (Unsupervised)

MMD GAN [22] 6.17±.07

MMDrq GAN [3] 6.51±.03 39.9 / -

WGAN-GP [29] 6.68±.06 40.2 / - 8.42±.13 55.1 / -

SN-GANs [29] 7.58±.12 25.5 / - 8.79±.14 43.2 / -

MoLM-1024 [35] 7.55±.08 25.0 / 20.3

GAN-DFM [41] 7.72±.13

MoLM-1536 [35] 7.90±.10 23.3 / 18.9

Adversarial Training (Supervised)

Impr. GAN [38] 8.09±.07

FisherGAN (Resnet G) [30] 8.16±.12

WGAN-GP (Resnet G) [13] 8.42±.10

from the discriminator (e.g. using the k+1 trick from [38]).

In contrast, our generator is trained with a loss function that

only performs feature matching. Our generator is agnostic

to the labels and there is no feedback in the form of a log

likelihood from the labeled data. Despite that, GFMN pro-

duces results that are at the same level of supervised GAN

models that use labels from the target dataset.

We performed additional experiments with a WGAN-

GP architecture where: (1) the discriminator is a VGG19

or a Resnet18; (2) the discriminator is pretrained on Ima-

geNet. The goal was to evaluate if WGAN-GP can benefit

from DCNN classifiers pretrained on ImageNet. Although

we tried different hyperparameter combinations, we were

not able to successfully train WGAN-GP with VGG19 or

Resnet18 discriminators (details in Appendix 8).

6. Discussion & Concluding Remarks

We achieve successful non-adversarial training of im-

plicit generative models by introducing different key ingre-

dients: (1) moment matching on perceptual features from

all layers of pretrained neural networks; (2) a more robust

way to compute the moving average of the mean features by

using ADAM optimizer, which allows us to use small mini-

batches; and (3) the use of perceptual features from multiple

neural networks at the same time (VGG19 + Resnet18).

Our quantitative results in Tab. 4 show that GFMN

achieves better or similar results compared to the state-of-

the-art Spectral GAN (SN-GAN) [29] for both CIFAR10

and STL10. This is an impressive result for a non-

adversarial feature matching-based approach that uses pre-

trained cross-domain feature extractors and has stable train-

ing. When compared to MMD approaches [24, 8, 22, 3, 35],

GFMN presents important distinctions (some of them al-

ready listed in Secs. 3 and 4) which make it an attractive al-

ternative. Compared to GMMN and GMMN+AE [24], we

can see in Tab. 4 that GFMN achieves far better results. In

the supplementary material, we also show a qualitative com-

parison between GFMN and GMMN results. Compared

to recent adversarial MMD methods (MMD GAN) [22, 3]

GFMN also presents significantly better results while avoid-

ing the problematic min/max game. GFMN achieves better

results than the Method of Learned Moments (MoLM) [35],

while using a much smaller number of features to perform

matching. The best performing model from [35], MoLM-

1536, uses around 42 million moments to train the CI-

FAR10 generator, while our best GFMN model uses around

850K moments/features only, almost 50x less.

One may argue that the best GFMN results are obtained

with feature extractors trained with classifiers. However,

there are two important points to note: (1) we use a cross

domain feature extractor and do not use labels from the tar-

get datasets (CIFAR10, STL10, LSUN, CelebA); (2) classi-

fier accuracy does not seem to be the most important factor

for generating good features: VGG19 classifier produces

features as good as the ones from Resnet18, although the

former is less accurate (more details in supplementary ma-

terial). We are confident that GFMN can achieve state-of-

the-art results with features from classifiers trained with un-

supervised methods such as [5].

In conclusion, this work presents important theoretical

and practical contributions that shed light on the effective-

ness of perceptual features for training implicit generative

models through moment matching.

4468

References

[1] Michael Arbel, Dougal J Sutherland, Mikołaj Bińkowski,

and Arthur Gretton. On gradient regularizers for mmd gans.

In NIPS, 2018. 4

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein generative adversarial networks. In Proc. of

ICML, pages 214–223, 2017. 13

[3] Mikoaj Bikowski, Dougal J. Sutherland, Michael Arbel, and

Arthur Gretton. Demystifying MMD GANs. In International

Conference on Learning Representations, 2018. 1, 3, 4, 5, 8

[4] Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and

Arthur Szlam. Optimizing the latent space of generative net-

works, 2018. 5, 12

[5] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and

Matthijs Douze. Deep clustering for unsupervised learning

of visual features. In European Conference on Computer Vi-

sion, 2018. 8

[6] Adam Coates, Andrew Ng, and Honglak Lee. An analy-

sis of single-layer networks in unsupervised feature learning.

In Proceedings of the fourteenth international conference on

artificial intelligence and statistics, pages 215–223, 2011. 5

[7] Alexey Dosovitskiy and Thomas Brox. Generating images

with perceptual similarity metrics based on deep networks.

In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R.

Garnett, editors, Advances in Neural Information Processing

Systems 29, pages 658–666. Curran Associates, Inc., 2016. 1

[8] Gintare Karolina Dziugaite, Daniel M. Roy, and Zoubin

Ghahramani. Training generative neural networks via maxi-

mum mean discrepancy optimization. In Proceedings of the

Thirty-First Conference on Uncertainty in Artificial Intelli-

gence, pages 258–267, 2015. 3, 4, 8

[9] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

Image style transfer using convolutional neural networks.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016. 1

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Proc. of

NIPS, page 2672, 2014. 4, 13

[11] Arthur Gretton, Karsten M. Borgwardt, Malte Rasch, Bern-

hard Schölkopf, and Alexander J. Smola. A kernel method

for the two-sample-problem. In Proceedings of the 19th In-

ternational Conference on Neural Information Processing

Systems, pages 513–520, 2006. 1

[12] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch,

Bernhard Schölkopf, and Alexander Smola. A kernel two-

sample test. Journal of Machine Learning Research, 13:723–

773, 2012. 1, 3

[13] Ishaan Gulrajani, Faruk Ahmed, Martı́n Arjovsky, Vincent

Dumoulin, and Aaron C. Courville. Improved training of

wasserstein gans. CoRR, 2017. 5, 8

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 5

[15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, Günter Klambauer, and Sepp Hochreiter.

Gans trained by a two time-scale update rule converge to a

nash equilibrium. CoRR, abs/1706.08500, 2017. 5, 12

[16] Yedid Hoshen, Ke Li, and Jitendra Malik. Non-adversarial

image synthesis with generative latent nearest neighbors.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2019. 5

[17] Mi-Young Huh, Pulkit Agrawal, and Alexei A. Efros. What

makes imagenet good for transfer learning? CoRR,

abs/1608.08614, 2016. 1

[18] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

European Conference on Computer Vision, 2016. 1

[19] Diederik Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 3

[20] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. arXiv preprint arXiv:1312.6114, 2013. 5

[21] Alex Krizhevsky. Learning multiple layers of features from

tiny images. page 60, 2009. 5

[22] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang,

and Barnabas Poczos. MMD GAN: Towards deeper un-

derstanding of moment matching network. In Advances in

Neural Information Processing Systems, pages 2203–2213.

2017. 1, 3, 4, 5, 8, 14, 15

[23] Ke Li and Jitendra Malik. Implicit maximum likelihood es-

timation. CoRR, 2018. 5

[24] Yujia Li, Kevin Swersky, and Richard Zemel. Generative

moment matching networks. In Proceedings of the Interna-

tional Conference on International Conference on Machine

Learning, pages 1718–1727, 2015. 1, 3, 4, 8, 14

[25] Haibin Ling and Kazunori Okada. Diffusion distance for his-

togram comparison. In Computer Vision and Pattern Recog-

nition, 2006. 12

[26] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In Proceedings of

International Conference on Computer Vision (ICCV), 2015.

5

[27] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian

Goodfellow. Adversarial autoencoders. In International

Conference on Learning Representations, 2016. 5

[28] Charles A. Micchelli, Yuesheng Xu, and Haizhang Zhang.

Universal kernels. J. Mach. Learn. Res., 7:2651–2667, Dec.

2006. 4, 11

[29] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and

Yuichi Yoshida. Spectral normalization for generative ad-

versarial networks. In International Conference on Learning

Representations, 2018. 8, 12, 13

[30] Youssef Mroueh and Tom Sercu. Fisher GAN. In Proceed-

ings of NIPS, 2017. 5, 8

[31] Youssef Mroueh, Tom Sercu, and Vaibhava Goel. McGan:

Mean and covariance feature matching GAN. In Proceedings

of the 34th International Conference on Machine Learning,

pages 2527–2535, 2017. 5, 12

[32] Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovit-

skiy, and Jason Yosinski. Plug & play generative networks:

Conditional iterative generation of images in latent space.

In Conference on Computer Vision and Pattern Recognition,

pages 3510–3520, 2017. 5

4469

[33] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In NIPS-W, 2017. 7

[34] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-

vised representation learning with deep convolutional gener-

ative adversarial networks. In ICLR, 2016. 5

[35] Suman V. Ravuri, Shakir Mohamed, Mihaela Rosca, and

Oriol Vinyals. Learning implicit generative models with the

method of learned moments. In Proceedings of the 35th In-

ternational Conference on Machine Learning, pages 4311–

4320, 2018. 1, 3, 4, 5, 8, 12

[36] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the

convergence of adam and beyond. In ICLR, page 23, 2018.

3

[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. Imagenet large scale visual recognition challenge.

Int. J. Comput. Vision, 115(3):211–252, Dec. 2015. 1, 5

[38] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki

Cheung, Alec Radford, and Xi Chen. Improved techniques

for training gans. In Proc. of NIPS, pages 2226–2234, 2016.

5, 8, 12

[39] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 5

[40] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bern-

hard Schoelkopf. Wasserstein auto-encoders. In Interna-

tional Conference on Learning Representations, 2018. 5

[41] David Warde-Farley and Yoshua Bengio. Improving gener-

ative adversarial networks with denoising feature matching.

In Proceedings of ICLR, 2017. 5, 8

[42] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.

How transferable are features in deep neural networks? In

Proceedings of the 27th International Conference on Neural

Information Processing Systems - Volume 2, NIPS’14, 2014.

1

[43] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianx-

iong Xiao. Lsun: Construction of a large-scale image dataset

using deep learning with humans in the loop. arXiv preprint

arXiv:1506.03365, 2015. 5

[44] Junbo Jake Zhao, Michaël Mathieu, and Yann LeCun.

Energy-based generative adversarial network. In Proceed-

ings of ICLR, 2017. 5

4470

