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Abstract

Deep neural networks have lead to a breakthrough in

depth estimation from single images. Recent work shows

that the quality of these estimations is rapidly increasing. It

is clear that neural networks can see depth in single images.

However, to the best of our knowledge, no work currently

exists that analyzes what these networks have learned.

In this work we take four previously published networks

and investigate what depth cues they exploit. We find that

all networks ignore the apparent size of known obstacles

in favor of their vertical position in the image. The use of

the vertical position requires the camera pose to be known;

however, we find that these networks only partially recog-

nize changes in camera pitch and roll angles. Small changes

in camera pitch are shown to disturb the estimated distance

towards obstacles. The use of the vertical image position

allows the networks to estimate depth towards arbitrary ob-

stacles – even those not appearing in the training set – but

may depend on features that are not universally present.

1. Introduction

Stereo vision allows absolute depth to be estimated us-

ing multiple cameras. When only a single camera can be

used, optical flow can provide a measure of depth; or if im-

ages can be combined over longer time spans then SLAM or

Structure-from-Motion can be used to estimate the geome-

try of the scene. These methods tend to treat depth estima-

tion as a purely geometrical problem, ignoring the content

of the images.

When only a single image is available, it is not possi-

ble to use epipolar geometry. Instead, algorithms have to

rely on pictorial cues: cues that indicate depth within a sin-

gle image, such as texture gradients or the apparent size of

known objects. Shape-from-X methods (e.g. [18, 1], [14],

[7]) use some of these cues to infer shape, but often make

strong assumptions that make them difficult to use in un-

structured environments such as those seen in autonomous

driving. Other cues such as the apparent size of objects may

require knowledge about the environment that is difficult to

program by hand. As a result, pictorial cues have seen rela-

tively little use in these scenarios until recently.

With the arrival of stronger hardware and better

machine-learning techniques – most notably Convolutional

Neural Networks (CNN) – it is now possible to learn pic-

torial cues rather than program them by hand. One of the

earliest examples of monocular depth estimation using ma-

chine learning was published in 2006 by Saxena et al. [19].

In 2014, Eigen et al. [4] were the first to use a CNN for

monocular depth estimation. Where [4] still required a true

depth map for training, in 2016 Garg et al. proposed a new

scheme that allows the network to learn directly from stereo

pairs instead [9]; this work was further improved upon

by Godard et al. in [11]. In parallel, methods have been

developed that use monocular image sequences to learn

single-frame depth estimation in an unsupervised manner,

of which the works by Zhou et al. [25] and Wang et al. [23]

are examples. Recent work focuses primarily on the accu-

racy of monocular depth estimation, where evaluations on

publicly available datasets such as KITTI [15] and NYUv2

[20] show that neural networks can indeed generate accu-

rate depth maps from single images. However, to the best

of our knowledge, no work exists that investigates how they

do this.

Why is it important to know what these neural networks

have learned? Firstly, it is difficult to guarantee correct be-

havior without knowing what the network does. Evaluation

on a test set shows that it works correctly in those cases, but

it does not guarantee correct behavior in other scenarios.

Secondly, knowing what the network has learned provides

insight into training. Additional guidelines for the training

set and data augmentation may be derived from the learned

behavior. Thirdly, it provides insight into transfer to other

setups. With an understanding of the network, it is for in-

stance easier to predict what the impact of a change in cam-

era height will be and whether this will work out-of-the-

box, require data augmentation or even a new training set.

In this work, we take four previously published neural

networks (MonoDepth by Godard et al. [11], SfMLearner
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by Zhou et al. [25], Semodepth by Kuznietsov et al. [13]

and LKVOLearner by Wang et al. [23]) and investigate their

high-level behavior, where we focus on the distance estima-

tion towards cars and other obstacles in an autonomous driv-

ing scenario. Section 2 gives an overview of related litera-

ture. In section 3 we show that the all of the networks rely

on the vertical image position of obstacles but not on their

apparent size. Using the vertical position requires knowl-

edge of the camera pose; in section 4 we investigate whether

the camera pose is assumed constant or observed from the

images. For MonoDepth we investigate in section 5 how it

recognizes obstacles and finds their ground contact point.

We discuss the impact of our results in section 6.

2. Related work

Existing work on monocular depth estimation has ex-

tensively shown that neural networks can estimate depth

from single images, but an analysis of how this estimation

works is still missing. Feature visualization and attribution

could be used to analyze this behavior. One of the earlier

examples of feature visualization in deep networks can be

found in [6]. The methods have been improved upon in

e.g. [22, 24] and an extensive treatment of visualization

techniques can be found in [16]. In essence, the features

used by a neural network can be visualized by optimizing

the input images with respect to a loss function based on

the excitation of a single neuron, a feature map or an entire

layer of the network. The concurrent work of Hu et al. [12]

in which the authors perform an attribution analysis to find

the pixels that contribute most to the resulting depth map is

most closely related to our work. However, these methods

only provide insight into the low-level workings of CNNs.

A collection of features that the neural network is sensitive

to is not a full explanation of its behavior. A link back to

depth cues and behavior in more human terms is still miss-

ing, which makes it difficult to reason about these networks.

In this work, we take a different approach that is perhaps

more closely related to the study of (monocular) depth per-

ception in humans. We treat the neural network as a black

box, only measuring the response (in this case depth maps)

to certain inputs. Rather than optimizing the inputs with re-

gards to a loss function, we modify or disturb the images

and look for a correlation in the resulting depth maps.

Literature on human depth perception provides insight

into the pictorial cues that could be used to estimate dis-

tance. The following cues from [10] and more recent re-

views [3, 2] can typically be found in single images:

• Position in the image. Objects that are further away

tend to be closer to the horizon. When resting on the

ground, the objects also appear higher in the image.

• Occlusion. Objects that are closer occlude those that

lie behind them. Occlusion provides information on

depth order, but not distance.

• Texture density. Textured surfaces that are further

away appear more fine-grained in the image.

• Linear perspective. Straight, parallel lines in the phys-

ical world appear to converge in the image.

• Apparent size of objects. Objects that are further away

appear smaller.

• Shading and illumination. Surfaces appear brighter

when their normal points towards a light source. Light

is often assumed to come from above. Shading typi-

cally provides information on depth changes within a

surface, rather than relative to other parts of the image.

• Focus blur. Objects that lie in front or behind the focal

plane appear blurred.

• Aerial perspective. Very far away objects (kilometers)

have less contrast and take on a blueish tint.

Of these cues, we expect that only the position in the im-

age and apparent size of objects are applicable to the KITTI

dataset; other cues are unlikely to appear because of low

image resolution (texture density, focus blur), limited depth

range (aerial perspective) or they are less relevant for dis-

tance estimation towards obstacles (occlusion, linear per-

spective and shading and illumination).

Both cues have been experimentally observed in humans,

also under conflicting conditions. Especially the vertical

position in the visual field has some important nuances.

For instance, Epstein shows that perceived distances do not

solely depend on the vertical position in the visual field, but

also on the background [5]. Another important contextual

feature is the horizon line, which gains further importance

when little ground (or ceiling) texture is present [8]. Us-

ing prismatic glasses that manipulated the human subjects’

vision, Ooi et al. showed that humans in real-world experi-

ments use the angular declination relative to the ‘eye level’

[17] rather than the visual horizon, where the eye level is

the expected height of the horizon in the visual field. The

apparent size of objects also influences their estimated dis-

tance. Sousa et al. performed an experiment where sub-

jects needed to judge distances to differently-sized cubes

[21]. The apparent size of the cubes influenced the esti-

mated distance even though the true size of the cubes was

not known and the height in the visual field and other cues

were present. No work was found that investigates whether

these observations also apply to neural networks for depth

estimation.

3. Position vs. apparent size

As stated in section 2, the vertical image position and ap-

parent size of objects are the most likely cues to be used by

the networks. Figure 1 shows how these cues can be used

to estimate the distance towards obstacles. The camera’s

focal length f is assumed known and constant and is im-

plicitly learned by the neural network. We furthermore as-

sume that the camera’s pitch angle relative to the horizon is
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Figure 1. True object size H and position Y , Z in the camera

frame and vertical image position y and apparent size h in image

coordinates. Image coordinates are measured from the center of

the image.

small; pitch angles can therefore be approximated by a shift

in vertical image coordinates y, where the horizon level yh
is used as a measure for the camera’s pitch. All coordinates

are measured relative to the center of the image.

Given the obstacle’s real-world size H and apparent size

h in the image, the distance can be estimated using:

Z =
f

h
H (1)

This requires the obstacle’s true size H to be known. The

objects encountered most often in the KITTI dataset come

from a limited number of classes (e.g. cars, trucks, pedestri-

ans), where all objects within a class have roughly the same

size. It is therefore possible that the networks have learned

to recognize these objects and use their apparent size to es-

timate their distance.

Alternatively, the networks could use the vertical image

position y of the object’s ground contact point to estimate

depth. Given the height Y of the camera above the ground,

the distance can be estimated through:

Z =
f

y − yh
Y (2)

This method does not require any knowledge about the true

size H of the object, but instead assumes the presence of a

flat ground and known camera pose (Y, yh). These assump-

tions also approximately hold in the KITTI dataset.

3.1. Evaluation method

To find which of these cues are used by the networks,

three sets of test images are generated: one in which the

apparent size of objects is varied but the vertical position of

the ground contact point in the image is kept constant, one

in which the vertical position is varied but the size remains

constant, and a control set in which both the apparent size

and position are varied with distance – as would be expected

in real-world images.

The test images are generated as follows: the objects

(mostly cars) are cropped from the images of KITTI’s scene

flow dataset. Each object is labeled with its location relative

to the camera (e.g. one lane to the left, facing towards the

camera) and with the position in the image it was cropped

from. Secondly, each image in the test set was labeled with

positions where an obstacle could be inserted (e.g. the lane

to the left of the camera is still empty). Combining this in-

formation with the object labels ensures that the test images

remain plausible.

The true distance to the inserted objects is not known;

instead the network’s ability to measure relative distances

will be evaluated. Distances are expressed in relation to the

original size and position of the object, which is assigned

a relative distance Z ′/Z = 1.0. The relative distance is

increased in steps of 0.1 up to 3.0 and controls the scaling s
and position x′, y′ of the object as follows:

s =
Z

Z ′
, (3)

and

x′ = x
Z

Z ′
, y′ = yh + (y − yh)

Z

Z ′
(4)

with x′, y′ the new coordinates of the ground contact point

of the object and with yh the height of the horizon in the

image which is assumed constant throughout the dataset.

The estimated depth towards the car is evaluated by av-

eraging the depth map over a flat region on the front or rear

of the car (Figure 2). A flat region is used rather than the

entire object to prevent the estimated length of the vehicle

from influencing the depth estimate; the length is very likely

dependent on the apparent size of the object, while the dis-

tance might not be.

3.2. Results

The results of this experiment are shown in Figure 3.

When both the position and scale are varied, all depth es-

timates except Wang et al.’s behave as expected: the es-

timated depth stays close to the true depth of the object

which shows that the networks still work correctly on these

artificial images. When only the vertical position is varied,

the networks can still roughly estimate the distance towards

the objects, although this distance is slightly overestimated

(Godard et al., Zhou et al., Wang et al.) or underestimated

(Kuznietsov et al.). Additionally, the standard deviation of

the distance estimate has increased compared to the control

set. The most surprising result is found when only the ap-

parent size of the object is changed but the ground contact

point is kept constant: none of the networks observe any

change in distance under these circumstances.

These results suggest that the neural networks rely pri-

marily on the vertical position of objects rather than their

apparent size, although some change in behavior is ob-

served when the size information is removed. The fact

that all four networks show similar behavior also suggests

that this is a general property that does not strongly de-

pend on the network architecture or training regime (semi-

supervised, unsupervised from stereo, unsupervised from

video).
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Figure 2. Example test images and resulting disparity maps from MonoDepth. The white car on the left is inserted into the image at a

relative distance of 1.0 (left column), 1.5 (middle column) and 3.0 (right column), where a distance of 1.0 corresponds to the size and

position at which the car was cropped from its original image. In the top row, both the position and apparent size of the car vary with

distance, in the middle row only the position changes and the size is kept constant, and in the bottom row the size is varied while the

position is constant. The region where the estimated distance is measured is indicated by a white outline in the disparity maps.

4. Camera pose: constant or estimated?

The use of vertical position as a depth cue implies that

the networks have some knowledge of the camera’s pose.

This pose could be inferred from the images (for instance,

by finding the horizon or vanishing points), or assumed to

be constant. The latter assumption should work reason-

ably well on the KITTI dataset, where the camera is rigidly

fixed to the car and the only deviations come from pitch and

heave motions of the car and from slopes in the terrain. It

would, however, also mean that the trained networks cannot

be directly transferred to different camera setups. It is there-

fore important to investigate whether the networks assume

a fixed camera pose or estimate this on-the-fly.

If the networks can measure the camera pitch, then

changes in pitch should also be observed in the estimated

depth map. The unmodified KITTI test images already have

some variation in the horizon level; in an initial experi-

ment we look for a correlation between the true horizon

level in the images (determined from the Velodyne data)

and the estimated horizon level in the depth estimates from

MonoDepth. The horizon levels were measured by crop-

ping a central region of the disparity map (the road surface)

and using RANSAC to fit a line to the disparity-y pairs. Ex-

trapolating this line to a disparity of zero (i.e. infinite dis-

tance) gives the elevation of the horizon. For each image,

this procedure was repeated five times to average out fitting

errors from the RANSAC procedure.

Figure 4 shows the relation between the true and

estimated horizon levels. While it was expected that

MonoDepth would either fully track the horizon level or not

at all, a regression coefficient of 0.60 was found which in-

dicates that it does something between these extremes.

A second experiment was performed to rule out any po-

tential issues with the Velodyne data and with the small

(±10 px) range of true horizon levels in the first experiment.

In this second experiment, a smaller region is cropped at

different heights in the image (Figure 5). For each image,

seven crops are made with offsets between -30 and 30 pix-

els from the image center, which approximates a change in

camera pitch of ±2-3 degrees. Instead of using the Velo-

dyne data to estimate the true horizon level, the horizon

level from the depth estimate of the centrally cropped image

is used as a reference value. In other words, this experiment

evaluates how well a shift in the horizon level is reflected in

the depth estimate, rather than its absolute position.

The results for all four networks are shown in Figure 6.

A similar result as in the previous experiment is found: all

networks are able to detect changes in camera pitch, but

the change in the horizon level is underestimated by all net-

works. Since the networks use the vertical position of obsta-

cles to estimate depth, we expect this underestimation to af-
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Figure 3. Influence of vertical image position and apparent size

cues on depth estimates. Shaded regions indicate ±1 SD (N =
1862) for the network by Godard et al. When both depth cues are

present, all networks successfully estimate the distance towards

the objects, except Wang et al.’s which overestimates the distance.

When only the vertical position is available, the distance is either

over- or underestimated and the standard deviation of the mea-

surement increases (only shown for MonoDepth). When only the

apparent size is available, none of the networks are able to estimate

distance.

fect the estimated distances. To test this hypothesis, we use

the same pitch crop dataset and evaluate whether a change

in camera pitch causes a change in obstacle disparities. The

results are shown in Figure 7. The estimated disparities are

indeed affected by camera pitch. This result also suggests

that the networks look at the vertical image position of ob-

jects rather than their distance to the horizon, since the latter

does not change when the images are cropped.

4.1. Camera roll

Similarly to the pitch angle, the roll angle of the camera

influences the depth estimate towards obstacles. If the cam-

era has a nonzero roll angle, the distance towards obstacles

does not only depend on their vertical position but also on

their horizontal position in the image. A similar experiment

was performed as for the pitch angle: a smaller region of

the images was cropped at varying angles (Figure 8). To

measure the roll angle, a Hough line detector was applied

to a thin slice of the depth map to find the angle of the road

surface. As in the previous experiment, we look for a cor-
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Figure 4. True and estimated horizon levels in unmodified KITTI

images. Results for MonoDepth (Godard et al.). A medium-to-

large correlation is found (Pearson’s r = 0.50, N = 1892) but

the slope is only 0.60, indicating that the true shift in the horizon

is not fully reflected in the estimated depth map.
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Figure 5. Larger camera pitch angles are emulated by cropping the

image at different heights.
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Figure 6. True and estimated shifts in horizon levels after cropping

the images at different heights. Shaded regions indicate ±1 SD

for the network by Godard et al. (N = 194, six outliers > 3 SD

removed).

relation between the camera angle and the change in the

estimated angle of the road surface. The result is shown in

Figure 9 and is similar to that for pitch angles: all networks

2187



-30 -20 -10 0 10 20 30

Horizon shift [px]

-6

-4

-2

0

2

4

6

D
is

p
ar

it
y
 s

h
if

t 
[p

x
]

Figure 7. Changes in camera pitch disturb the estimated distance

towards obstacles. Shaded regions indicate ±1 SD for the network

by Godard et al.
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Figure 8. Camera roll angles are emulated by cropping smaller,

tilted regions from the original KITTI images.
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Figure 9. True and estimated roll shifts in the cropped images.

For all networks, the change in road surface angle is smaller than

the true angle at which the images are cropped. Shaded regions

indicate ±1 SD for the network by Godard et al. (N = 189, eleven

outliers > 3 SD removed).

are able to detect a roll angle for the camera, but the angle

is underestimated.

Figure 10. Objects that are not found in the training set (fridge,

dog) are not reliably detected when pasted into the image.

5. Obstacle recognition

Section 3 has shown that all four networks use the ver-

tical position of objects in the image to estimate their dis-

tance. The only knowledge that is required for this estimate

is the location of the object’s ground contact point. Since no

other knowledge about the obstacle is required (e.g. its real-

world size), this suggests that the networks can estimate the

distance towards arbitrary obstacles. Figure 10, however,

shows that this is not always the case. The car is recognized

as an obstacle, but the other objects are not recognized and

appear in the depth map as a flat road surface.

To correctly estimate the depth of an obstacle, the neu-

ral networks should be able to: 1) find the ground contact

point of the obstacle, as this is used to estimate its distance,

and 2) find the outline of the obstacle in order to fill the

corresponding region in the depth map. In this section, we

attempt to identify the features that the MonoDepth network

by Godard et al. uses to perform these tasks. The results of

Figure 10 suggest that the network relies on features that are

applicable to cars but not to the other objects inserted into

the test images.

5.1. Color and Texture

The objects inserted in Figure 10 differ from cars in

terms of color, texture and shape. In a first experiment, we

investigate how color and texture affect MonoDepth’s per-

formance by evaluating it on modified versions of the KITTI

images. To investigate the influence of color, two new test

sets are created: one in which the images are converted to

grayscale to remove all color information, and one in which

the hue and saturation channels are replaced by those from

KITTI’s semantic rgb dataset to further disturb the colors.

Two other datasets are used to test the influence of texture: a

set in which all objects are replaced by a flat color that is the

average of that object class – removing all texture but keep-

ing the color intact – and the semantic rgb set itself where

objects are replaced with unrealistic flat colors. Examples

of the modified images and resulting depth maps are shown

in Figure 11, the performance measures are listed in Table 1.

As long as the value information in the images remains
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Unmodified

Grayscale

False colors Semantic rgb

Class-average colors

Figure 11. Example images and depth maps for unmodified, grayscale, false color, class average color, and semantic rgb images.

Test set Abs Rel Sq Rel RMSE RMSE log D1-all δ < 1.25 δ < 1.252 δ < 1.253

Unmodified images 0.124 1.388 6.125 0.217 30.272 0.841 0.936 0.975

Grayscale 0.130 1.457 6.350 0.227 31.975 0.831 0.930 0.972

False colors 0.128 1.257 6.355 0.237 34.865 0.816 0.920 0.966

Semantic rgb 0.192 2.784 8.531 0.349 46.317 0.714 0.850 0.918

Class-average colors 0.244 4.159 9.392 0.367 50.003 0.691 0.835 0.910

Table 1. MonoDepth’s performance on images with disturbed colors or texture. The unmodified image results were copied from [11];

the table lists results without post-processing. Error values for images that keep the value channel intact (grayscale and false colors) are

close to the unmodified values. Images where the value information is removed and the objects are replaced with flat colors (semantic rgb,

class-average colors) perform significantly worse.

Figure 12. Objects do not need to have a familiar shape nor texture

to be detected. The distance towards these non-existent obstacles

appears to be determined by the position of their lower extent.

Figure 13. Influence of car parts and edges on the depth map. Re-

moving the center of the car (top right) has no significant influence

on the detection. The car’s bottom and side edges (bottom right)

seem most influential for the detected shape, which is almost iden-

tical to the full car image (top left).

unchanged (the unmodified, grayscale and false color im-

ages), only a slight degradation in performance is observed.

This suggests that the exact color of obstacles does not

strongly affect the depth estimate. However, when the tex-

ture is removed (class-average colors and semantic rgb)

the performance drops considerably. The network also per-

forms better on the semantic rgb dataset with false colors

than on the realistically colored images. This further sug-

gests that the exact color of objects does not matter and that

features such as the contrast between adjacent regions or

bright and dark regions within objects are more important.

5.2. Shape and contrast

Since color does not explain why the objects in Figure 10

are not detected, we next look at shape and contrast. A

first qualitative experiment shows that objects do not need

a familiar shape nor texture to be recognized (Figure 12).

Furthermore, the distance towards these unfamiliar objects

seems to follow from their lower extent, further supporting

our claim that the networks use the ground contact point as

the primary depth cue.

In a second experiment, we find the features that the net-

work is the most sensitive to by systematically removing

parts of a car until it is no longer detected. The car is still

detected when the interior of the shape is removed, suggest-

ing that the network is primarily sensitive to the outline of

the object and ‘fills in’ the rest. The car is no longer de-

tected when the side- or bottom edges are removed. How-

ever, when only the bottom edge is removed, the sides of

the car are still detected as two thin objects.

We suspect that the dark region at the bottom of the shape

is the main feature by which the network detects obstacles.
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Figure 14. To measure the influence of the bottom edge, we vary

its brightness and thickness. The experiment is repeated over 60

background images.
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Figure 15. Mean distance error as a function of the bottom edge

color and thickness. For comparison, we include results for re-

alistically textured shapes (Tex) and completely filled shapes (F).

Distance errors are measured relative to the estimated distance of

the realistic (F, Tex) shape.

The bottom edge formed by the shadow underneath the car

is highly contrasting with the rest of the scene and an ex-

amination of the KITTI images shows that this shadow is

almost universally present and could form a reliable feature

for the detection of cars. We examine the influence of the

bottom edge in a quantitative experiment where both the

brightness and thickness of the lower edge are varied (Fig-

ure 14, 15). Additionally, the results are compared to com-

pletely filled shapes (F) and shapes with a realistic texture

(Tex). We measure the error in the obstacle’s depth relative

to the estimated depth of the realistic shape (F, Tex). The

results are averaged over 60 background images in which

the shape does not overlap other cars.

Figure 15 shows that the bottom edge needs to be both

thick and dark for a successful detection, where a com-

pletely black edge with a thickness of ≥ 13 px leads to an

average distance error of less than 10% relative to a realistic

image. A white edge does not result in a successful detec-

tion despite having a similar contrast to the road surface.

Figure 16. Adding a shadow at the bottom of the objects of Fig-

ure 10 causes them to be detected. The fridge, however, is only

detected up to the next horizontal edge between the doors.

Furthermore, a completely black edge results in a smaller

distance error than when realistic textures are used. This

suggests that the network is primarily looking for a dark

color rather than contrast or a recognizable texture. Finally,

the results show that completely filled shapes result in a bet-

ter distance estimate. We suspect that completely filling the

shape removes edges from the environment that could oth-

erwise be mistaken for the outline of the obstacle.

As a final test, we add a black shadow to the undetected

objects of Figure 10. The objects are now successfully de-

tected (Figure 16).

6. Conclusions and future work

In this work we have analyzed four neural networks for

monocular depth estimation and found that all of them use

the vertical position of objects in the image to estimate their

depth, rather than their apparent size. This estimate de-

pends on the pose of the camera, but changes to this pose

are not fully accounted for, leading to an under- or overes-

timation of the distance towards obstacles when the camera

pose changes. This limitation has a large impact on the de-

ployment of these systems, but has so far received hardly

any attention in literature. We further show that MonoDepth

can detect objects that do not appear in the training set, but

that this detection is not always reliable and depends on fac-

tors such as the presence of a shadow under the object.

While our work shows how these neural networks per-

ceive depth, it does not show where this behavior comes

from. Likely causes are the lack of variation in the train-

ing set, which could be corrected by data augmentation, or

properties inherent to convolutional neural networks (e.g.

their invariance to translation but not to scale). Future work

should investigate which of these is true and whether the

networks can learn to use different depth cues when the ver-

tical image position is no longer reliable.
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