
u v w

a

a+ ε

a+ ε

a

Figure 5. Example of non-integer solution to the Local Polytope
relaxation for a chain graphical model containing nodes {u, v, w}
with 2 labels for each node and containing only the bottleneck
pairwise potentials φuv(·, ·), φvw(·, ·).

6. Appendix
Lemma 1. The following relaxation over the local polytope
Λ (4) is not tight for bottleneck labeling problem:

min
µ∈Λ
b

∑
i∈V
〈 θi, µi 〉+

∑
ij∈E
〈 θij , µij 〉+b (15)

s.t.

b ≥〈φi, µi 〉, ∀i ∈ V (16a)
b ≥〈φij , µij 〉, ∀ij ∈ E (16b)

Proof. We give a proof by example as in the Figure 5 with
a 3 node binary graphical model only containing pairwise
bottleneck potentials with ε > 0. Both integer optimal
solutions have cost: max(a, a+ ε) = a+ ε, whereas the op-
timal solution of the LP relaxation µuv(0, 0) = µuv(1, 1) =
µvw(0, 0) = µvw(1, 1) = 0.5 has cost a+ ε

2 .

Lemma 2. Shortest path computation (line 6) on directed
acyclic graph D can be done in linear time in the number of
arcs A using breadth-first traversal by Algorithm dsp chain.
However, shortest path update is performed every time after
introducing each arc in A (lines 4-10), thus making the run-
time O(|A|2) i.e. quadratic in the number of arcs in A. The
sorting operation adds an additional factor of |A| log |A|.

6.1. Experiment details

Cost formulation: For unary potentials of seed node s, we

set θs(zs) =

{
0, zs = z∗s
∞, otherwise

. Rest of the unary potentials

are computed as:

θi(zi) = − log(CNNf (Is(z
∗
s), Ii(zi))) (17)

The pairwise potentials contain terms in-addition to patch
similarity from the CNN. First, we compute optical flow
using the gradient structure tensor based approach of [1]
on the seismic volume along the x and y-axis resulting in
optical flow ux and uy . From this we compute the displace-
ment penalization for edges in x-direction as fij(zij) =

chain to dag: chain MRF to directed acyclic graph
transformation

Data: Chain MRF: (G = (V,E),X , {θf}f∈V ∪E),
Bottleneck potentials: {φf (xf)}f∈V ∪E ,
Result: Directed graph: D = (W,A)
Linear costs: σ(h, t) ∀(h, t) ∈ A
Bottleneck costs: ω(h, t) ∀(h, t) ∈ A
Start and terminal nodes s, t
// Represent each label with two nodes and

add source, sink:

1 W = {s, t} ∪ {xi, xi : i ∈ V, xi ∈ Xi};
// Add arcs to represent potentials:

2 A =

{(s, x1) : x1 ∈ X1} ∪
{(xi, xi) : i ∈ V, xi ∈ Xi} ∪
{xi, xi+1) : j ∈ [n− 1], xi,i+1 ∈ Xi,i+1} ∪
{(xn, t) : xn ∈ Xn}

// Unary potentials:

3
σ(xi, xi) = θi(xi)
ω(xi, xi) = φi(xi)

∀i ∈ V, xi ∈ Xi;

// Pairwise potentials:

4
σ(xi, xi+1) = θi,i+1(xi,i+1)
ω(xi, xi+1) = φi,i+1(xi,i+1)

∀(i, i+ 1) ∈ E, xi,i+1 ∈ Xi,i+1;
// Connect s and t:

5 A′ = ∪ {(s, x1) : x1 ∈ X1}
{(xn, t) : xn ∈ Xn}

;

dsp chain: dynamic shortest path on chains
Data: Diagraph: D = (W,A)
Node distances: d(w), ∀w ∈W
Arc costs: σ(p, q), ∀(p, q) ∈ A
Arc to insert: (u, v), u, v ∈W
Result: Updated node distance: d
Updated nodes: S ⊆W

1 Initialize Q = ∅;
2 Enqueue(Q, (u, v)) ;
3 while Q 6= ∅ do
4 (p, q) = Dequeue(Q) ;
5 if d(q) ≥ c(p, q) + d(p) then
6 continue;
7 end
8 d(q) := c(p, q) + d(p) ;
9 S = S ∪ {q} ;

// Enqueue outgoing arcs from q for

possible distance update:

10 foreach (q, r) ∈ A do
11 Enqueue(Q, (u, v)) ;
12 end
13 end

|zi − zj − ux(xi, yi, zi)|, and analogously for edges in y-
direction. Next, we compute a coherence estimate Cij [1]
indicating whether the optical flows ux and uy are reliable.
The pairwise MRF potentials combine the above terms into
a sum of appearance terms (14) and weighted discontinuity
penalizers:

θij(zij) =
− log(CNNn(Ii(zi), Ij(zj))
+Cij(zij)|fij(zij)|

(18)

The second term allows discontinuities in the horizon sur-
faces where orientation estimates can be incorrect and penal-
izes discontinuities where the horizon is probably continuous.
The authors from [44, 13] do not use the coherence estimate,
making their cost functions less robust. The bottleneck pair-
wise potentials are:

φij(zij) = |E| θij(zij) (19)

The scaling parameter |E| in (19) makes the bottleneck po-
tential invariant to the grid size.
CNN training: We use six out of eleven labeled horizons
for training the CNN adopted from [45] mentioned in
Figure 6. To prevent the CNN from learning the whole
ground truth for these six horizons only 10% of the possible
patches are used. For data augmentation, translation is
performed on non-matching patches as also done in [38]
for stereo. The validation set contains 2% of the possible
patches from each of the eleven horizons.
For training the CNNn in (18), edges in underlying MRF
models are sampled for creating the patches. Training was
done using PyTorch [26] for 200 epochs and the model with
the best validation accuracy (95%) was used for computing
the potentials.
For training the CNNf used in (17), we use the same
procedure as above except that the patches are sampled
randomly and thus their respective nodes do not need to be
adjacent. The best validation accuracy on the trained model
was 83%.

6.2. Primal rounding details

The function s(i) defines some ordering for all nodes i
in V . Based on this order, we sequentially fix labels of the
respective node as in Algorithm primal rounding.

For any given dual variables, there is a whole set of
equivalent dual variables that give the same dual lower
bound. However, when rounding with primal rounding,
the final solution is sensitive to the choice of dual equivalent
dual variables. One of the reasons is that the rounding is
done on the MRF subproblems only, so we want to ensure
that the dual variables λ carry as much information as
possible. Therefore, we propose a propagation mechanism
that modifies the dual variables η of the bottleneck potentials

primal rounding: primal rounding based on MRF sub-
problem [19]

Data: MRF: (G = (V,E),X ,λ),
Ordering of nodes in G: s(v), ∀v ∈ V .
Result: Primal labeling: x̂ ∈ XV .

1 Vo := V ;
2 Sort nodes in Vo w.r.t ordering s(v) ;
3 Vl := ∅, // Set of labeled nodes

4 for i ∈ Vo do
/* Assign label to node i in accordance

with the nodes already labeled: */

5 x̂i := arg min
xi∈Xi

[
λi(xi) +

∑
j∈Vl:ij∈E

λij(xi, x̂j)

]
;

6 Vl = Vl ∪ {i}, // Mark i as labeled

7 end

such that the overall lower bound is not diminished, while
at the same time making the MRF dual variables as
informative as possible. This procedure is described in
Algorithm Min Marginals BMRF.
Schemes similar to Algorithm Min Marginals BMRF
were also proposed in [30] for exchanging information
between pure MRF subproblems. Intuitively, the goal
in such schemes is to extract as much information out
of a source subproblem (in our case bottleneck MRF
subproblem) and send it to the target subproblem (in
our case MRF subproblem) such that the overall lower
bound does not decrease. Such a strategy helps the target
subproblem in taking decisions which also comply with the
source subproblem.
Algorithm Min Marginals BMRF computes min-
marginals of nodes for a given bottleneck chain
subproblem u. Proceeding in a similar fashion as Al-
gorithm chain bottleneck, min-marginals computation on a
chain u is done as follows:

1. As an input, the costs of solution in all other chains
excluding u are required, which can be obtained in the simi-
lar fashion as was done before in Algorithm chain decomp
(lines 1-10).

2. The algorithm maintains forward and backward short-
est path distances dr, dl (i.e., distances from source, sink
resp.). This helps in finding the cost of minimum distance
path passing through any given node in the directed acyclic
graph of chain u.

3. Similar to Algorithm chain bottleneck, bottleneck
potentials are sorted and the bottleneck threshold is relaxed
minimally on each arc addition.

4. On every arc addition, the set of nodes for which
distance from source/sink got decreased are maintained in
Sr, Sl resp. Only this set of nodes will need to re-compute
their min-marginals.

Min Marginals BMRF: Min marginals for bottleneck
MRF subproblems

Data: Bottleneck chain graphs: {Gl}l∈[k],
Linear potentials on chains: {ηl}l∈[k],
Bottleneck potentials on chains: {φl}l∈[k],
Chain to compute min-marginals: u ∈ [k],
Costs in higher level graph H = ([k] \ {u},∅) :

Bottleneck costs: b, Linear costs: c
Result: Min-marginals of nodes in u: mi(y

u
i) =

min
b∈B

ζ(b) + min

yu∈Y u(b):
yui =y

u
i

〈ηu,yu 〉

+
∑

l∈[k]\{u}
min

yl∈Y l(b)
〈ηl,yl 〉

,

∀i ∈ Vi, yui ∈ Xi
// Initialize min-marginals:

1 mi(yi) :=∞, ∀i ∈ Vu, yi ∈ Xi ;
// Represent chain u as DAG:

2 (D = (W,A),σ,ω)← chain to dag(Gu,ηu,φu) ;
// Forward (source-to-sink) shortest path

structures:

3 A′r = ∪ {(s, x1) : x1 ∈ X1}
{(xn, t) : xn ∈ Xn}

4 dr(s) := 0, dr(w) :=∞,∀w ∈W \ {s};
// Backward (sink-to-source) shortest path

structures:

5 A′l = ∪ {(x1, s) : x1 ∈ X1}
{(t, xn) : xn ∈ Xn}

6 dl(t) := 0, dl(w) :=∞,∀w ∈W \ {t};
7 Sort A according to values ω;
8 for (ni, nj) ∈ A in ascending order do
9 A′ = (ni, nj) ∪A′ ;

// Forward update:

10 (dr, Sr) = dsp chain((W,A′r), dr,σ, (ni, nj));
// Backward update:

11 (dl, Sl) = dsp chain((W,A′l), dl,σ, (nj , ni)) ;
12 for {n = (v, yv)} ∈ Sr ∪ Sl do

// Update min-marginal of node v ∈ Vu,

label yv ∈ Xv:

13 (bv, cv)← unary bottleneck(

14 ({H,n},∅), {b, ω(n))}, {c, dr(n) + dl(n)});
15 mv(yv) := min (mv(yv), ζ(bv) + cv);
16 end
17 end

The above-mentioned Algorithm Min Marginals BMRF
only calculates the min-marginals for nodes, the calculation
of min-marginals for edges can be carried out in similar way
by also updating those edges of the DAG whose adjacent
node gets updated (lines 14- 15). After computing the min-
marginals, messages to MRF tree Lagrangians λ can be
computed by appropriate normalization.

6.3. Results

Figures 7- 17 contain the visual comparison of tracked
horizon surfaces mentioned in Table 1. Similar to Figure 4,
the color of the surface denotes depth.

Figure 6. Workflow to compute the patch matching probabilities (14). Two axis-aligned patches are extracted around each voxel in seismic
volume to get 2-channel patch image. These two images are concatenated to get a 4-channel image which would be used as an input to the
CNN [45] for computing patch matching probabilities by softmax activation at the output. C(n, k, s) denotes a convolutional layer having
n filters of size k × k with stride s, F(n) to a fully connected layer with n outputs, and MaxPool(m,n) to max-pooling with kernel size
m×m and stride n.

(a) Ground-truth (b) MST (c) MRF (d) B-MRF

Figure 7. F3-Netherlands-II

(a) Ground-truth (b) MST (c) MRF (d) B-MRF

Figure 8. F3-Netherlands-III

(a) Ground-truth (b) MST (c) MRF (d) B-MRF

Figure 9. F3-Netherlands-IV

(a) Ground-truth (b) MST (c) MRF (d) B-MRF

Figure 10. F3-Netherlands-V

(a) Ground-truth (b) MST (c) MRF (d) B-MRF

Figure 11. F3-Netherlands-VI

(a) Ground-truth (b) MST (c) MRF (d) B-MRF

Figure 12. Opunaka-3D-I

(a) Ground-truth (b) MST (c) MRF (d) B-MRF

Figure 13. Opunaka-3D-II

(a) Ground-truth (b) MST (c) MRF (d) B-MRF

Figure 14. Waka-3D-I

(a) Ground-truth (b) MST (c) MRF (d) B-MRF

Figure 15. Waka-3D-II

(a) Ground-truth (b) MST (c) MRF (d) B-MRF

Figure 16. Waka-3D-III

(a) Ground-truth (b) MST (c) MRF (d) B-MRF

Figure 17. Waka-3D-IV

