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1. Additional Materials on Embedding
Dataset In order to test our embedding algorithm, we col-
lect a small dataset of 25 images in five different categories:
human faces, cats, dogs, cars and paintings (Figure 6).

Additional Embedding Results To further support our
findings about the initial latent code in the main paper, we
show more results in Figure 2. It can be observed that: for
face images, initializing the optimization with the mean face
latent code works better; while for non-face images, using
the latent codes randomly sampled from a multivariate uni-
form distribution is a better option.

Quantitative Results on Defective Image Embedding
Table 1 shows the corresponding quantitative results on de-
fective image embedding (Figure 3 in the main paper). The
results show that compared to non-defective faces, the em-
bedded images of defective faces are farther from the mean
face. This reaffirms that the valid faces form a cluster
around the mean face.

Inherent Circular Artifacts of StyleGAN Interestingly,
we observed that the StyleGAN model trained on the FFHQ
dataset (officially released [2, 5]) inherently creates circular
artifacts in the generated images, which are also observable
in our embedding results (Figure 10). These artifacts are
thus independent of our embedding algorithm and may be
resolved by employing better pretrained models in the fu-
ture.

Limitation of the ImageNet-based Perceptual loss All
existing perceptual losses utilize the classifiers trained on
the ImageNet dataset (e.g. VGG-16, VGG-19), which are
restricted to the resolution of 224×224. While in our paper,
we aim to embed images of high resolution (1024 × 1024)
that are much larger than that of ImageNet images. Such in-
consistency in the resolution may disable the learned image
filters as they are scale-dependent. To this end, we follow

Figure 1: First column: original image (1024× 1024). Sec-
ond column: embedded image with the perceptual loss ap-
plied to resized images of 256× 256 resolution. Third col-
umn: embedded image with the perceptual loss applied to
the images at the original 1024× 1024 resolution.

the common practice [1, 3] and use a simple resizing trick to
compute the perceptual loss on resized images of 256×256
resolution. As Figure 1 shows, the embedding results with
the resizing trick outperform the ones at the original reso-
lution. However, small details are lost during the resizing,
which can slightly smoothen the embedding results. We ex-
pect to get better results with future perceptual losses that
work on higher resolutions.

StyleGANs trained on Other Datasets To support our
insights on the learned distribution, we further tested our
embedding algorithm on the StyleGANs trained on three
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Figure 2: Additional Embedding Results into W+ space. Left column: the original images. Middle column: the embedded
images with random latent code initialization. Right column: the embedded images with w̄ latent code initialization.
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Figure 3: Additional results on the justification of latent space choice.(a) Original images. Embedding results into the
original space W : (b) using random weights in the network layers; (c) with w̄ initialization; (d) with random initialization.
Embedding results into the W+ space: (e) using random weights in the network layers; (f) with w̄ initialization; (g) with
random initialization.

Defect L(×105) ‖w∗ − w̄‖
non-defective 0.204 29.19
Eyes 0.271 34.90
Nose 0.311 39.20
Mouth 0.301 37.04
Eyes and Mouth 0.233 39.62
Eyes, Nose and Mouth 0.285 37.59

Table 1: Quantitative results on defective image embedding
(Figure 3 in the main paper). L is the loss after optimization.
‖w∗ − w̄‖ is the distance between the latent codes w∗ and
w̄ of the average face.

more datasets: the LSUN-Car (512 × 384), LSUN-Cat
(256×256) and LSUN-Bedroom (256×256) datasets. The
embedding results are shown in Figure 7. It can be observed
that the quality of the embedding is poor compared to that of
the StyleGAN trained on the FFHQ dataset. The linear in-
terpolation (image morphing) results of LSUN-Cat, LSUN-
Car, and LSUN-Bedroom StyleGANs are shown in Figure 8
(a), (b) and (c) respectively. Interestingly, we observed that
linear interpolation fails on the LSUN-Cat and LSUN-Car
StyleGANs. Recall that the FFHQ human face dataset is of
very high quality in terms of scale, alignment, color, poses
etc., we believe that the low quality of the LSUN datasets
is the source of such failure. In other words, the quality of
the data distribution is one of the key components to learn a
meaningful model distribution.



Figure 4: Additional morphing results between two embedded images (the left-most and right-most ones).



Figure 5: Image embedding using different constant noises.

Additional Results on the Justification of Latent Space
Choice Figure 3 shows additional results (cat, dog, car)
on the justification of our choice of latent space W+. Sim-
ilar to the main paper, we can observe that: (i) embedding
into W directly does not give reasonable results; (ii) the
learned network weights is important to good embeddings.

Clustering or Scattering? To support our insight that
only face images form a cluster in the latent space, we com-
pute the L2 distances between the embeddings of all pairs
of test images (Figure 9). It can be observed that the dis-
tances between the faces are relatively smaller than those of
other classes, which justifies that they are close to each other
in the W+ space and form a cluster. For images in other
classes, especially the paintings, the pairwise distances are
much higher. This implies that they are scattered in the la-
tent space.

Justification of Loss Function Choice Figure 11 vali-
dates the algorithmic choice of the loss function used in the
main paper. It can be observed that (i) matching the image
features at multiple layers of the VGG-16 network works
better than at a single layer; (ii) the combination of pixel-
wise MSE loss and perceptual loss works the best.

Influence of Noise Channels Figure 5 shows that restart-
ing the embedding with a different noise leads to similar
results. In addition, we observed significantly worse quality
when resampling the noise during the embedding (at each
update step). To this end, we kept the noise channel con-
stant during the embedding for all our experiments.

2. Additional Results on Applications
Figure 4 shows additional results of the image morphing.

Figure 12 shows the complete table of the style transfer re-
sults between different classes. The results support our in-
sight that the multi-class embedding works by using an un-
derlying human face structure (encoded in the first couple of
layers) and painting powerful styles onto it (encoded in the
latter layers). Figure 14 shows additional results on the ex-
pression transfer. We also include an accompanying video
in the supplementary material to show it works with noisy

images taken by a commodity camera in a typical office en-
vironment. The random walk results (of two classes ‘hu-
man faces’ and ‘cars’) from the embedded image towards
the mean face image are also shown in videos.
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Figure 6: The collected 25 images of our dataset. First row: human faces. Second row: cats. Third row: dogs. Fourth row:
cars. Fifth row: paintings.
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Figure 7: Embedding results of StyleGANs trained on
(a) LSUN-Car, (b) LSUN-Cat and (c) LSUN-Bedroom
datasets. For each subfigure, the first row shows the em-
bedding results of the images in 5 different classes in our
dataset. The second row shows the embedding results of
the images of the corresponding class in our dataset (“cars”
in (a) and “cats” in (b)). Note that (c) has only one row
because we did not collect bedroom images in our dataset.
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Figure 8: Results on linear interpolations (image morphing)
in the latent spaces of StyleGANs trained on (a) LSUN-Cat
(b) LSUN-Car (c) LSUN-Bedroom datasets.



Figure 9: Heat map of the inter- and intra-class L2 distances between embedded images.



Figure 10: Inherent circular artifacts of StyleGAN. First row: circular artifacts in the embeded images. Second and third
rows: randomly generated images. Left column: images with circular artifacts. Right column: highlighted artifacts by
zooming in their local neighbourhood.



Figure 11: Additional results of the algorithmic choice justification on the loss function. Each row shows the results of an
image from the five different classes in our test dataset respectively. From left to right, each column shows: (1) the original
image; (2) pixel-wise MSE loss only; (3) perceptual loss on VGG-16 conv3 2 layer only; (4) pixel-wise MSE loss and
VGG-16 conv3 2; (5) perceptual loss only; (6) our loss function .



Figure 12: Complete table of the style transfer results. Left-most column: the embedded style image. First row: the embedded
content images.
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Figure 14: Additional results on expression transfer. In each subfigure, the first row shows the reference images from
IMPA-FACES3D [4] dataset; in the following rows, the middle image in each of the examples is the embedded image,
whose expression is gradually transferred to the reference expression (on the right) and the opposite direction (on the left)
respectively.


