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Here, we provide additional quantitative results for the
real image datasets. For evaluation purposes, we use the
Peak Signal-to-Noise Ratio (PSNR) index as the error met-
ric. 'We compare our proposed methods RIDNet with
numerous state-of-the-art methods, including BM3D [4],
WNNM [5], TNRD [3], NC [7], TWSC [9], DnCNN [11],
MCWNNM [10], NI [2], FFDNet [12] and CBDNet [6].
To ensure a fair comparison, we use the default setting pro-
vided by the authors.
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Figure 1. A real noisy example from DND dataset [8] for comparison of our method against the state-of-the-art algorithms.
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Figure 2. Comparison of our method against the state-of-the-art algorithms on real images containing Gaussian noise from Darmstadt Noise
Dataset (DND) benchmark for different denoising algorithms [8]. Difference can be better viewed in magnified view.
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Figure 3. Comparison of our method against the state-of-the-art algorithms on real images containing Gaussian noise from Darmstadt Noise
Dataset (DND) benchmark for different denoising algorithms [8]. Difference can be better viewed in magnified view.
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Figure 4. Another real images example from Darmstadt Noise Dataset (DND) benchmark [8]. Difference can be better viewed in magnified
view.



Figure 5. Our method against the state-of-the-art algorithms on real images [8].
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Figure 6. Comparison of our method against the state-of-the-art algorithms on real images containing Gaussian noise from SSID Dataset [1].



