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1. Introduction
In this supplementary material, we provide:

• a detailed description of the used datasets,
• the top-5 results for all algorithms,
• the top-1 error analysis of past and new classes over

incremental batches,
• detailed plots of top-1 obtained results for all datasets

with Z = 10 and K = {20000, 5000},
• algorithm implementation details.

2. Description of evaluation datasets
The datasets used in the evaluation are designed for three

visual classification tasks: object, face and tourist landmark
recognition. To facilitate reproducibility, we chose to per-
form the evaluation with publicly available datasets whose
training set main statistics are provided in Table 1.

2.1. ILSVRC

ILSVRC [9] is the well known subset of ImageNet used
in the ILSVRC competitions and is reused here. The statis-
tics from Table 1 show that the training set is well balanced,
with an average of 1231.2 images per class and a 70.2 stan-
dard deviation. The dataset is available for download from
http://image-net.org/download.

2.2. VGGFace2

VGGFace2 [2] is a recent dataset focused on face recog-
nition. It includes over 9000 unique identities. We se-
lected the 1000 identities which have the largest number
of associated images for the evaluation in order to have
a dataset similar in size to ILSVRC. VGGFace2 is well
balanced and includes a mean of 491.7 images per class,
with 49.4 standard deviation. The dataset includes loosely
cropped face images and, following the usual face recog-
nition pipeline, we extracted tighter crops before train-
ing and testing. Face detection was done using the pub-
licly available MTCNN [10] framework. The dataset

ILSVRC VGGFace2 Landmarks

Train images mean 1231.2 491.7 374.4
Train images std 70.2 49.4 103.8

Table 1: Main statistics for evaluation datasets. The two
lines provide: (1) the mean number of train images per class
and (2) the standard deviation of the number of train images
per class.

is available for download from http://www.robots.
ox.ac.uk/˜vgg/data/vgg_face2/.

2.3. Google Landmarks

Google Landmarks [6] (Landmarks below) is a dataset
built for tourist landmark recognition. It includes over 2
million images for over 30000 landmarks across the world.
Again, we selected the 1000 landmarks which have the
largest number of associated images for the evaluation.
The selected train subset is more imbalanced than ILSVRC
and VGGFace2, with a mean number of 374.4 images per
class and 103.8 standard deviation. The dataset is avail-
able for download from https://www.kaggle.com/
google/google-landmarks-dataset

3. Top-5 accuracy results
In addition to the top-1 results from the paper, we pro-

vide top-5 results obtained by all methods to facilitate com-
parability with earlier works [3, 5, 8]. Overall, the results
follow the same trend as top-1. It is noteworthy that the dif-
ferences between the FT baseline and the methods built on
top of it are globally lower than top-1 results. This is par-
ticularly true for the VGGFace2 and Landmarks, the easier
datasets tested here, where the imbalance inherent to incre-
mental learning matters less than in the case of ILSVRC.
The smaller performance differences are explained by the
fact that top-5 accuracy has a smoothing effect on results.
IL2M is still the best method in a majority of tested con-

http://image-net.org/download
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
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States Z = 10
Dataset ILSVRC VGGFace2 Landmarks

K 20k 10k 5k 0k 20k 10k 5k 0k 20k 10k 5k 0k
iCaRL 62.5 61.4 60.9 43.8 84.5 83.9 83.6 48.3 84.4 83.6 83.0 46.3
DeeSIL 74.5 74.3 74.2 73.9 92.6 92.6 92.5 92.3 94.2 94.1 94.0 93.6

FT 77.0 70.1 60.0 20.5 97.1 96.0 94.1 21.3 97.6 96.5 94.4 21.3
FTNEM 79.4 74.5 69.6 20.5 96.7 95.7 94.1 21.3 96.8 95.8 93.9 21.3
FTBAL 77.5 73.4 65.0 20.5 97.2 96.2 94.3 21.3 97.5 96.5 94.6 21.3
IL2M 78.3 75.2 71.2 20.5 97.2 96.2 94.9 21.3 97.6 96.6 94.7 21.3
Full 92.3 99.2 99.1

K = 5000
ILSVRC VGGFace2 Landmarks

Z=5 Z=20 Z=5 Z=20 Z=5 Z=20
61.0 56.3 89.4 71.6 89.0 71.2
79.2 69.0 96.4 87.2 96.4 90.3
61.9 64.5 95.6 94.4 94.6 93.8
71.2 71.4 95.4 94.6 93.2 93.6
70.1 67.8 96.1 94.5 95.4 94.0
75.6 66.1 96.4 94.5 95.3 93.6

92.3 99.2 99.1

Table 2: Top-5 average accuracy (%) for the different methods tested. The available memory K and the number of states
Z are varied to test their effect on the performance of the tested methods. Following [3], accuracy is averaged only for
incremental states (i.e. excluding the initial, non-incremental state). Best results are in bold. Full is the non-incremental
upper-bound performance obtained with all data available for all classes.

Figure 1: Prediction scores for Landmarks [6] (up) and VGGFace2 [2] (down) datasets with memory K =
{20000, 10000, 5000} exemplars and Z = 10 states. We select the scores of the true class for train images and then av-
erage them for past and new classes. Incremental states from 1 to 9 are represented. The initial state (0) does not include past
classes and is not represented. (Best viewed in color.)

figurations. A first notable difference is that FTNEM gives
slightly better results for three configurations instead of one
for top-1. A second difference is that DeeSIL has best per-
formance for all datasets with K = 5000 and Z = 5. This
is due to the fact that the initial representation is stronger
when it includes a higher number of classes. DeeSIL has
the best top-5 performance for ILSVRC with K = 5000
and IL2M comes second in this case.

Compared to Full, the non-incremental training, the best
class IL algorithms with Z = 10 and memory K = 20000
loses 12.9, 2 and 1.5 top-5 points for ILSVRC, VGGFace2

and Landmarks respectively . This gap is rather small for
VGGFace2 and Landmarks, but more work is still needed
for difficult tasks like ILSVRC. Naturally, the gap increases
when the memory is reduced and the number of states in-
creases. As expected, it becomes very important without
memory. In this last case, which is not in focus here, the
DeeSIL baseline performs best for all three datasets.

4. Effect of data imbalance on predicted scores
In Figure 1, we provide scores plots for past and new

classes for VGGFace2 and Landmarks. This figure is a



Figure 2: Top-1 accuracy for object, face and landmark recognition with Z = 10 states and memory K = 20000 (up) and
K = 5000 (down). To be aligned with the results from paper in Table 2, only the incremental states are represented. (Best
viewed in color.)

complement to Figure 2 of the paper, where similar analysis
was provided for ILSVRC. The difference of mean scores
between past and new classes for VGGFace2 and Land-
marks grows as memory is reduced from left to right of the
figure. This trend is natural since imbalance increases and
it was also observed for ILSVRC in Figure 2 of the paper.
Compared to ILSVRC, the differences between predicted
scores of past and new classes are much smaller for VG-
GFace2 and negligible for Landmarks when K = 20000.
This explains the very small contribution of IL2M score
rectification in this configuration.

5. Error analysis

The analysis from the previous two sections shows that
data imbalance inherent to class IL with memory produces
a classification bias toward new classes. In Table 3, we en-
rich the analysis by providing an analysis of error types be-
fore (FT ) and after (IL2M ) score rectification with mem-
ory K = 10000 and Z = 10 states.

Before rectification, the largest number of errors is of
type e(p, n), that is test images of past classes mistaken
for images of new classes. We will look closely at the in-
cremental state 9 of ILSVRC, which includes 45000 and
5000 test images for past and new classes respectively.
30740/45000 (68%) of test images of past classes were
predicted as new and only 8746/45000 images were cor-

rectly predicted. 4267/5000 (85.34%) of test images of new
classes are predicted correctly and only 66/5000 of them are
assigned to past classes. These statistics further confirm the
bias in favor of new classes and the need for score rectifica-
tion.

After rectification with IL2M , the distributions of cor-
rect predictions and of errors changes quite significantly.
For ILSVRC, there are significantly more correct predic-
tions for past classes, accompanied by a lower performance
for new classes. In state 9 of ILSVRC, correct predic-
tions of past test images increase from 19.43% with FT to
32.86% with IL2M . The corresponding performance for
new classes drops from 85.34% to 70.2%. IL2M ensures
a better performance balance between past and new classes.
The errors of type e(p, p), where images of a past class are
mistaken for images of another past class are increasingly
frequent toward later incremental states. This covers a ma-
jority of cases for states from 5 to 9. The number of im-
ages of past classes predicted as new decreases significantly
and these errors cover only 21.32% of test images for past
classes in state 9 of ILSVRC.

6. Implementation details

iCaRL [8] was run with SGD optimizer and binary cross
entropy loss for classification (+ distillation term) follow-
ing the same parameterization given by authors in their



Incremental states
Dataset 1 2 3 4 5 6 7 8 9

ILSV RC FT c(p) 2621 4327 5730 6702 7600 7980 8576 9169 8746
e(p, p) 194 690 1360 2203 3035 4016 4462 6100 5514
e(p, n) 2185 4983 7910 11095 14365 18004 21962 24731 30740
c(n) 4139 4314 4145 4155 4251 4319 4236 4376 4267

e(n, n) 779 608 771 762 692 619 694 560 667
e(n, p) 82 78 84 83 57 62 70 64 66

IL2M c(p) 3223 5913 7744 9279 11233 11899 13115 13563 14791
e(p, p) 433 2010 3374 5324 9177 11239 13984 16780 20614
e(p, n) 1344 2077 3882 5397 4590 6862 7901 9657 9595
c(n) 3940 3791 3815 3816 3484 3774 3552 3900 3510

e(n, n) 666 409 582 553 352 361 398 347 341
e(n, p) 394 800 603 631 1164 865 1050 753 1149

V GGFace2 FT c(p) 4619 8887 13114 17234 21279 25163 29084 32617 36893
e(p, p) 62 275 580 898 1270 1638 2051 2649 3145
e(p, n) 319 838 1306 1868 2451 3199 3865 4734 4962
c(n) 4789 4814 4847 4868 4873 4879 4878 4868 4884

e(n, n) 167 129 115 87 90 88 86 92 88
e(n, p) 44 57 38 45 37 33 36 40 28

IL2M c(p) 4657 9122 13436 17780 22031 26232 30353 34024 38506
e(p, p) 78 378 813 1382 1885 2601 3287 4039 4781
e(p, n) 265 500 751 838 1084 1167 1360 1937 1713
c(n) 4776 4762 4814 4810 4806 4802 4798 4802 4784

e(n, n) 161 112 94 63 70 55 56 72 57
e(n, p) 63 126 92 127 124 143 146 126 159

Landmarks FT c(p) 1894 3649 5423 7170 8847 10414 12070 13570 15093
e(p, p) 31 85 174 329 516 643 858 1128 1437
e(p, n) 75 266 403 501 637 943 1072 1302 1470
c(n) 1937 1952 1957 1954 1969 1960 1963 1965 1960

e(n, n) 49 32 32 37 18 22 27 24 29
e(n, p) 14 16 11 9 13 18 10 11 11

IL2M c(p) 1907 3718 5493 7230 8951 10599 12245 13826 15358
e(p, p) 45 107 218 384 587 834 1067 1462 1711
e(p, n) 48 175 289 386 462 567 688 712 931
c(n) 1934 1896 1935 1949 1944 1947 1955 1940 1922

e(n, n) 42 30 29 33 16 19 21 18 28
e(n, p) 24 74 36 18 40 34 24 42 50

Table 3: Analysis of top-1 errors for (FT ) and (IL2M ) methods with memory K = 10000 and Z = 10 states. p and n stand
for past and new classes; c and e stand for correct and erroneous predictions. For instance e(p, n) designates the number of
wrong predictions of past classes as new ones.

Tensorflow implementation1. The rest of baselines were
implemented using Pytorch [7] with SGD optimizer and
multi-label cross entropy loss. A ResNet-18 [4] architec-
ture was used in all experiments. Full as well as the
first non-incremental model of FT and FTBAL are run for

1https://github.com/srebuffi/iCaRL

100 epochs with initial learning rate 0.1 and divided by 10
when the error plateaus for 10 consecutive epochs. For the
subsequent batches, FT and FTBAL are run with initial
lr = 0.1

z , where z is the incremental state count ranging be-
tween 2 and Z. The learning rate is divided by 10 when the
error plateaus for 5 epochs. The weights decay is 0.0001



and the momentum is 0.9. FT was run for 25 epochs while
FTBAL was run for 25 epochs for the imbalanced step and
15 epochs for the balanced one continuing with the same
learning rate from the imbalanced step.

For the SVM training in DeeSIL [1], we split the train-
ing set of the initial batch using a 90

10 training/validation di-
vision. The validation set is used to optimize the SVMs.
The optimal regularizer for all configurations was C = 1.
We frozen it for all the subsequent batches.

For fine tuning based approaches (FT and FTBAL),
training images are randomly cropped then resized (224 ×
224). After this, they are randomly horizontally flipped and
finally normalized.
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