
Supplementary Material for
Domain Intersection and Domain Difference

Figure 1. Translating from the domain of persons with glasses to
the domain of smiling persons (reverse translation to Fig. 2 in main
report)

A. Additional Guided Translation Results
We provide the reverse translation to that given in Fig. 2

of the main report as well as additional cross domain trans-
lations in Fig. 1, 2, 3, 4, 5, 6, 7, 8 and 9.

Both forward and reverse directions are trained simulta-
neously using the same model as our model is symmetric.
In the reverse direction, Given a sample b ∈ B (top row)
and a sample a ∈ A (left column), each image constructed
is of the form G(Ec(b), Es

A(a), 0)

B. Architecture and Hyperparameters
We consider samples in A and B to be images in

R3×128×128. The encoders Ec, EA
s and EB

s each consist
of 6 convolutional blocks. Similarly, G consists of 6 de-
convolutional blocks.

A convolutional block dk consisting of: (a) 4 × 4 con-
volutional layer with stride 2, pad 1 and k filters (b) a
spectral normalization layer (c) an instance normalization

Figure 2. Translating from the domain of persons with facial hair
to the domain of smiling persons.

Figure 3. Reverse translation from the domain of smiling persons
to the domain of persons with facial hair.
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Figure 4. Translating from the domain of persons with glasses to
the domain of persons with facial hair.

Figure 5. Reverse translation from the domain of persons with fa-
cial hair to the domain of persons with glasses.

layer (d) a Leaky ReLU activation with slope 0.2. Sim-
ilarly a de-convolutional block uk consists of: (a) 4 × 4
de-convolutional layer with stride 2, pad 1 and k filters (b)
a spectral normalization layer (c) an instance normalization
layer (d) a ReLU activation.

Figure 6. Translating from the domain of males to the females.

Figure 7. Reverse translation from the domain of females to the
domain of females.

The structure of the encoders and generators is then:

Ec: d32, d64, d128, d256, d512−sep, d512−2·sep
Es

A, E
s
B : d32, d64, d128, d128, d128, dsep

G: u512, u256, u128, u64, u32, u∗3

The last layer of G (u∗3) differs in that it doesn’t contain a
spectral or instance normalization and that Tanh activation
is applied instead of ReLU. sep is the dimension of the sep-
arate encoders, set to be 25 for all datasets.
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Figure 8. Translation from the domain of blond hair to the domain
of black hair.

Figure 9. Reverse translation from the domain of black hair to the
domain of blond hair.

The latent discriminator d consists of a fully connected
layer of 512 filters, a Leaky ReLU activation with slope 0.2,
second fully connected layer of 1 filters and a final sigmoid
activation.

For the loss parameters specified in the equation 11 of
the main report, λ1 is set to 0.001 and λ2 to 1. We use the
Adam optimizer with β1 = 0.5, β2 = 0.999, and learning
rate of 0.0002. We use a batch size of size 32 in training.

C. Theoretical Analysis
In this section we provide a formal version of Thm. 1

from the main text. For this purpose, we recall a few tech-
nical notations from [1]: the Shannon entropy (discrete or
continuous)H(X) := −EX [log2 P[X]], the conditional en-
tropy H(X|Y ) := H(X,Y ) − H(Y ), the (conditional)
mutual information (discrete or continuous) I(X;Y |Z) :=
H(X|Z)−H(X|Y,Z). For clarity, we list a few important
identities that are being used throughout the proofs in this
section. For any two random variables X and Y , we have:
I(X;Y ) = H(X) +H(Y )−H(X,Y ). The data process-
ing inequality, for any random variableX and two functions
f and g, we have: I(X; g(f(X))) ≤ I(X; f(X)).

In Sec. 2 in the main text, we represented our ran-
dom variable a ∼ PA and b ∼ PB in the following
forms a = g(ec(a), esA(a), 0) and b = g(ec(b), 0, esB(b)),
where ec(a) |= esA(a), ec(b) |= esB(b) and g is some invert-
ible function. Our method learns three encoders E(x) :=
(Ec(x), Es

A(x), E
s
B(x)) and a decoder G.

The following theorem is a formal version of Thm. 1
from the main text.

Theorem 1. In the setting of Sec. 2 in the main text. Let
a ∼ PA and b ∼ PB be two random variables distributed
by discrete distributions PA and PB . Assume that the rep-
resentations g(ec(a), esA(a), 0) and g(ec(b), 0, esB(b)) form
an intersection between a and b, such that,

H(Es
A(a)) ≤ H(esA(a)) + ε (1)

In addition, assume that: Ea‖G(Ec(a), Es
A(a), 0)− a‖1 =

0, Eb‖G(Ec(b), 0, Es
B(b)) − a‖1 = 0 and PEc(A) =

PEc(B), i.e., the distribution of Ec(A) is equal to the dis-
tribution of Ec(B). Then, we have the following:

• I(Ec(a);Es
A(a)) ≤ ε.

• Ec(a) is a function of ec(a).

• H(Ec(a)) ≥ H(ec(a))− ε.

In this theorem, we make a few assumptions. The first
assumption concerns the modeling of the data, the second is
regarding the separate encoderEs

A and the last one concerns
the losses.

Our first assumption asserts that the ground truth rep-
resentation (see Sec. 2) of the random variables a =
g(ec(a), esA(a), 0) and b = g(ec(b), 0, esB(b)) forms an in-
tersection between them. Put differently, we can partition
the information of a and b into independent features ec(a),
esA(a) for a and ec(b), esB(b) for b, such that, the informa-
tion of ec(a) ∼ ec(b) is maximal. Informally, any other par-
tition into common and separate parts is unable to put more
content information in the common part than the amount the
ground truth representations do. For example, in the case
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where A consists of images of persons with facial hair and
B consists of images of persons with glasses, the assump-
tion is verified, since, we cannot transfer information from
the separate part (facial hair or glasses) into the common
part (identity, pose, etc’).

The second assumption asserts that the amount of infor-
mation encoded in Es

A(a) is bounded by the amount of in-
formation encoded in esA(a). Differently viewed, since the
function Es

A is deterministic, we also have I(Es
A(a); a) =

H(Es
A(a)), and therefore, the amount of mutual informa-

tion between Es
A(a) and a is bounded as well. This implies

that we cannot recover a given Es
A(a), since we cannot re-

cover a from esA(a).
The third assumption is that several losses are mini-

mized. In Sec. 3, we introduced reconstruction losses:
LA
recon and LB

recon and an adversarial loss: Ladv . These
losses were measured on average with respect to the train-
ing set. In Thm. 1, the reconstruction losses LA

recon and
LB
recon are replaced with their expected versions (we take

expectations Ea and Eb instead of averages over the train-
ing sets SA and SB), Ea‖G(Ec(a), Es

A(a), 0) − a‖1 and
Eb‖G(Ec(b), 0, Es

B(b)) − b‖1. In the theorem, we as-
sume that these losses are being minimized by Ec, Es

A, E
s
B

and G. In addition, the expected version of Ladv

is supd {Eal(d(E
c(a)), 1) + Ebl(d(E

c(b)), 1)} which is
minimized by any encoder Ec that provides PEc(A) =
PEc(B) (see Prop. 2 in [2]), i.e., the distribution of Ec(a)
is equal to the distribution of Ec(b). In Thm. 1, we assume
that PEc(A) = PEc(B) which implies that the adversarial
loss is minimized as well. We note that in this analysis the
zero-losses are not a requirement. It is also depicted in our
ablation study that the zero-losses are not a requirement but
slightly improve the results.

The consequences of the theorem are: (i) the encodings
Ec(a) and Es

A(a) are (almost) independent, (ii) Ec(a) is a
function of ec(a) and (iii) Ec(a) holds most of information
in ec(a). The second and third consequences provide that
Ec(a) and ec(a) encode the same information. We note
that, given these consequences, we could also claim that
Es

A(a) and esA(a) hold the same information. Therefore, we
conclude that under the proposed assumptions, the learned
encodings Ec(a) and Es

A(a) capture the same information
as ec(a) and esA(a) (resp.).

Finally, for clarity, we note that by symmetric argu-
ments, we could arrive at the same conclusions for Ec(b)
and Es

B(b).

D. Proof of Thm. 1
Proof of Thm. 1. First, we consider that by I(X;Y ) =
H(X) +H(Y )−H(X,Y ), we have:

I(Ec(a);Es
A(a)) =H(Ec(a)) +H(Es

A(a))

−H(Ec(a), Es
A(a))

(2)

Since Ea‖G(Ec(a), Es
A(a), 0)− a‖1 = 0, we have:

I(G(Ec(a), Es
A(a), 0); a) = I(a; a) = H(a) (3)

Next, by the data processing inequality, we have:
I(X; g(f(X))) ≤ I(X; f(X)). Therefore, by selecting
g(·) := G(·, 0) and g(·) := (Ec(·), Es

A(·)) and X := a,
we have:

H(a) = I(G(Ec(a), Es
A(a), 0); a)

≤ I(Ec(a), Es
A(a); a)

(4)

Since a = g(ec(a), esA(a), 0), where ec(a) and esA(a) are
assumed to be independent (see Sec. 2) and g to be is in-
vertible, we have:

H(a) = H(g(ec(a), esA(a), 0))

= H(ec(a), esA(a))

= H(ec(a)) +H(esA(a))

(5)

We assumed that the representations g(ec(a), esA(a), 0)
and g(ec(b), 0, esB(b)) form an intersection between a
and b. In addition, G(Ec(a), Es

A(a), 0) ∼ PA,
G(Ec(b), 0, Es

B(b)) ∼ PB and Ec(a) ∼ Ec(b) (since we
assumed that PEc(A) = PEc(B)). Therefore, for G := ĝ,
êc := Ec, êsA := Es

A and êsB := Es
B , by Def. 1:

H(Ec(a)) ≤ H(ec(a)) (6)

By Eq. 1, we have:

H(Es
A(a))− ε ≤ H(esA(a)) (7)

By combining Eqs. 4, 5, 6 and 7, we have:

H(Ec(a), Es
A(a)) ≥ H(a)

= H(ec(a)) +H(esA(a))

≥ H(Ec(a)) +H(Es
A(a))− ε

(8)

By combining the last inequality with Eq. 2, we have:

I(Ec(a);Es
A(a)) ≤ ε (9)

Next, we define êc(a) := (ec(a), Ec(a)), êsA(a) :=
(esA(a), E

s
A(a)), êsB(b) := (esB(b), E

s
B(b)) and g′,

such that, g′(êc(a), êsA(a), 0) = g(ec(a), esA(a)) and
g′(êc(b), 0, êsB(b)) = g(ec(b), esB(b)). Since g is invert-
ible for both domains, we conclude that g′ is invertible as
well. Therefore, by Def. 1, we conclude that H(êc(a)) ≤
H(ec(a)). But, êc(a) = (ec(a), Ec(a)) and, therefore,
we also have: H(êc(a)) ≥ H(ec(a)). In particular,
H(êc(a)) = H(ec(a)). We conclude that:

I(ec(a);Ec(a)) =H(ec(a)) +H(Ec(a))

−H(ec(a), Ec(a))

=H(Ec(a))

(10)
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Figure 10. Translation from the domain of smiling persons to the
domain of persons with glasses, when the reconstruction loss is
removed

Therefore, Ec(a) is a function of ec(a). Finally, we con-
sider that:

H(Ec(a)) +H(esA(a)) + ε

≥H(Ec(a)) +H(Es
A(a))

≥H(a)

=H(ec(a)) +H(esA(a))

(11)

In particular, H(Ec(a)) ≥ H(ec(a))− ε.

E. Ablation Study Visual Results
In order to compare the effect of the different loss visu-

ally, we provide in Fig. 10, 11 and 12 the translation from
smiling persons to persons with glasses, when each of the
losses is removed. With no reconstruction loss the method
is unable to create realistic face images, as the G is not af-
fected by any of the losses remaining. With no adversarial
loss the method is unable to add the glasses (separate part
of domain B) to the given image. Without the zero-loss,
results are only slightly worse numerically, and this is not
observed visually.

F. Visual Comparison to Baseline Methods
In additional to the numerical comparison in tables 1 and

2 of the main report, we provide a visual comparison in
Fig. 13, 14 and 15. For MUNIT and DRIT, the method
is unable to change content in the source image, and so the
smile (separate part of domain A) remains, and no glasses
(separate part of domainB) are added. For Fader Networks,

Figure 11. Translation from the domain of smiling persons to the
domain of persons with glasses, when the adversarial loss is re-
moved

Figure 12. Translation from the domain of smiling persons to the
domain of persons with glasses, when the zero loss is removed

a generic glasses are added, and not the one specific to the
image in domain B.
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Figure 13. Translation from the domain of smiling persons to the
domain of persons with glasses, using the Fader Networks method.

Figure 14. Translation from the domain of smiling persons to the
domain of persons with glasses, using the DRIT method.

Figure 15. Translation from the domain of smiling persons to the
domain of persons with glasses, using the MUNIT method.
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