
Tracking without bells and whistles
Supplementary Material

Philipp Bergmann∗ Tim Meinhardt∗ Laura Leal-Taixe

Technical University of Munich

Abstract

The supplementary material complements our work with
the pseudocode representation of Tracktor and additional
implementation and training details of its object detec-
tor and tracking extensions. In addition, we provide
more details on our experiments and analysis including
the MOTChallenge benchmark results of our Tracktor++
tracker for each sequence and set of public detections.

A. Implementation
For the sake of completeness and in order to facilitate

the reproduction of our results, we provide additional im-
plementation details and references of our Tracktor and its
extensions.

A.1. Tracktor

In Algorithm 1 and 2, we present a structured pseu-
docode representation of our Tracktor for private and pub-
lic detections, respectively. Algorithm 1 corresponds to the
method illustrated in Figure 1 and Section 2.2 of our main
work.

Object detector. As mentioned before, our approach re-
quires no dedicated training or optimization on tracking
ground truth data and performs tracking only with an object
detection method. To this end, we train the Faster R-CNN
(FRCNN) [18] multi-object detector with Feature Pyramid
Networks (FPN) [16] on the MOT17Det [17] dataset.

In addition, we follow the improvements suggested
by [2]. These include a replacement of the Region of In-
terest (RoI) pooling [7] by the crop and resize pooling sug-
gested by Huang et al. [10] and training with a batch size
of N = 1 instead of N = 2 while increasing the number
of extracted regions from R = 128 to R = 256. These
changes and the addition of FPN ought to improve the de-
tection results for comparatively small objects. We achieve
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the best results with a ResNet-101 [8] as the underlying fea-
ture extractor. In Table 1, we compare the performance on
the official MOT17Det detection benchmark for the three
object detection methods mentioned in this work. The re-
sults demonstrate the incremental gain in detection perfor-
mance of DPM [6], FRCNN and SDP [20] (ascending or-
der). Our FRCNN implementation without FPN is on par
with the official MOT17Det entry and represents the detec-
tor applied in the Tracktor-no-FPN variant of our ablation
study in Section 3.1.

Method AP ↑ MODA ↑ FP ↓ FN ↓ Precision ↑ Recall ↑

FRCNN + FPN 0.81 70.2 14914 19196 96.5 83.2
FRCNN 0.72 71.6 8227 24269 91.6 78.8

DPM [6] 0.61 31.2 42308 36557 64.8 68.1
FRCNN [18] 0.72 68.5 10081 25963 89.8 77.3
SDP [20] 0.81 76.9 7599 18865 92.6 83.5

Table 1: A comparison of our Faster R-CNN (FRCNN)
with Feature Pyramid Networks (FPN) implementation on
the MOT17Det detection benchmark with the three object
detection methods mentioned in this work. Our vanilla FR-
CNN results are on par with the official FRCNN implemen-
tation. The extension with FPN yields a detection perfor-
mance close to SDP. For a detailed summary of the shown
detection metrics we refer to the official MOTChallenge
web page: https://motchallenge.net.

A.2. Tracking extensions

Our presented Tracktor++ tracker is an extension of the
Tracktor that uses two multi-pedestrian tracking specific ex-
tensions, namely, a motion model and re-identification.

Motion model. For the motion model via camera motion
compensation (CMC) we apply image registration using the
Enhanced Correlation Coefficient (ECC) maximization as
in [5]. The underlying image registration allows either for
an euclidean or affine image alignment mode. We apply the
first for rotating camera movements, e.g., as a result of an
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unsteady camera movement. In the case of an additional
camera translation such as in the autonomous driving se-
quences of 2D MOT 2015 [17], we resort to the affine trans-
formation. It should be noted that in MOT17 [17], camera
translation is comparatively slow and therefore we consider
all sequences as only rotating. In addition, we present a sec-
ond motion model which aims at facilitating the regression
for sequences with low frame rates, i.e., large object dis-
placements between frames. Before we perform bounding
box regression, the constant velocity assumption (CVM)
model shifts bounding boxes in the direction of their pre-
vious velocity. This is achieved by moving the center of
the bounding box bk

t−1 by the vectorial difference of the
two previous bounding box centers at t − 2 and t − 1. The
CVA motion model is only applied to the AVG-TownCentre
sequence of 2D MOT 2015.

Re-identification. Our short-term re-identification uti-
lizes a Siamese neural network to compare bounding box
features and return a measure of their identity. To this
end, we train the TriNet [9] architecture which is based on
ResNet-50 [8] with the triplet loss and batch hard strat-
egy as presented in [9]. The network is optimized with
Adam [13] with β = (0.9, 0.999) and a decaying learning
rate as described in [9]. Training samples with correspond-
ing identity are generated from the MOT17 tracking ground
truth training data. The TriNet architecture requires input
data with a dimension ofH×W = 256×128. To allow for
a subsequent data augmentation via horizontal flip and ran-
dom cropping, each ground truth bounding box is cropped
and resized to 9

8 (H ×W ). A training batch consists of 18
randomly selected identities, each of which is represented
with 4 different samples. Identities with less than 4 samples
in the ground truth data are discarded.

B. Experiments

A detailed summary of our official and published
MOTChallenge benchmark results for our Tracktor++
tracker is presented in Table 3. For the corresponding
results for each sequence and set of detections for the
other trackers mentioned in this work we refer to the of-
ficial MOTChallenge web page available at https://
motchallenge.net.

B.1. Evaluation metrics

In order to measure the performance of a tracker,
we mentioned the Multiple Object Tracking Accuracy
(MOTA) [11] and ID F1 Score (IDF1) [19]. However, pre-
vious Tables such as 3 included additional informative met-
rics. The false positives (FP) and negatives (FN) account for
the total number of either bounding boxes not covering any
ground truth bounding box or ground truth bounding boxes

not covered by any bounding box, respectively. To measure
the track identity preserving capabilities, we report the total
number of identity switches (ID Sw.), i.e., a bounding box
covering a ground truth bounding box from a different track
than in the previous frame. The mostly tracked (MT) and
mostly lost (ML) metrics provide track wise information
on how many ground truth tracks are covered by bounding
boxes for either at least 80% or at most 20%, respectively.
MOTA and IDF1 are meaningful combinations of the afore-
mentioned basic metrics. All metrics were computed using
the official evaluation code provided by the MOTChallenge
benchmark.

B.2. Raw DPM detections

As most object detection methods, DPM applies a final
non-maximum-suppression (NMS) step to a large set of raw
detections. The MOT16 [17] benchmark provides both, the
set before and after the NMS, as public DPM detections.
However, this NMS step is performed with DPM classifica-
tion scores and an unknown Intersection over Union (IoU)
threshold. Therefore, we extracted our own classification
scores for all raw detections and applied our own NMS step.
Although not specifically provided, we followed the con-
vention to also process raw DPM detections for MOT17.
Note, several other public trackers already work on raw de-
tections [12, 1, 3] and their own classification score and
NMS procedure. Therefore, we consider the comparison
with public trackers as fair.

B.3. Evaluation on public detections

By reclassifying and regressing the given public detec-
tions with a private object detector, Tracktor reduces the
equalizing effect of public detections to the initialization of
new tracks. In addition to our remarks in Section 3 regard-
ing the publicness of our method, we emphasize the po-
tential of Tracktor in comparison with other state-of-the-art
trackers even without the advantage of the reclassification
and regression. To this end, we show Table 2, which evalu-
ates all trackers on the MOT17 test set only with Faster R-
CNN public detections. Tracktor-no-FPN++ (without Fea-
ture Pyramid Networks) uses a vanilla Faster R-CNN for
reclassification and regression, effectively, not altering the
public detections. However, the results support the overall
conclusions from Table 2 of our main work.

B.4. Tracktor thresholds

To demonstrate the robustness of our tracker with respect
to the classification score and IoU thresholds, we refrained
from any sequence or detection-specific fine-tuning. In par-
ticular, we performed our experiments on all benchmarks
with σactive = 0.5, λactive = 0.6 and λnew = 0.3, which
were chosen to be optimal for the MOT17 training dataset.
In general, a higher λactive than λnew introduces stability

https://motchallenge.net
https://motchallenge.net


Method MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓
Tracktor++ 42.14 45.76 18.17 38.93 3918 83904 648

Tracktor-no-FPN++ 39.41 43.46 16.63 39.00 6975 83380 922
eHAF17 37.37 46.44 20.63 35.83 11050 86510 605
FWT 39.06 42.07 17.60 37.53 8397 88290 780
jCC 37.64 46.66 18.70 36.33 9984 86897 577
MOTDT17 38.81 46.34 14.47 36.91 8911 88773 731
MHT DAM 37.54 46.17 17.43 34.86 9795 89294 742

Table 2: Comparison on MOT17 test set with Faster R-
CNN public detections. Tracktor-no-FPN++ applies vanilla
Faster R-CNN.

into the tracker, as less active tracks are killed by the NMS
and less new tracks are initialized. A comparatively higher
λactive relaxes potential object-object occlusions and im-
plies a certain confidence in the regression performance.

B.5. Tracktor video frame rate robustness

A successful Tracktor bounding box regression depends
on sufficiently high video frame rates or, in other words,
small frame-by-frame object displacements. A possible ap-
proach to address this issue is the extension with a pow-
erful motion model. A rudimentary motion model, the
camera motion compensation (CMC), is presented in Sec-
tion 2.3 and evaluated in the ablation study in Table 1.
However, MOT16 and MOT17 mostly consist of sequences
with benevolent video frame rates and slow moving objects
(pedestrians).

We therefore complement our analysis of Tracktor in
challenging tracking scenarios from Section 4.1 with an
evaluation of its video frame rate robustness. To this end,
we evaluate Tracktor and Tracktor++ on all MOT17 train-
ing sequences with originally 30 frames per second (FPS)
and reduce their frame rates by removing frames from the
data and ground truth. In Figure 1, both versions exhibit
a fairly robust object tracking (MOTA) and identity preser-
vation (IDF1) for rates as low as 5 FPS. As expected, the
performance for very small rates suffers particularly with
respect to identity preservation.

C. Oracle trackers
In our main work, we conclude the analysis in Section 4

with a comparison of multiple oracle trackers that highlight
the potential of future research directions. For each oracle,
one or multiple aspects of our vanilla Tracktor are substi-
tuted with ground truth information, thereby simulating per-
fect behavior. For further understanding, we provide more
details on the oracles for each of the distinct tracking as-
pects:

• Oracle-Kill: This oracle kills tracks only if they have
an IoU less than 0.5 with the corresponding ground
truth bounding box. The matching between predicted
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Figure 1: Tracking performance of Tracktor and Tracktor++
on low frame rate versions of the MOT17-{02, 04, 09, 10,
11}-FRCNN sequences.

and ground truth tracks is performed with the Hungar-
ian [14] algorithm. In the case of an object-object oc-
clusion (IoU > 0.8), the ground truth matching is ap-
plied to decide which of the objects is occluded by the
other and therefore should be killed.

• Oracle-REG: We simulate a perfect regression by
matching tracks with an IoU threshold of 0.5 to the
ground truth at frame t − 1 . The regression oracle
then sets track bounding boxes to the corresponding
ground truth coordinates at frame t.

• Oracle-MM: A perfect motion model works analo-
gous to Oracle-REG but we only move the previous
bounding box center to the center of the ground truth
bounding box at frame t. However, the bounding box
height and width are still determined by the regression.

• Oracle-reID: Again, we use the Hungarian algorithm
to match the new set of detections to the ground
truth data. Ground truth identity matches between in-
active tracks and new detections yield a perfect re-
identification.



Algorithm 1: Tracktor algorithm (private detections)
Data: Video sequence as ordered list

I = {i0, i1, · · · , iT−1} of images it.

Result: Set of object trajectories
T = {T1, T1, · · · , Tk} with
Tk = {bk

t1 ,b
k
t2 , · · · ,b

k
tN | 0 ≤ t1, · · · , tN ≤

T − 1} as a list of ordered object bounding
boxes bk

t = (x, y, w, h).
1 T , Tactive ← ∅;
2 for it ∈ I do
3 B,S ← ∅;
4 for Tk ∈ Tactive do
5 bk

t−1 ← Tk[−1];
6 bk

t , s
k
t ← detector.reg and class(bk

t−1);
7 if skt < σactive then
8 Tactive ← Tactive − {Tk};
9 T ← T + {Tk};

10 else
11 B ← B + {bk

t };
12 S ← S + {skt };

13 B ← NMS(B, S, λactive);
14 for k, Tk ∈ Tactive do
15 if k /∈ B then
16 Tactive ← Tactive − {Tk};
17 T ← T + {Tk};

18 for Tk,bk
t ∈ zip(Tactive, B) do

19 Tk ← Tk + {bk
t };

20 Dt ← detector.detections(it);
21 for dt ∈ Dt do
22 for bk

t ∈ B do
23 if IoU(dt,bk

t ) > λnew then
24 Dt ← Dt − {dt};

25 for dt ∈ Dt do
26 Tk ← ∅;
27 Tk ← Tk + {dt};
28 Tactive ← Tactive + {Tk};

29 T ← T + Tactive;

Algorithm 2: Tracktor algorithm (public detections)
Data: Video sequence as ordered list

I = {i0, i1, · · · , iT−1} of images it and public
detections as ordered list
D = {D0,D1, · · · ,DT−1} of detections Dt.

Result: Set of object trajectories
T = {T1, T2 · · · , Tk} with
Tk = {bk

t1 ,b
k
t2 , · · · ,b

k
tN | 0 ≤ t1, · · · , tN ≤

T − 1} as a list of ordered object bounding
boxes bk

t = (x, y, w, h).
1 T , Tactive ← ∅;
2 for it,Dt ∈ zip(I, D) do
3 B,S ← ∅;
4 for Tk ∈ Tactive do
5 bk

t−1 ← Tk[−1];
6 bk

t , s
k
t ← detector.reg and class(bk

t−1);
7 if skt < σactive then
8 Tactive ← Tactive − {Tk};
9 T ← T + {Tk};

10 else
11 B ← B + {bk

t };
12 S ← S + {skt };

13 B ← NMS(B, S, λactive);
14 for k, Tk ∈ Tactive do
15 if k /∈ B then
16 Tactive ← Tactive − {Tk};
17 T ← T + {Tk};

18 for Tk,bk
t ∈ zip(Tactive, B) do

19 Tk ← Tk + {bk
t };

20 S ← ∅;
21 for dt ∈ Dt do
22 dt, st ← detector.reg and class(dt);
23 if st < σactive then
24 Dt ← Dt − {dt};
25 else
26 S ← S + {st};

27 Dt ← NMS(Dt, S, λnew);
28 for dt ∈ Dt do
29 for bk

t ∈ B do
30 if IoU(dt,bk

t ) > λnew then
31 Dt ← Dt − {dt};

32 for dt ∈ Dt do
33 Tk ← ∅;
34 Tk ← Tk + {dt};
35 Tactive ← Tactive + {Tk};

36 T ← T + Tactive;



Sequence Detection MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓

MOT17 [17]

MOT17-01 DPM [6] 35.9 37.1 20.8 50.0 131 3962 39
MOT17-03 DPM 65.2 57.0 35.1 12.8 1338 34840 222
MOT17-06 DPM 52.7 55.7 18.5 40.1 184 5310 80
MOT17-07 DPM 40.5 42.5 10.0 40.0 363 9603 90
MOT17-08 DPM 27.0 30.7 9.2 50.0 213 15130 83
MOT17-12 DPM 45.6 55.2 16.5 48.4 88 4596 29
MOT17-14 DPM 26.9 37.1 6.7 53.0 591 12834 92

MOT17-01 FRCNN [18] 34.9 34.8 20.8 41.7 406 3753 39
MOT17-03 FRCNN 66.4 59.7 37.2 13.5 1014 33961 189
MOT17-06 FRCNN 56.7 59.0 23.0 27.5 359 4647 96
MOT17-07 FRCNN 39.4 43.1 11.7 40.0 555 9588 93
MOT17-08 FRCNN 27.1 31.7 11.8 50.0 197 15119 74
MOT17-12 FRCNN 43.4 53.9 15.4 51.6 185 4697 25
MOT17-14 FRCNN 27.1 38.1 7.3 48.2 1202 12139 132

MOT17-01 SDP [20] 37.5 36.8 25.0 41.7 283 3706 42
MOT17-03 SDP 69.6 60.1 39.9 10.8 2469 29065 248
MOT17-06 SDP 56.8 59.2 26.1 28.8 354 4638 93
MOT17-07 SDP 41.2 42.6 11.7 33.3 596 9231 111
MOT17-08 SDP 28.7 32.1 13.2 47.4 253 14715 103
MOT17-12 SDP 45.3 56.9 18.7 48.4 212 4492 34
MOT17-14 SDP 27.6 38.5 7.3 48.2 1208 12021 158

All 53.5 52.3 19.5 36.6 12201 248047 2072

MOT16 [17]

MOT16-03 DPM 65.8 57.9 35.1 12.2 1397 34101 226
MOT16-06 DPM 53.9 57.9 20.4 39.4 243 5000 80
MOT16-07 DPM 43.0 43.6 13.0 33.3 405 8808 97
MOT16-08 DPM 34.3 36.8 12.7 38.1 314 10577 101
MOT16-12 DPM 48.0 57.0 18.6 44.2 108 4172 30
MOT16-14 DPM 27.4 37.6 6.7 51.2 659 12645 108

All 54.4 52.5 19.0 36.9 3280 79149 682

2D MOT 2015 [15]

TUD-Crossing ACF [4] 78.3 58.3 53.8 0.0 14 207 18
PETS09-S2L2 ACF 44.5 28.4 4.8 2.4 644 4420 289
ETH-Jelmoli ACF 57.8 67.4 35.6 24.4 317 732 21
ETH-Linthescher ACF 49.3 55.5 15.7 50.8 178 4303 48
ETH-Crossing ACF 43.0 54.2 11.5 38.5 22 538 12
AVG-TownCentre ACF 39.0 38.5 17.3 19.0 620 3075 665
ADL-Rundle ACF-1 33.7 49.3 28.1 9.4 2497 3615 56
ADL-Rundle ACF-3 45.6 46.0 15.9 13.6 750 4713 68
KITTI-16 ACF 48.1 50.8 17.6 5.9 174 672 37
KITTI-19 ACF 49.4 59.5 14.5 14.5 553 2082 71
Venice-1 ACF 35.1 42.6 23.5 29.4 708 2220 33

All 44.1 46.7 18.0 26.2 6477 26577 1318

Table 3: A detailed summary of the tracking results of our Tracktor++ tracker on all three MOTChallenge benchmarks. The
results are separated into individual sequences and sets of public detections.
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