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In this supplementary material, we explore how perfor-
mance and complexity is affected when varying the key pa-
rameters of our approach. Via the ablation studies reported
here, we justify the choice of parameters used for our ex-
periments in the paper.

With regards to the parameters of the proposed graph
CNNs, we experiment with the non-residual (i.e., plain)
graph architecture (G-CNN) as a representative example,
and explore the performance when varying the depth of
graph convolution layer and the kernel size of graph con-
volution. Concerning the graph construction, our studied
parameters are the time interval under which we extract
events, the event sample size and the radius distance (R)
used to define the connectivity of the nodes. All experi-
ments reported in this supplementary note were conducted
on the N-Caltech101 dataset, since it has the highest num-
ber of classes among all datasets. Finally, training methods
and data augmentation follow the description given in Sec-
tion 5.1 of the paper.

1. Event Sample Size for Graph Construction
The primary source of input compression is the non-

uniform sampling of the events prior to graph-construction,
which is parameterized by k in the paper. We explore the
effects of this input compression by varying k and evaluat-
ing the accuracy to complexity (GFLOPs) tradeoff in Table
1. No compression (i.e., k = 1) gives accuracy/GFLOPs
= 0.636/3.74, whereas increasing compression with k = 12
gives accuracy/GFLOPs = 0.612/0.26 (i.e., 93% complexity
saving). This suggests that the accuracy is relatively insen-
sitive to compression up to k = 12 (with k = 8 providing
an optimal point) and it is the graph CNN that provides for
state-of-the-art accuracy.

2. Radius Distance
When constructing graphs, the radius-neighborhood-

graph strategy is used to define the connectivity of nodes.
The radius distance (R) is an important graph parameter:

Table 1: Top-1 accuracy and complexity (GFLOPs) w.r.t.
event sample size, parameterized by k.

k Accuracy GFLOPs
1 0.636 3.74
8 0.630 0.39

12 0.612 0.26

when the radius is large, the number of generated graph
edges increases, i.e., the graph becomes denser and needs
increased GFLOPs for the convolutional operations. On
the other hand, if we set a small radius, the connectivity
of nodes may decrease to the point that it does not repre-
sent the true spatio-temporal relations of events, which will
harm the classification accuracy. In this ablation study, we
varied the radius distance to R = {1.5, 3, 4.5, 6}, to find
the best distance with respect to accuracy and complexity.
The results are shown in Table 2, where we demonstrate
that radius distance above 3 cannot improve the model per-
formance while incurring significantly increased complex-
ity. Therefore, in our paper we set the radius distance to
3. Note that when radius distance changes from 4.5 to 6,
the required computation increases only slightly because of
the maximum connectivity degree Dmax that is set to 32 to
constrain the edge volume of graph.

Table 2: Top-1 accuracy and complexity (GFLOPs) w.r.t.
radius distance

Radius distance Accuracy GFLOPs
1.5 0.551 0.33
3 0.630 0.39

4.5 0.626 0.98
6 0.624 1.19

3. Time Interval of Events
For each sample, events within a fixed time interval

are randomly extracted to input to our object classification
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framework. In this study, we test under various time inter-
vals, i.e., 10, 30, 50 and 70 milliseconds, to see their effect
on the accuracy and computation. The results are shown in
Table 3. When extracting 30ms-events from one sample, the
model achieves the highest accuracy, with modest increase
in complexity over 10ms-events. Therefore, we opted for
this setting in our paper.

Table 3: Top-1 accuracy and complexity (GFLOPs) w.r.t.
the length of extracted events

length (ms) Accuracy GFLOPs
10 0.528 0.31
30 0.630 0.39
50 0.613 0.92
70 0.625 1.27

4. Depth of Graph Convolution Layers
As to the architecture of graph convolution networks, ex-

perimental studies by Li et al. [2] show that the model
performance saturates or even drops when increasing the
number of layers beyond a certain point, since graph convo-
lution essentially pushes representations of adjacent nodes
closer to each other. Therefore, the choice of depth of graph
convolution layers (D) affects the model performance as
well as its size and its complexity. In the following ex-
periment, we tested various depths from 2 to 6, each fol-
lowed by a max pooling layer, and subsequently conclud-
ing the architecture with two fully connected layers. The
number of output channels (Cout) in each convolution layer
and the cluster size ([sh, sw]) in each pooling layers were
as follows: (i) D = 2: Cout = (128, 256), [sh, sw] =
(16 × 12, 60 × 45); (ii) D = 3: Cout = (64, 128, 256),
[sh, sw] = (8 × 6, 16 × 12, 60 × 45); (iii) D = 4:
Cout = (64, 128, 256, 512), [sh, sw] = (4×3, 16×12, 30×
23, 60 × 45); (iv) D = 5: Cout = (64, 128, 256, 512, 512),
[sh, sw] = (4 × 3, 8 × 6, 16 × 12, 30 × 23, 60 × 45); (v)
D = 6: Cout = (64, 128, 256, 512, 512, 512), [sh, sw] =
(2 × 2, 4 × 3, 8 × 6, 16 × 12, 30 × 23, 60 × 45). For all
cases, the number of output channels of the two fully con-
nected layers were 1024 and 101 respectively. The results
are show in Table 4: while the highest accuracy is obtained
when the depth is 5, complexity (GFLOPs) and size (MB)
of the network is substantially increased in comparison to
D = 4. Therefore, in our paper, we set the depth of graph
convolution layer to D = 4.

5. Kernel Size
Kernel size determines how many neighboring nodes’

features are aggregated into the output node. This com-
prises a tradeoff between model size and accuracy. Unlike
conventional convolution, the number of FLOPs needed is

Table 4: Top-1 accuracy, complexity (GFLOPs) and size
(MB) of networks w.r.t. depth of convolution layer.

Depth Accuracy GFLOPs Size (MB)
2 0.514 0.11 5.53
3 0.587 0.16 6.31
4 0.630 0.39 18.81
5 0.634 1.05 43.81
6 0.615 2.99 68.81

independent of the kernel size. This is due to the local sup-
port property of the B-spline basis functions [1]. Therefore
we only report the accuracy and model size with respect to
various kernel sizes. In this comparison, the architecture is
the same as the G-CNNs in Section 5.1, with the only dif-
ference being that the kernel size is increasing between 2 to
6. The results are shown in the Table 5. When kernel size
is set as 3, 4, 5 and 6, the networks achieve the comparable
accuracy, while the size of network increases significantly
when the kernel size increases. In our paper, we set kernel
size in the graph convolution to 5, due to the slightly higher
accuracy it achieves. It is important to note that, even with
a kernel size of 5 that incurs a larger-size model in com-
parison to size of 3, our approach is still substantially less
complex than conventional deep CNNs, as shown in Table
3 in our paper.

Table 5: Top-1 accuracy and size (MB) of networks w.r.t.
kernel size

Kernel size Accuracy Size (MB)
2 0.543 5.02
3 0.626 8.30
4 0.621 12.90
5 0.630 18.81
6 0.627 26.02

6. Input Size for Deep CNNs

We investigate how the input size controls the tradeoff
between accuracy and complexity for conventional deep
CNNs trained on event images. We follow the training pro-
tocol and event image construction described in Section 5.2
of the paper, but now downsize the event image inputs to
various resolutions prior to processing with the reference
networks. The accuracy and complexity (GFLOPs) is re-
ported on N-Caltech101 in Table 6. ResNet-50 offers the
highest accuracy/GFLOPs tradeoff for conventional CNNs,
ranging from 0.637/3.87 to 0.517/0.28. However, our RG-
CNN trained on graph inputs surpasses accuracy of ResNet-
50 for all resolutions, whilst offering comparable complex-
ity (0.79 GFLOPs).



Table 6: Accuracy/GFLOPs of networks w.r.t. input size
on N-Caltech101, for conventional deep CNNs with event
image inputs.

Input Size VGG 19 Inception V4 ResNet 50
224× 224 0.549/19.63 0.578/9.24 0.637/3.87
112× 112 0.457/4.93 0.4272/1.63 0.595/1.02
56× 56 0.300/1.29 0.343/0.22 0.517/0.28
G-CNNs 0.630/0.39 RG-CNNs 0.657/0.79
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