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In this supplementary material, we provide the following,
additional information:


• Ablation study on the effect of end-to-end training
• Details about the scene classification performance of


Expert Selection and ESAC
• Runtime properties of ESAC including an analysis of


conditional computation
• Details about our experiments on large-scale outdoor


re-localization


1. End-to-End Training


See Fig. 1 for the effect of end-to-end training on the
overall accuracy. We initialize the experts by optimizing
the L1 distance to ground truth scene coordinates, and the
gating network by optimizing the negative log likelihood
classification loss (denoted Initialization). We then con-
tinue to train the gating network (E2E Gating), the experts
(E2E Experts) or the entire ensemble (E2E All) using the
ESAC objective. End-to-end training of each component
increases the average accuracy, and we achieve best accu-
racy when we train the entire ensemble jointly. The effect
of end-to-end training is significant but not large using the
common acceptance threshold of 5cm and 5◦. However,
lowering the threshold to 2cm and 2◦ reveals a large im-
provement in accuracy of > 10%. End-to-end training im-
proves foremost the precision of re-localization, and less so
the re-localization rate under a coarse threshold.


2. Scene Classification


In Fig. 2, we show the scene confusion matrices of our
ensemble trained with Expert Selection and ESAC. The
database contains multiple offices which look similar due to
ambiguous office equipment, see Fig. 3 for examples. Ex-
pert Selection chooses a scene according to the prediction of
the gating network, which is error prone. ESAC considers
multiple experts in ambiguous cases, and chooses the final
estimate according to geometric consistency.
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Figure 1. Effect of End-to-End Training. Average re-localization
accuracy of ESAC for 19Scenes when we train the entire ensemble
of networks or parts of it end-to-end. Top: Acceptance threshold
of 5cm and 5◦. Bottom: 2cm and 2◦.


3. Runtime Properties


ESAC needs only to evaluate experts with non-zero
probability assigned to them by the gating network. For
19Scenes, ESAC evaluates 6.1 experts in 555ms on aver-
age. Furthermore, we can restrict the maximum number of
experts per image, see Fig. 4. For example, using at most
the top 2 experts per test image, we gain +19.7% accuracy
over Expert Selection with just a minor increase in com-
putation time. At the other end of the spectrum, we could
always evaluate all experts and choose the best hypothe-
sis according to sample consensus, see Uniform Gating in
Fig. 4. This achieves good accuracy but is computation-
ally intensive. ESAC shows slightly higher accuracy and is
much faster. Also, ESAC almost reaches the accuracy of
Oracle Gating which always selects the correct expert via
the ground truth scene ID.


4. Large-Scale Outdoor Re-Localization


We provide details regarding our experiments on large-
scale outdoor re-localization. We apply ESAC to two large
outdoor re-localization datasets, namely Dubrovnik [2] and
Aachen Day [4].
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Figure 2. Scene Confusion. We compare confusion matrices of Expert Selection and ESAC for 7Scenes, 12Scenes and 19Scenes. The
Y-axis shows the true scene, the X-axis shows the estimated scene. The scene ordering on the X-axis (from left to right) follows the Y-axis
(from top to bottom). For 19Scenes, we mark scenes originating from 12Scenes with 12S and scenes originating from 7Scenes with 7S.
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Figure 3. Ambiguous Scenes. We show test frames of scenes that Expert Selection confuses often (cf. Fig. 2). We mark scenes originating
from 12Scenes with 12S and scenes originating from 7Scenes with 7S.


Max. 
Experts


Avg. 
Experts


Accuracy
Avg. 


Time (ms)


DSAC++ [1] - - 53.3% 940


Expert Selection 1 1 47.5% 307


ESAC (Ours)


1 1 49.9% 276


2 2 67.2% 343


3 2.9 75.3% 398


19 6.1 88.1% 555


Uniform Gating 19 19 87.8% 1,377


Oracle Gating 1 1 89.0% 120


Figure 4. Accuracy vs. Speed on 19Scenes. We measure the av-
erage processing time for an image on a single Tesla K80 GPU
including reading data. For ESAC, we can limit the maximum
number of top ranked experts evaluated for a test image.


Datasets. The Dubrovnik dataset is comprised of ca. 6k
holiday photographs taken in the old town of Dubrovnik.
Stemming from online photo collections, the images were
recorded with different cameras, and feature a multitude
of different focal lengths, resolutions and aspect ratios.
The Aachen Day dataset is comprised of ca. 4.5k images
taken in Aachen, Germany. Training and test images were
recorded using two separate but comparable camera types.
The full Aachen dataset also comes with a small collection
of difficult night time query images (Aachen Night) which
we omit here. There is no night time training data, and


bridging the resulting domain gap is out of scope of ESAC.
ESAC Training. Both datasets represent large connected
areas. For initializing the gating network and scene coordi-
nate experts, we divide each area into clusters via kMeans,
see Fig. 5 a) for an example. As input for clustering, we
use the median scene coordinate (median per dimension)
for each training image. To avoid quantization effects at the
cluster borders during initialization, we use the following
soft assignment of training images to experts. We express
the probability pe(I) of training image I belonging to the
cluster of expert e via a similarity measure S(I, e):


pe(I) =
S(I, e)∑
e′ S(I, e′)


. (1)


We define this similarity in terms of the distance between
the mean scene coordinate of image I , denoted ȳI , and the
cluster center ce:


S(I, e) =
1


2πσe
exp
−γ||ȳI − ce||2


2σe
, (2)


where σe is an estimate of the cluster size, and γ controls
the softness of the similarity. We use γ = 5, and the mean
squared distance of all images (resp. their median scene
coordinates) within a cluster to the cluster center as σe.
When initializing the gating network, me minimize the KL-
divergence of gating predictions g(e, I,w) and probabilities
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Figure 5. Qualitative Result on Aachen. a) Clustering of the
Aachen dataset used to initialize ESAC with M = 10 experts. b)
Positions of hypotheses drawn by DSAC++ for the query image
shown in a). Hypothesis sample consensus (hypothesis score) is
indicated by color, normalized over all hypotheses. c) Positions
of hypotheses drawn by ESAC. Contrary to DSAC++, hypotheses
form a clear cluster at the true position of the query image.


pe(I). When initializing an expert network e, we randomly
choose training images according to pe(I) and minimize the
L1 distance w.r.t. ground truth scene coordinates for 1M
iterations. We obtain ground truth scene coordinates by
rendering the sparse SfM reconstruction using the ground
truth pose for image I . Since ground truth scene coordi-
nates are sparse, we optimize the re-projection error of the
dense scene coordinate prediction for another 1M iterations,
hence following the two-stage initialization of DSAC++ [1].
Finally, we train the entire ensemble jointly and end-to-end
for 50k iterations using the ESAC objective. To support
generalization to different camera types and lighting con-
ditions, we convert all images to grayscale, and randomly
change brightness and contrast during training in the range
of 50-110% and 80-120%, respectively.
Discussion of Results. As stated in the main paper, ESAC
demonstrates largely improved accuracy on both outdoor
datasets compared to DSAC++ [1], see Fig. 5 for an qual-
itative example. However, is does not yet reach the ac-
curacy of ActiveSearch [3], a classic sparse feature-based
re-localization method. Especially on Dubrovnik, ESAC
stays far behind, even when using a substantial amount of
M = 50 experts.


Upon closer inspection, we find that the structure of
these datasets potentially contributes to the exceptional per-
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Figure 6. Ground Truth SfM Reconstructions. Both datasets
contain outlier 3D points in the ground truth reconstruction. The
outlier ratio is substantial for Dubrovnik, and still noticeable for
Aachen.


formance of ActiveSearch. Both datasets come with a 3D
model of the environment and ground truth training poses
created by running a sparse feature-based structure-from-
motion reconstruction tool on all images (training and test).
Images which are challenging for feature-based approaches
(i.e. images with little structure or motion blur) are natu-
rally not part of these datasets, since they are filtered at the
reconstruction stage. It might be problematic to compare
learning-based approaches to classical feature-based meth-
ods on datasets, where the ground truth was generated with
feature-based reconstruction tools.


Furthermore, the reconstructions are not perfect as they
contain a substantial amount of outlier points, see Fig. 6
for an illustration. ActiveSearch operates directly on top
of this reconstruction, and applies sophisticated outlier re-
jection schemas. In contrast, scene coordinate regression
methods like ESAC try to build geometrically consistent
internal representations of a map, encoded in the network
weights. Having visually similar image patches associ-
ated with very different ground truth scene coordinates (due
to outliers) might result in severe overfitting of the net-
work, which tries to tell patches apart that actually show the
same location. The poor accuracy of ESAC on Dubrovnik
compared to Aachen supports this interpretation, as the re-
localization accuracy corresponds well to the general re-
construction quality of both datasets. At the same time,
the question arises how meaningful the reported ≈1m re-
localization accuracy for ActiveSearch on the Dubrovnik
dataset is, given the ground truth quality. Note that geome-
try, training poses and test poses were all jointly optimized
during the SfM reconstruction. Inaccuracies in the geom-
etry might therefore hint towards limited accuracy of the
ground truth poses.
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