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In this supplementary material, we provide additional im-
plementation details that did not fit into the main paper but
can be helpful when reproducing our results. Note that we
will also make our code publicly available1, including pre-
trained models. This document contains:

Essential Matrix Estimation:

• list of scenes used for training and testing
• network architecture
• initialization procedure
• implementation details
• qualitative results
• detailed comparison with USAC
• runtime discussion

Fundamental Matrix Estimation:

• implementation details
• qualitative results

Horizon Lines:

• network architecture
• implementation details
• qualitative results

Camera Re-Localization:

• network architecture
• implementation details
• learned 3D representations

1vislearn.de/research/neural-guided-ransac/

1. Essential Matrix Estimation

List of Scenes Used for Training and Testing.

Training:

• Staint Peter’s (Outdoor)
• brown bm 3 - brown bm 3 (Indoor)

Testing (Outdoor):

• Buckingham
• Notre Dame
• Sacre Coeur
• Reichstag
• Fountain
• HerzJesu

Testing (Indoor):

• brown cogsci 2 - brown cogsci 2
• brown cogsci 6 - brown cogsci 6
• brown cogsci 8 - brown cogsci 8
• brown cs 3 - brown cs3
• brown cs 7 - brown cs7
• harvard c4 - hv c4 1
• harvard c10 - hv c10 2
• harvard corridor lounge - hv lounge1 2
• harvard robotics lab - hv s1 2
• hotel florence jx - florence hotel stair room all
• mit 32 g725 - g725 1
• mit 46 6conf - bcs floor6 conf 1
• mit 46 6lounge - bcs floor6 long
• mit w85g - g 0
• mit w85h - h2 1

Network Architecture. As mentioned in the main paper,
we replicated the architecture of Yi et al. [19] for our exper-
iments on epipolar geometry (estimating essential and fun-
damental matrices). For a schematic overview see Fig. 1.
The network takes a set of feature correspondences as in-
put, and predicts as output a weight for each correspon-
dence which we use to guide RANSAC hypothesis sam-
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Figure 1. NG-RANSAC Network Architecture for F/E-matrix Estimation. The network takes a set of feature correspondences as input
and predicts as output a weight for each correspondence. The network consists of linear layers interleaved by instance normalization [17],
batch normalization [8] and ReLUs [6]. The arc with a plus marks a skip connection for each of the twelve blocks [7]. This architecture
was proposed by Yi et al. [19].

pling. The network consists of a series of multilayer percep-
trons (MLPs) that process each correspondence indepen-
dently. We implement the MLPs with 1 × 1 convolutions.
The network infuses global context via instance normaliza-
tion layers [17], and it accelerate training via batch normal-
ization [8]. The main body of the network is comprised of
12 blocks with skip connections [7]. Each block consists of
two linear layers followed by instance normalization, batch
normalization and a ReLU activation [6] each. We apply a
Sigmoid activation to the last layer, and normalize by divid-
ing by the sum of outputs.2

Initialization Procedure. We initialize our network in the
following way. We define a target sampling distribution
g(y;E∗) using the ground truth essential matrix E∗ given
for each training pair. Intuitively, the target distribution
should return a high probability when a correspondence y is
aligned with the ground truth essential matrixE∗, and a low
probability otherwise. We assume that correspondence y is
a 4D vector containing two 2D image coordinates x and x′

(3D in homogeneous coordinates). We define the epipolar
error of a correspondence w.r.t. essential matrix E:

d(y, E) =
(x′
>
Ex)2

[Ex]20 + [Ex]21 + [E>x′]20 + [E>x′]21
, (1)

where [·]i returns the ith entry of a vector. Using the epipo-
lar error, we define the target sampling distribution:

g(y;E∗) =
1

2πσ2
exp

(
−d(y, E

∗)

2σ2

)
. (2)

2The original architecture of Yi et al. [19] uses a slightly different out-
put processing due to using the output as weights for a robust model fit.
They use a ReLU activation followed by a tanh activation.

Parameter σ controls the softness of the target distribution,
and we use σ = 10−3 which corresponds to the inlier
threshold we use for RANSAC. To initialize our network,
we minimize the KL divergence between the network pre-
diction p(y;w) and the target distribution g(y;E∗). We
initialize for 75k iterations using Adam [10] with a learning
rate of 10−3 and a batch size of 32.
Implementation Details. For the following components
we rely on the implementations provided by OpenCV [2]:
the 5-point algorithm [13], epipolar error, SIFT features
[12], feature matching, and essential matrix decomposition.
We extract 2000 features per input image which yields 2000
correspondences for image pairs after matching. When ap-
plying Lowe’s ratio criterion [12] for filtering and hence re-
ducing the number of correspondences, we randomly du-
plicate correspondences to restore the number of 2000. We
minimize the expected task loss using Adam [10] with a
learning rate of 10−5 and a batch size of 32. We choose
hyperparameters based on validation error of the Reichstag
scene. We observe that the magnitude of the validation er-
ror corresponds well to the magnitude of the training error,
i.e. a validation set would not be strictly required.

When calculating the AUC for evaluation, we adhere to
the protocol of Yi et al. [19] to ensure comparability. Yi et
al. approximate the AUC via the area under the cumulative
histogram with a bin width of 5◦.
Qualitative Results. We present additional qualitative re-
sults for indoor and outdoor scenarios in Fig. 2. We com-
pare results of RANSAC and NG-RANSAC, also visualiz-
ing neural guidance. We obtain these results in the high-
outlier setup, i.e. without using Lowe’s ratio criterion and
without using side information as additional network input.
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Figure 2. Qualitative Results for Essential Matrix Estimation. We compare results of RANSAC and NG-RANSAC. Below each result,
we give the angular error between estimated and true translation vectors, and estimated and true rotation matrices. We draw correspon-
dences in green if they adhere to the ground truth essential matrix with an inlier threshold of 10−3, and red otherwise.

Detailed Comparison with USAC. The accuracy of USAC
[14] and NG-RANSAC depend on the hypothesis budget
M , see Fig. 3. NG-RANSAC finds good hypotheses much
earlier than USAC, and achieves a reasonable accuracy by
drawing as few as 10 hypotheses. Fig. 4 shows a visualiza-
tion of progressive hypotheses search. USAC is designed
to draw the same hypotheses as RANSAC but in a differ-
ent order. Therefore, USAC samples degenerate hypotheses

(poor accuracy but high inlier count) eventually, even if it
gives them a low priority, see Fig. 4 bottom. NG-RANSAC
learns to suppress such hypotheses more effectively.

Interestingly, passing our learned weights to USAC
achieves significantly lower accuracy than passing match-
ing ratios to USAC. For example, for the outdoor set-
ting, w/o ratio filter and M = 103, USAC achieves
-0.27/-0.24/-0.34 AUC for 5◦/10◦/20◦ when using our
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Figure 3. Accuracy vs. Hypothesis Budget. We compare the
AUC of NG-RANSAC and USAC [14] for increasing number of
hypotheses M . a) with and b) without side information.

weights. The USAC/PROSAC sampling scheme assumes
that the probability of correspondences being inliers in-
creases monotonically with the sampling weight [3]. In
contrast, our training objective optimizes over entire pools
of hypotheses where correspondences are sampled indepen-
dently. Individual outlier correspondences might be ranked
high by the neural network, without affecting accuracy neg-
atively, thus violating the assumption of PROSAC.
Runtime. A forward pass of the network takes 3ms on
CPU (similar for GPU). The total runtime (and accuracy)
depends on the hypothesis count M . For M = 103, our im-
plementation of NG-RANSAC takes 90ms per image pair.
For M = 10, it takes 21ms.

2. Fundamental Matrix Estimation

Implementation Details. We reuse the architecture of
Fig. 1. To normalize image coordinates of feature matches,
we subtract the mean coordinate and divide by the coordi-
nate standard deviation, where we calculate mean and stan-
dard deviation over the training set. Ranftl and Koltun [15]
fit the final fundamental matrix to the top 20 weighted cor-
respondences as predicted by their network. Similarly, we
re-fit the final fundamental matrix to the largest inlier set
found by NG-RANSAC. This refinement step results in a
small but noticeable increase in accuracy. For the follow-
ing components we rely on the implementations provided
by OpenCV [2]: the 7-point algorithm, epipolar error, SIFT
features [12] and feature matching.
Qualitative Results. We present additional qualitative re-
sults for the Kitti dataset [5] in Fig. 5. We compare results of
RANSAC and NG-RANSAC, also visualizing neural guid-
ance as predicted by our network.

3. Horizon Lines

Network Architecture. We provide a schematic of our net-
work architecture for horizon line estimation in Fig. 6. The
network takes a 256 × 256px image as input. We re-scale
images of arbitrary aspect ratio such that the long side is
256px. We symmetrically zero-pad the short side to 256px.

The network has two output branches. The first branch pre-
dicts a set of 8× 8 = 64 2D points, our observations y(w),
to which we fit the horizon line. We apply a Sigmoid and
re-scale output points to [-1.5,1.5] in relative image coordi-
nates to support horizon lines outside the image area. We
implement the network in a fully convolutional way [11],
i.e. each output point is predicted for a patch, or restricted
receptive field, of the input image. Therefore, we shift the
coordinate of each output point to the center of its associ-
ated patch.

The second branch predicts sampling probabilities
p(y;w) for each output point. We apply a Sigmoid to the
output of the second branch, and normalize by dividing by
the sum of outputs. During training, we block the gradients
of the second output branch when back propagating to the
base network. The sampling gradients have larger variance
and magnitude than the observation gradients of the first
branch, especially in the beginning of training with a nega-
tive effect on convergence of the network as a whole. Intu-
itively, we want to give priority to the observation prediction
because they determine the accuracy of the final model pa-
rameters. The sampling prediction should address deficien-
cies in the observation predictions without influencing them
too much. The gradient blockade ensures these properties.
Implementation Details. We use a differentiable soft inlier
count [1] as scoring function, i.e.:

s(h,Y) = α
∑
y∈Y

1− sig[βd(y,h)− βτ ], (3)

where d(y,h) denotes the point-line distance between ob-
servation y and line hypothesis h. Hyperparameter α deter-
mines the softness of the scoring distribution in DSAC, β
determines the softness of the Sigmoid, and τ is the inlier
threshold. We use α = 0.1, β = 100 and τ = 0.05.

We convert input images to grayscale, and apply the fol-
lowing data augmentation strategy during training: We ran-
domly adjust brightness and contrast in the range of ±10%.
We randomly rotate/scale/shift images (and ground truth
horizon lines) in the range of ±5◦/20%/8px.

As discussed in the main paper, we use the normal-
ized maximum distance between a line hypothesis and the
ground truth horizon in the image as task loss `. This can
lead to stability issues when we sample line hypotheses with
very steep slope. Therefore, we clamp the task loss to a
maximum of 1, i.e. the normalized image height.

As mentioned before, some images in the HLW dataset
[18] have their horizon outside the image. Some of these
images contain virtually no visual cue where the horizon
exactly lies. Therefore, we find it beneficial to use a robust
variant of the task loss `′ that limits the influence of such
outliers. We use:

`′ =

{
` ` < 0.25

0.25
√
` otherwise

, (4)
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Figure 4. Hypothesis Search. We visualize the best hypothesis found after M ∈ {10, 100, 1000} iterations for RANSAC [4], USAC [14]
and NG-RANSAC. For each result, we give the number of correspondences which are also inliers for the ground truth model (GT Inliers,
drawn in green). We perform this experiment in the Indoor scenario, using side information and RootSIFT but without Lowe’s ratio filter.

i.e. we use the square root of the task loss after a magnitude
of 0.25, which is the magnitude up to which the AUC is
calculated when evaluating on HLW [18].
Qualitative Results. We present additional qualitative re-
sults for the HLW dataset [18] in Fig. 7.

4. Camera Re-Localization

Network Architecture. We provide a schematic of our net-
work architecture for camera re-localization in Fig. 8. The
network is a FCN [11] that takes an RGB image as input,
and predicts dense outputs, sub-sampled by a factor of 8.
The network has two output branches. The first branch pre-
dicts 3D scene coordinates [16], our observations y(w), to
which we fit the 6D camera pose. The second output branch
predicts sampling probabilities p(y;w) for the scene coor-

dinates. We apply a Sigmoid to the output of the second
branch, and normalize by dividing by the sum of outputs.
During training, we block the gradients of the second out-
put branch when back propagating to the base network. The
sampling gradients have larger variance and magnitude than
the observation gradients of the first branch, especially in
the beginning of training. This has a negative effect on con-
vergence of the network as a whole. Intuitively, we want to
give priority to the scene coordinate prediction because they
determine the accuracy of the pose estimate. The sampling
prediction should address deficiencies in the scene coordi-
nate predictions without influencing them too much. The
gradient blockade ensures these properties.
Implementation details. We follow the three-stage train-
ing procedure proposed by Brachmann and Rother for
DSAC++ [1].
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Figure 5. Qualitative Results for Fundamental Matrix Estimation. We compare results of RANSAC and NG-RANSAC. Below each
result, we give the percentage of inliers of the final model, the F-score which measures the alignment of estimated and true fundamental ma-
trix, and the mean epipolar error of estimated inlier correspondences w.r.t. the ground truth fundamental matrix. We draw correspondences
in green if they adhere to the ground truth fundamental matrix with an inlier threshold of 0.1px, and red otherwise.
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Figure 6. NG-DSAC Network Architecture for Horizon Line Estimation. The network takes a grayscale image as input and predicts as
output a set of 2D points and corresponding sampling weights. The network consists of convolution layers interleaved by batch normaliza-
tion [8] and ReLUs [6]. The arc with a plus marks a skip connection [7]. We use the gradient blockage during training to prevent direct
influence of the sampling prediction (second branch) to learning the observations (first branch).

Figure 7. Qualitative Results for Horizon Line Estimation. Next to each input image, we show the estimated horizon line in blue and the
true horizon line in green. We also show the observation points predicted by our network, colored by their sampling weight (dark = low).

Firstly, we optimize the distance between predicted and
ground truth scene coordinates. We obtain ground truth
scene coordinates by rendering the sparse reconstructions
given in the Cambridge Landmarks dataset [9]. We ignore
pixels with no corresponding 3D point in the reconstruction.
Since the reconstructions contain outlier 3D points, we use
the following robust distance:

(.y,y
∗) =

{
||y − y∗||2 ||y − y∗||2 < 10

10
√
||y − y∗||2 otherwise

, (5)

i.e. we use the Euclidean distance up to a threshold of 10m
after which we use the square root of the Euclidean distance.
We train the first stage for 500k iterations using Adam [10]

with a learning rate of 10−4 and a batch size of 1 image.

Secondly, we optimize the reprojection error of the scene
coordinate predictions w.r.t. to the ground truth camera
pose. Similar to the first stage, we use a robust distance
function with a threshold of 10px after which we use the
square root of the reprojection error. We train the second
stage for 300k iterations using Adam [10] with a learning
rate of 10−4 and a batch size of 1 image.

Thirdly, we optimize the expected task loss according to
the NG-DSAC objective as explained in the main paper. As
task loss we use ` = ∠(θ,θ∗)+ ||t−t∗||2. We measure the
angle between estimated camera rotation θ and ground truth
rotation θ∗ in degree. We measure the distance between the
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Figure 8. NG-DSAC++ Network Architecture for Camera Re-Localization. The network takes an RGB image as input and predicts as
output dense scene coordinates and corresponding sampling weights. The network consists of convolution layers followed by ReLUs [6].
Am arc with a plus marks a skip connection [7]. We use the gradient blockage during training to prevent direct influence of the sampling
prediction (second branch) to learning the scene coordinates (first branch).

DSAC++ NG-DSAC++ DSAC++

St. Marys Church Kings College

Figure 9. Learned 3D Representations. We visualize the internal representation of the neural network. We predict scene coordinates for
each training image, plotting them with their RGB color. For DSAC++ we choose training pixels randomly, for NG-DSAC++ we choose
randomly among the top 1000 pixels per training image according to the predicted distribution.

estimated camera position t and ground truth position t∗

in meters. As with horizon line estimation (see previous
section), we use a soft inlier count as hypothesis scoring
function with hyperparameters α = 10, β = 0.5 and τ =
10. We train the third stage for 200k iterations using Adam
[10] with a learning rate of 10−6 and a batch size of 1 image.

In the main paper, we report the translational accuracy.
The median rotational accuracies are between 0.2◦ to 0.3◦

for all scenes, and do hardly vary between methods. In our
experiments, we omitted the Street scene. Like DSAC++
[1] we failed to achieve sensible results for it. By visual
inspection, the corresponding SfM reconstruction seems to
be of poor quality, which potentially harms training.

Learned 3D Representations. We visualize the internal
3D scene representations learned by DSAC++ and NG-
DSAC++ in Fig. 9 for two more scenes.
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