
A. Evaluation images
No bias Surrogate bias only Mask bias only Mask+Surrogate

d`2 = 27.10 d`2 = 21.73 d`2 = 13.19 d`2 = 12.40

Perlin bias only Perlin+Surrogate Perlin+Mask Perlin+Mask+Surrogate
d`2 = 20.40 d`2 = 17.89 d`2 = 8.79 d`2 = 8.28

Original image Starting point

Figure 1. Targeted adversarial examples on ImageNet, obtained with different biases after 15000 iterations. The original class is ”snow-
plow” – all images are classified as the target ”Chesapeake Bay retriever”. The mask bias is especially effective, as start and original image
have similar backgrounds. See https://github.com/ttbrunner/biased_boundary_attack for an animated version.

https://github.com/ttbrunner/biased_boundary_attack


No bias Surrogate bias only Mask bias only Mask+Surrogate
d`2 = 42.36 d`2 = 40.51 d`2 = 42.69 d`2 = 41.69

Perlin bias only Perlin+Surrogate Perlin+Mask Perlin+Mask+Surrogate
d`2 = 34.92 d`2 = 35.19 d`2 = 12.37 d`2 = 10.54

Original image Starting point

Figure 2. Targeted adversarial examples on ImageNet, obtained with different biases after 15000 iterations. The original class is ”goose”
– all images are classified as the target ”lipstick”. In the case of this image, not every bias comes with an improvement: mask+surrogate
is even slightly worse than surrogate only. However, when all biases are combined the result is still significantly better. See https:
//github.com/ttbrunner/biased_boundary_attack for an animated version.

https://github.com/ttbrunner/biased_boundary_attack
https://github.com/ttbrunner/biased_boundary_attack


No bias Surrogate bias only Mask bias only Mask+Surrogate
d`2 = 47.36 d`2 = 57.74 d`2 = 40.10 d`2 = 41.84

Perlin bias only Perlin+Surrogate Perlin+Mask Perlin+Mask+Surrogate
d`2 = 12.20 d`2 = 11.46 d`2 = 8.56 d`2 = 5.90

Original image Starting point

Figure 3. Targeted adversarial examples on ImageNet, obtained with different biases after 15000 iterations. The original class is ”cello” –
all images are classified as the target ”black stork”. When used on its own, the surrogate bias seems to be detrimental for this particular
image. Still, the final result is impressive: when comparing no biases with all biases, the perturbation norm is reduced by 88%. See
https://github.com/ttbrunner/biased_boundary_attack for an animated version.

https://github.com/ttbrunner/biased_boundary_attack


B. Evaluation Hyperparameters
B.1. Boundary Attack

Step sizes. In the source code of their original implementation, Brendel et al. [1] suggest setting both the orthogonal step
to η = 0.01 and the source step to ε = 0.01. Both step sizes are relative to the current distance from the source image. We
instead set η = 0.05 and ε = 0.002, as this makes the attack take smaller steps towards the source image, while at the same
time allowing for more extreme perturbations in the orthogonal step. We have found this to increase the success chance of
perturbation candidates, and the attack gets stuck less often.

Step size adaptation. We do not use the original step size adjustment scheme as proposed by Brendel et al. [1]. They collect
statistics about the success of the orthogonal step before performing the step towards the source, and based on this they either
reduce or increase the individual step sizes.

This method seems to be geared towards reaching near-zero perturbations and less towards query efficiency, which is our
primary goal – we are interested in making as much progress as possible in the early stages of an attack. When testing the
Boundary Attack with query counts below 15000, we found the success statistics to be very noisy and the adaptation scheme
ended up being detrimental. Therefore, we opt for a different approach:

• At every iteration, we count the number of consecutive previously unsuccessful candidates.

• As this number increases, we dynamically reduce both step sizes towards zero.

• Whenever a perturbation is successful, the step size is reset to its original value.

• As a fail-safe, the step size is also reset after 50 consecutive failures. Typically, we found this to occur often for the
unbiased Boundary Attack, but very seldom when using the Perlin bias.

As a result, our strategy is quick to reduce step size, and after success immediately reverts to the original step size. We have
found this to be very effective in the early stages of an attack. However, it has the drawback of wasting samples in the later
stages (10000+ queries), when it tries to revert to larger step sizes too often. It might be promising to partially reinstate the
approach of Brendel et al., or to apply some form of step size annealing.

B.2. Other attacks

For all other attacks, we use the hyperparameters that are provided for ImageNet in the publicly available source code of their
implementations.



C. Submission to NeurIPS 2018 Adversarial Vision Challenge
When evaluating adversarial attacks and defenses, it is hard to obtain meaningful results. Very often, attacks are tested against
weak defenses and vice versa, and results are cherry-picked. We sidestep this problem by instead presenting our submission
to the NeurIPS 2018 Adversarial Vision Challenge (AVC), where our method was pitted against state-of-the-art robust models
and defenses and won second place in the targeted attack track.

Evaluation setting. The AVC is an open competition between image classifiers and adversarial attacks in an iterative black-
box decision-based setting [2]. Participants can choose between three tracks:

• Robust model: The submitted code is a robust image classifier. The goal is to maximize the `2 norm of any successful
adversarial perturbation.

• Untargeted attack: The submitted code must find a perturbation that changes classifier output, while minimizing the `2

distance to the original image.

• Targeted attack: Same as above, but the classification must be changed to a specific label.

Attacks are continuously evaluated against the current top-5 robust models and vice versa. Each evaluation run consists
of 200 images with a resolution of 64x64, and the attacker is allowed to query the model 1000 times for each image. The
final attack score is then determined by the median `2 norm of the perturbation over all 200 images and top-5 models (lower
is better).

Competitors. At the time of writing, the exact methods of most model submissions were not yet published. But seeing as
more than 60 teams competed in the challenge, it is reasonable to assume that the top-5 models accurately depicted the state
of the art in adversarial robustness. We know from personal correspondence that most winning models used variations of
Ensemble Adversarial Training [3], while denoisers were notably absent. On the attack side, most winners used variants of
PGD transfer attacks, again in combination with large adversarially-trained ensembles.

Dataset. The models are trained with the Tiny ImageNet dataset, which is a down-scaled version of the ImageNet classifica-
tion dataset, limited to 200 classes with 500 images each. Model input consists of color images with 64x64 pixels, and the
output is one of 200 labels. The evaluation is conducted with a secret hold-out set of images, which is not contained in the
original dataset and unknown to participants of the challenge.

C.1. Random guessing with low frequency

Before implementing the biased Boundary Attack, we first conduct a simple experiment to demonstrate the effectiveness
of Perlin noise patterns against strong defenses. Specifically, we run a random-guessing attack that samples candidates
uniformly from the surface of a `2-hypersphere with radius ε around the original image:

s ∼ N (0, 1)k; xadv = x0 + ε · s

‖s‖2
(1)

With a total budget of 1000 queries to the model for each image, we use binary search to reduce the sampling distance ε
whenever an adversarial example is found. First experiments have indicated that the targeted setting may be too difficult for
pure random guessing. Therefore we limit this experiment to the untargeted attack track, where the probability of randomly
sampling any of 199 adversarial labels is reasonably high. We then replace the distribution with normalized Perlin noise:

s ∼ Perlin64,64(v); xadv = x0 + ε · s

‖s‖2
(2)

We set the Perlin frequency to 5 for all attacks on Tiny ImageNet. As Table 1 shows, Perlin patterns are more efficient and the
attack finds adversarial perturbations with much lower distance (63% reduction). Although intended as a dummy submission
to the AVC, this attack was already strong enough for a top-10 placement in the untargeted track. An example obtained in
this experiment can be seen in Figure 1.

C.2. Biased Boundary Attack

Next, we evaluate the biased Boundary Attack in our intended setting, the targeted attack track in the AVC. To provide a point
of reference, we first implement the original Boundary Attack without biases. This works, but is too slow for our setting.
Compare Figure 4, where the starting point is still clearly visible after 1000 iterations (in the unbiased case).



DISTRIBUTION MEDIAN `2

NORMAL 11.15
PERLIN NOISE 4.28

Table 1. Random guessing with low frequency (untargeted),
evaluated against the top-5 models in the AVC.

BOUNDARY ATTACK BIAS MEDIAN `2

NONE 20.2
PERLIN 15.1
PERLIN + SURROGATE GRADIENTS 9.5

Table 2. Biases for the Boundary Attack (targeted), evaluated
against the top-5 models in the AVC.

Original Unbiased Perlin Perlin + Surrogate

European fire salamander Sulphur butterfly Sulphur butterfly Sulphur butterfly

Starting image d`2 = 9.4 d`2 = 7.5 d`2 = 4.4

Figure 4. Adversarial examples generated with different biases in our targeted attack submission to the AVC. All images were obtained
after 1000 queries. The isolated perturbation is shown below each adversarial example.

Perlin bias. We add our first bias, low-frequency noise. As before, we simply replace the distribution from which the attack
samples the orthogonal step with Perlin patterns. See Table 2, where this alone decreases the median `2 distance by 25%.

Surrogate gradient bias. We also add projected gradients from a surrogate model and set the bias strength w to 0.5. This
further reduces the median `2 distance by another 37%, or a total of 53% when compared with the original Boundary Attack.
1000 iterations are enough to make the butterfly almost invisible to the human eye (see Figure 4).

Here, the efficiency boost is much larger than in our ImageNet evaluation in Section 4. This may be due to our choice
of surrogate models: In our submission to the AVC, we simply combined the publicly available baselines (ResNet18 and
ResNet50). This ensemble is notably stronger than the simple model we used for the ImageNet evaluation, as the ResNet50
model is adversarially trained. However, it is also significantly weaker than the ones used by other winning AVC attack
submissions, most of which were found to use much larger ensembles of carefully-trained models.1 Nevertheless, our attack
outperformed most of them which reinforces our earlier claim: Our method seems to make more efficient use of surrogate
models than direct transfer attacks.

Mask Bias. We did not implement the mask bias in our entry to the AVC because of time constraints.

The source code of our submission is publicly available.2

1https://medium.com/bethgelab/results-of-the-nips-adversarial-vision-challenge-2018-e1e21b690149
2https://github.com/ttbrunner/biased_boundary_attack_avc

https://medium.com/bethgelab/results-of-the-nips-adversarial-vision-challenge-2018-e1e21b690149
https://github.com/ttbrunner/biased_boundary_attack_avc


References
[1] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable attacks against black-box machine

learning models. In International Conference on Learning Representations, 2018. 4
[2] Wieland Brendel, Jonas Rauber, Alexey Kurakin, Nicolas Papernot, Behar Veliqi, Marcel Salathé, Sharada P. Mohanty, and Matthias

Bethge. Adversarial vision challenge. arXiv preprint arXiv:1808.01976, 2018. 5
[3] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. Ensemble adversarial training:

Attacks and defenses. In International Conference on Learning Representations, 2018. 5


