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1. Optical Model Details

1.1. Implementation Details

We model three wavelengths, corresponding to the three
RGB color channels: 635, 550, and 450 nm. In simulations,
the optical material used for index of refraction parameters
is PMMA; in our physical prototype, our lens is an N-BK7
lens. In simulations the sensor pixel size is 8 microns; in
our physical protoype, the sensor pixel size is 4.29 microns.

1.2. Phase Masks for Custom PSFs

In our optical model, we separate the standard thin lens
profile from the customizable phase mask profile, which can
be used to add in additional aberrations to the PSF. Note
that naive chromatic aberration is not modeled with an addi-
tional phase mask, but rather with the wavelength parameter
itself and the wavelength-dependent index of refraction of
the lens material. We parametrize the additional phase mask
with a Zernike polynomial basis, Z1-Z36 [9]. Zernike poly-
nomials have been used previously for several optical engi-
neering applications, including vision correction in opthal-
mology [6], extended-depth-of-field imaging [11], and su-
perresolution microscopy [2]. An example of a randomly
generated phase mask built from Z1-Z10 and the resulting
PSF stack is shown in Fig. S1.

Astigmatism In our simulations, we include the case of
a fixed achromatic lens with astigmatism. By adjusting the
Zernike coefficient corresponding to polynomial Z5, we can
control the degree of astigmatism introduced in the resulting
lens system. The surface profile of the astigmatism phase
mask and corresponding PSFs are shown in Fig. S1.

Annular phase mask Inspired by Haim et al. [3], we also
evaluate an annular phase mask in our depth estimation sim-
ulations. This mask consists of concentric rings at different
optimizable heights (Fig. S1). Haim et al. additionally opti-
mize the ring radii, but for our version of the annular mask,

phase mask PSFs, 0.5 m (top-left) to 8 m (bottom-right)
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Figure S1. Phase mask surface profiles and PSFs. Examples
shown for achromatic astigmatism, random Zernike coefficients
Z1-Z10, and an annular phase mask.

we fix the ring radii to their reported optimal normalized
ring radii (r = {0.55, 0.8, 1}).

1.3. Image Formation

We use a layered representation that models the scene
as a set of planar surfaces at a discrete number of depth
planes [4]. In the original layered model, the all-in-focus
image was segmented out by each layer’s depth mask and
inpainted to fill occluded regions before convolution. In our
simulations, instead of using extra computations to inpaint
occluded regions, we simply use the full image when con-
volving with each PSF.

For an all-in-focus image L, a set of j = 1 . . . J dis-
crete depth layers with pre-commputed PSFs {PSFj}, and
occlusion masks {Mj}, we calculate our final image by:

Iλ =

J∑
j=1

(Lλ ∗ PSFλ,j) ◦Mλ,j (1)
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Figure S2. Rectangles dataset. Sensor images of white rectan-
gles placed at different depths (z) against a black background from
various optical models (all-in-focus, defocus-only, and chromatic
aberration). Average predicted depths (ẑ) of the object are listed
below each image. During training and testing, rectangles are ran-
domly sized.

where ∗ denotes 2D convolution for each color channel
centered on λ, and ◦ denotes element-wise multiplication.
The cumulative occlusion masks {Mj} are alpha masks that
modulate how much light from each layer is captured by
the sensor. The masks are generated with the blurred binary
depth masks, {Ak}, from current and preceding layers:

M’j = (1−Mj+1)(Aj ∗ PSFj), j < J (2)
M’J = AJ ∗ PSFJ (3)

Here, layer J is the layer closest to the camera that is not
occluded by any additional layers, so M′

J simply consists
of the regions of the depth map that fall into this layer, AJ ,
blurred by PSFJ . Each layer behind J is occluded by the
layers in front of it. Finally, {M′

j} are normalized to {Mj}
such that the sum of occlusion mask weights at each pixel
location sums to 1.

For our experiments, we used J = 12, and depth inter-
vals were spaced evenly in inverse depth. The depth ranges
for each dataset were: Rectangles, 0.5 m to 10 m; NYU
Depth v2, 0.5 m to 8 m; KITTI, 5 m to 80 m.

2. Depth Estimation
2.1. Rectangles Dataset

In addition to two standard datasets, we created a cus-
tom dataset consisting of randomly shaped white rectan-
gles placed at random depths against a black background.
For this dataset, depth estimation error was only considered
in the object region so that the constant-depth background
would not skew the results.

The Rectangles dataset represents an extreme situation
where pictorial cues are insufficient for depth estimation.

Figure S3. Optical prototype. (Left) Our optical prototype, which
consists of a Canon camera and a Thorlabs singlet lens. (Right)
Images of the lens and aperture mask for chromatic aberration im-
ages, followed by the pinhole mask for all-in-focus images.

From Fig. S2, the all-in-focus images of this dataset make
it intuitive that depth cannot be predicted from a single
RGB image without additional information, and the con-
stant mean-depth-valued predicted depths support this.

With defocus blur, there is some encoding of depth in-
formation into the sensor images, but there is still some am-
biguity whether an object is in front of or behind the focal
plane (1 m in this example). With the addition of chromatic
aberrations, this ambiguity is resolved, and the predicted
depths match the grount truth depths much more closely.
The remaining error stems from the limited number of depth
intervals used during our simulations.

2.2. Prototype PSF Calibration

For our real-world experiments, it was first necessary to
calibrate the PSFs from the optical prototype (Fig. S3) with
the PSFs from our simulated model. We captured a series of
images with the camera placed at increasing distances from
a point white light source (Thorlabs MWWHL3) and com-
pared these with the simulated PSFs at the same distances.
Fig. S4 shows the effects of adding in each calibration step
of matching focus distance, downsampling, and spherical
aberration. Primary spherical aberration was tuned by ad-
justing Zernike polynomial Z4

0 , or equivalently the 11th in
the Noll index [7, 9]. Some differences remain since we
only model three wavelengths in the simulation whereas
the light source consists of a continuous spectrum of wave-
lengths. More complex modeling of the spatially-varying
nature of the PSF could further improve accuracy and would
be valuable to explore in future work. The final calibrated
PSFs were then used to retrain the depth estimation network
on the NYU Depth v2 dataset.
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simulated PSFs

Figure S4. PSF calibration. Captured PSFs and simulated PSFs with calibration adjustments, over a range of depths. Each consecutive
line of simulated PSFs includes the calibration adjustments of those above it. Scale bar applies to all PSFs and refers to size on sensor.

Model RMSElin RMSElog δ1

All-in-focus 2.9100 0.1083 0.9444
Optimized 1.9288 0.0621 0.9864
Optimized (DORN) 2.5999 0.0923 0.9630

Table S1. Depth estimation performance on our validation set
for the all-in-focus model, optimized mask model, and optimized
mask model with DORN depth. Root-mean-square-error (RMSE)
is reported for linear and log scaling of depth (m or log(m)).
Thresholds δ1 are calculated as in [1].

2.3. Extended Results

In the Supplemental Materials, we include a sample
video of a KITTI drive sequence with our predicted depth
maps using the optimized lens. Due to file size con-
straints, the full set of comparison videos can be found on-
line (http://www.computationalimaging.org/
publications/deep-optics-depth/). These se-
quences consist of images from both the training and vali-
dation sets. The depth colormaps are scaled as in Fig. 4 of
the main paper.

We show extended real-world results that also include
the all-in-focus captured images in Fig. S5.

3. 3D Object Detection

3.1. 2D Object Detection

Since our 3D object detection network (adapted from
FPointNet, [10]) relies on the outputs of a 2D object de-
tection network during region proposal, we separately train
2D object detection networks on the KITTI dataset for use
during 3D object detection. We download a Faster R-CNN

model (with Inception Resnet v2, Atrous version [5]), pre-
trained on the MS-COCO dataset, and fine-tune it for the
KITTI categories. We train one network using the original
all-in-focus images from our training split of the object de-
tection dataset, and another network using the correspond-
ing blurred images from the lens optimized for depth esti-
mation. We train for 100,925 iterations with a batch size of
1, using the Momentum optimizer at a learning rate of 3e-4
that decays to 3e-5 after 500,000 iterations.

3.2. 3D Object Detection

To use FPointNet with our RGB and predicted depth in-
puts, we project the dense predicted depth maps into a 3D
point cloud using camera calibration information from the
KITTI dataset. Since the top section of the predicted depth
maps tends to be unreliable, we ignore the first 100 rows
of the predicted depth map when creating the point cloud.
We also ignore any negative predicted depth values. Once
depth information is in the point cloud format, the original
FPointNet implementation can be used.

Again, we train one model using the all-in-focus RGB
images and predicted depths, and another using the blurred
RGB images from the lens optimized for depth estimation
and their predicted depths. We train for 101 epochs with
a batch size of 32, using the ADAM optimizer and a de-
cay rate of 0.5 every 800,000 steps. We set the number of
points sampled in each frustrum to be 1024. During train-
ing, we use ground truth 2D bounding boxes with pertur-
bation. During validation and testing, we use 2D bounding
boxes from our retrained 2D object detection networks. Re-
sults would likely be improved with more dedicated atten-
tion to the architecture and hyperparameters of these detec-
tion networks.
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3D object localization 3D object detection
Method Easy Moderate Hard Easy Moderate Hard
All-in-focus (val) 26.71 19.87 19.11 16.86 13.82 13.26
Optimized (val) 37.51 25.83 21.05 25.20 17.07 13.43
All-in-focus (test) 13.78 4.73 4.36 10.58 2.34 1.82
Optimized, DORN (test) 9.99 5.43 5.05 5.40 3.14 2.70

Table S2. 3D object localization AP % (bird’s eye view) and 3D object detection AP % (IoU= 0.7) for the car class. The table compares
the performance of our validation split, for which we were able to use a more accurate dense depth map, and the KITTI test set, for which
we used dense depth maps generated by DORN. The higher AP values for each dataset comparison are bolded.

A sample video with output 3D bounding boxes from a
KITTI drive sequence is included in the Supplementary Ma-
terials. The top panel shows bounding box predictions for
the all-in-focus model, and the bottom panel shows bound-
ing box predictions for the optimized lens model.

3.3. Assessment on KITTI Test Set

In the main paper, we reported results on our validation
split of the KITTI object detection dataset. In our image for-
mation model, we require dense depth maps to accurately
simulate sensor images with optical blur. We were able to
obtain more accurate dense depth maps for the subset of the
official object detection training set that overlapped with
the depth estimation dataset, since these images had more
ground truth depth points to facilitate sparse to dense depth
completion [8].

However, for the official object detection testing dataset,
we did not have this ground truth information (only sparse
LIDAR) and instead used DORN, a leading monocular
depth estimation network, to generate the pseudo-truth
depth maps we input into our model. We retrain the
depth estimation network with the optimized lens using the
DORN depth maps to simulate sensor images. As listed
in Table S1, depth estimation performance decreases due
to the inaccuracy in the sensor images, but errors are still
lower than the all-in-focus model (recall, the all-in-focus
model does not require dense depth maps since the original
dataset image is used).

We also retrain the FPointNet model using these outputs.
The same 2D object detection model is used to predict 2D
bounding boxes to feed into the 3D network for testing.
In Table S2, we report the 3D object detection results on
the test set using the DORN-based dense depth maps. The
depth estimation errors carry through to the object detec-
tion task, resulting in less accuracy in the predicted bound-
ing boxes. The results show that the average precision (AP)
in bounding box estimation for the easy, or least occluded,
division is lower for the optimized model than the all-in-
focus model, whereas the AP for the moderate and hard
divisions is higher for the optimized model than the all-in-
focus model. We include these results in the supplement for

thoroughness, though they do not fully reflect the capabil-
ities of the optimized element. With more accurate dense
depth maps for the test dataset, more accurate 3D bounding
box predictions would likely also be obtained.
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Figure S5. Extended real-world results. Examples of all-in-focus and chromatic aberration captured images and the predicted depth
maps from each. All-in-focus images are obtained by inserting a pinhole in front of the imaging lens while the camera is kept in the same
position. We encourage the electronic viewer to zoom-in for comparison of captured images. Colormap for is the same for all depth maps.
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