
Appendix A. The Misalignment Problem

As shown in Figure 5, up-sampling after the strided con-
volution with odd convolutional filter, e.g. 3× 3, will cause
the entire feature map to move to the lower right, which is
problematic when we add the up-sampled shifted map with
the unshifted map.

Figure 5: Strided convolution may cause misaligned feature
maps after up-sampling.

Appendix B. Relative Theoretical Gains of
OctConv

In Table 1 of the main paper, we reported the relative the-
oretical gains of the proposed multi-frequency feature rep-
resentation over regular feature representation with respect
to memory footprint and computational cost, as measured in
FLOPS (i.e. multiplications and additions). In this section,
we show how the gains are estimated in theory.

Memory cost. The proposed OctConv stores the feature
representation in a multi-frequency feature representation
as shown in Figure 6, where the low frequency tensor is
stored in 2× lower spatial resolution and thus cost 75% less
space to store the low frequency maps compared with the
conventional feature representation. The relative memory
cost is conditional on the ratio (α) and is calculated by

1− 3

4
α. (5)

Computational cost. The computational cost of OctConv
is proportional to the number of locations and channels that
are needed to be convolved on. Following the design shown
in Figure 2 in the main paper, we need to compute four
paths, namely H → H , H → L, L→ H , and L→ L.

We assume the convolution kernel size is k× k, the spa-
tial resolution of the high-frequency feature is h × w, and
there are (1 − α)c channels in the high-frequency part and
αc channels in the low-frequency part. Then the FLOPS for

!

"

#

(a)

!

"

#$

%& ' #($

(b)

Figure 6: (a) The conventional feature representation used
by vanilla convolution. (c) The proposed multi-frequency
feature representation stores the smoothly changing, low-
frequency maps in a low-resolution tensor to reduce spatial
redundancy, used by Octave Convolution. The figure is ro-
tated compared to the one in the main paper for clarity.

computing each paths are calculated as below.

FLOPS(Y H→H) = h× w × k2 × (1− α)2 × c2

FLOPS(Y H→L) =
h

2
× w

2
× k2 × α× (1− α)× c2

FLOPS(Y L→H) =
h

2
× w

2
× k2 × (1− α)× α× c2

FLOPS(Y L→L) =
h

2
× w

2
× k2 × α2 × c2

(6)
We omit FLOPS for adding Y H→H and Y L→H together,

as well as that of adding Y L→L and Y H→H together, since
the FLOPS of such addition is less than h × w × c, and is
negligible compared with other computational costs. The
computational cost of the pooling operation is also ignor-
able compared with other computational cost. The nearest
neighborhood up-sampling is basically duplicating values
which does not involves any computational cost. Therefore,
by adding up all FLOPS in Eqn 6, we can estimate the over-
all FLOPS for compute Y H and Y L in Eqn 7.

FLOPS([Y H , Y L]) = (1− 3

4
α(2− α))× h× w × k2 × c2

(7)
For vanilla convolution, the FLOPS for computing out-

put feature map Y of size c × h × w with the kernel size
k × k, and input feature map of size c × h × w, can be
estimated as below.

FLOPS(Y) = h× w × k2 × c2 (8)

three out of four internal convolution operations are con-
ducted on the lower resolution tensors except the first con-
volution, i.e. f(XH ,WH−→H). Thus, the relative com-
putational cost compared with vanilla convolution using
the same kernel size and number of input/out channels is:

Therefore, the computational cost ratio between the Oct-
Conv and vanilla convolution is (1− 3

4α(2− α)).

(1− α)2c2 + 1
2α(1− α)c

2 + 1
4α

2c2

c2

= 1− 3

4
α(2− α).

(9)

Note that the computational cost of the pooling operation
is ignorable and thus is not considered. The nearest neigh-
borhood up-sampling is basically duplicating values which
does not involves any computational cost.

Appendix C. ImageNet Ablation Study Results
Table 7 shows that the gain of OctConv over baseline

models increases as the test image resolution grows. Such
ability of better detecting large objects can be explained as
the larger receptive field of each OctConv.

Table 8 shows an ablation study to examine down-
sampling and inter-octave connectivity on ImageNet. The
results confirm the importance of having both inter-
frequency communication paths. It also shows that pooling
methods are better than strided convolution and the average
pooling works the best.

Table 9 reports the values that are plotted in Figure 4 of
the main text for clarity of presentation and to allow future
work to compare to the precise numbers.

Model ratio (α)
Testing Scale (small −→ large)

256 320 384 448 512 576 640 740

ResNet-50 N/A 77.2 78.6 78.7 78.7 78.3 77.6 76.7 75.8
Oct-ResNet-50 .5 +0.7 +0.7 +0.9 +0.9 +0.8 +1.0 +1.1 +1.2

Table 7: ImageNet classification accuracy. The short length
of input images are resized to the target crop size while
keeping the aspect ratio unchanged. A centre crop is
adopted if the input image size is not square. ResNet-50
backbone trained with crops size of 256× 256 pixels.

Method Down-sampling Low −→ High High −→ Low Top-1 (%)

Oct-ResNet-50
ratio: 0.5

avg. pooling 76.0
avg. pooling X 76.4
avg. pooling X 76.4

strided conv. X X 76.3
max. pooling X X 77.0
avg. pooling X X 77.4

Table 8: Ablation on down-sampling and inter-octave con-
nectivity on ImageNet. Note that MG-Conv [25] uses max
pooling for down-sampling.

Backbone baseline α = 0.125 α = 0.25 α = 0.5 α = 0.75

ResNet-26
GFLOPs 2.353 2.102 1.871 1.491 1.216

Top-1 acc. 73.2 75.8 76.1 75.5 74.6

DenseNet-121
GFLOPs 2.852 2.428 2.044 - -

Top-1 acc. 75.4 76.1 75.9 - -

ResNet-50
GFLOPs 4.105 3.587 3.123 2.383 1.891

Top-1 acc. 77.0 78.2 78.0 77.4 76.7

SE-ResNet-50
GFLOPs 4.113 3.594 3.130 2.389 1.896

Top-1 acc. 77.6 78.7 78.4 77.9 77.4

ResNeXt-50
GFLOPs 4.250 - 3.196 2.406 1.891

Top-1 acc. 78.4 - 78.8 78.4 77.5

ResNet-101
GFLOPs 7.822 6.656 5.625 4.012 -

Top-1 acc. 78.5 79.2 79.2 78.7 -

ResNeXt-101
GFLOPs 7.993 - 5.719 4.050 -

Top-1 acc. 79.4 - 79.6 78.9 -

ResNet-200
GFLOPs 15.044 12.623 10.497 7.183 -

Top-1 acc. 79.6 80.0 79.8 79.5 -

Table 9: Ablation study on ImageNet in table form corre-
sponding to the plots in Figure 4 in the main paper. Note:
All networks are trained with naı̈ve softmax loss without
label smoothing [40] or mixup [48]

