Supplementary File

Binghui Chen, Weihong Deng, Jiani Hu Beijing University of Posts and Telecommunications

chenbinghui@bupt.edu.cn, whdeng@bupt.edu.cn, jnhu@bupt.edu.cn

1. Proof for matrixes integration

$$\mathbf{a}(\mathbf{x}) = \mathbf{P}^{1T}(\mathbf{w}^1 \odot \mathbf{x}) + \sum_{r=2}^{R} \mathbf{P}^{rT}(\boldsymbol{\alpha}^r \odot \mathbf{z}^r) \qquad (1)$$
$$\mathbf{a}(\mathbf{x}) = \widehat{\mathbf{w}}^{1T} \mathbf{x} + \sum_{r=2}^{R} \widehat{\boldsymbol{\alpha}}^{rT} \mathbf{z}^r \qquad (2)$$

$$\mathbf{a}(\mathbf{x}) = \widehat{\mathbf{w}}^{1T} \mathbf{x} + \sum_{r=2}^{R} \widehat{\boldsymbol{\alpha}}^{rT} \mathbf{z}^{r}$$
 (2)

As described in paper, Eq.1 is integrated into Eq.2 via matrix integration. Below, we will provide a simple proof.

Proof. Now, we consider integrate $\{\mathbf{P}^1, \mathbf{w}^1\}$ into a new single matrix $\widehat{\mathbf{w}}^1$. We have $\mathbf{P}^1 \in \mathbb{R}^{C \times C}$, $\mathbf{w}^1 \in \mathbb{R}^C$, $\mathbf{x} \in$

$$\mathbf{P}^{1} = \begin{bmatrix} p_{1,1} & \cdots & p_{1,c} \\ \vdots & & \vdots \\ p_{c,1} & \cdots & p_{c,c} \end{bmatrix}, \ \mathbf{w}^{1} = \begin{bmatrix} w_{1} \\ \vdots \\ w_{c} \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{c} \end{bmatrix}$$

computing $\mathbf{P}^{1T}(\mathbf{w}^1 \odot \mathbf{x})$, we will have:

$$\mathbf{P}^{1T}(\mathbf{w}^1 \odot \mathbf{x}) = \begin{bmatrix} p_{1,1}w_1x_1 + \dots + p_{c,1}w_cx_c \\ \vdots \\ p_{1,c}w_1x_1 + \dots + p_{c,c}w_cx_c \end{bmatrix}$$
(3)

since $p_{i,j}$ and w_i are both learnable parameters, let $\widehat{w}_{i,j}^1 =$ $p_{i,j}w_i$, we will have a new matrix $\hat{\mathbf{w}}^1 \in \mathbb{R}^{C \times C}$, where the *i*-th row, *j*-th column value is $\widehat{w}_{i,j}^1$. Then, $\mathbf{P}^{1T}(\mathbf{w}^1 \odot \mathbf{x}) =$ $\hat{\mathbf{w}}^{1T}\mathbf{x}$

Learning the term $p_{i,j}w_i$ is equivalent to learning a single $\widehat{w}_{i,j}^1$, as a result, we can integrate $\{\mathbf{P}^1, \mathbf{w}^1\}$ into the single matrix $\hat{\mathbf{w}}^1$. Similarly, $\{\mathbf{P}^r, \boldsymbol{\alpha}^r\}$ can be integrated into $\widehat{\boldsymbol{\alpha}}^r$.

2. Ablation study on λ

To show the effect of hyper-parameter λ , we conduct experiments as in Tab.1 and Tab.2. One can observe that if using an appropriate value of λ , the performances of MHN-6(IDE/PCB) can be the best. And we set λ to be 1 and 1.4 for MHN-6(IDE) and MHN-6(PCB) respectively throughout our experiments.

	DukeMTMC-ReID		Market-1501	
	R-1	mAP	R-1	mAP
$\lambda = 0$	85.5	70.8	91.8	80.0
$\lambda = 1$	87.1	75.2	93.5	83.4
$\lambda = 1.4$	87.5	75.2	93.6	83.6
Table 1. Experiments with MHN-6 (IDE).				
	DukeMTMC-ReID		Market-1501	
	R-1	mAP	R-1	mAP
$\lambda = 0$	87.7	75.4	93.9	83.2
$\lambda = 1.4$	88.7	76.5	94.7	84.4
$\lambda = 2$	89.1	77.1	95.1	85.0

Table 2. Experiments with MHN-6 (PCB).

3. Layer name

In Pytorch ¹, the ResNet50 is composed of *conv1-bn1*relu-maxpool-layer1-layer2-layer3-layer4-avg, where layerX contains several Res-blocks. In our MHN, the HOA modules are placed after layer2.

References

^{*}Corresponding author

¹https://github.com/layumi/Person_reID_ baseline_pytorch