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In these supplementary materials, accompanying the main
paper, we discuss further architecture details and provide
additional quantitative and qualitative results.

1. Handling Dis-occlusions or Invisible Parts
When parts of the scene or object are invisible or occluded

in the source view, the depth based approach alone can not
fully reconstruct the target view. Here we propose a simple
extension to our main network, to handle these issues.

1.1. Method

We leverage two additional branches in our architecture
that predict a) an image It,p in the target view directly and
b) a mask M for the fusion of depth and image branch pre-
dictions such that the final result yields a complete structure.
As shown in Fig. 1, both of these predictions are directly
decoded from the transformed latent code. The final output
is then given by:

It(xt, yt) = M � It,d + (1−M)� It,p, (1)

where � denotes the element-wise multiplication.
The weights of this fusion network are optimized via

minimization of the L1 loss between the predicted target
view Ît and the ground truth It. All three branches are
trained via a reconstruction loss, applied on intermediate
outputs and the final blended images.
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In addition, to improve realism of the pixel branch, we apply
a least square adversarial loss [2] and a perceptual loss [1]:

Ladv = (1−Dis(It,p))
2 and Lvgg =

∥∥∥F (It,p)− F (Ît,p)
∥∥∥
2

(3)

where Dis is a discriminator and F is a pre-trained VGG [4]
based feature extractor.

∗Equal contribution.
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Figure 1: Architecture overview with fusion. The architec-
ture combines depth-based (top) and direct pixel predictions
(bottom) via a weighted average. Weights are encoded in a
per-pixel mask (middle). The network is trained end-to-end
in a self-supervised fashion.

1.2. Results

Figure. 2 shows the synthesized views produced by both
the pixel and depth branch, as well as the blended results.
The network tends to use information from the depth branch
as much as possible, and uses the pixel branch to fill-in parts
that are not in the source view via a learned image prior. The
mask branch correctly predicts the visibility of source view
pixels in the target view. This mask can be used not only to
fuse results from the pixel and depth branches, but also to
combine information from multiple source views when they
are available.

Figure 2: Channel fusion examples for car and scene. Im-
ages from the pixel branch are in the correct shape but lacks
detail. The visibility branch correctly predicts the invisi-
ble part. By fusion we yield realistic, detail preserving and
complete outputs.
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2. Fixed-view Comparison
While our focus is on fine-grained viewpoint control, it

is also interesting to evaluate our performance in the orig-
inal fixed view setting as proposed in [7]. This setting has
been commonly used to evaluate previous view synthesis
methods. The training data remains the same as described
in Section 4.1 (main paper), and during testing the network
generates novel views, but only for discrete viewpoints that
are present in the training data (car and chair) or along the
same trajectory as in training data (KITTI).

As shown in Table. 1, in this fixed-view setting, our
method still outperforms other previous methods. The pro-
posed network achieves the best structural similarity results
among all previous flow [7, 3] or pixel [6] based methods
on both ShapeNet and KITTI datasets. On KITTI dataset
flow based methods produce higher L1 error than pixel based
method due to invisible parts. The extended fusion network
described in Section. 1 (supplementary) outperforms meth-
ods that uses completion [3] or fusion [5]. It shows that
our T-AE and depth-guided warping improves not only the
precision and granularity of viewpoint control, but also the
image quality at fixed training views.

Methods Car Chair KITTI
L1 SSIM L1 SSIM L1 SSIM

Tatarchenko et al.[6] .139 .875 .223 .882 .295 .505
Zhou et al.[7] .148 .877 .229 .871 .418 .504
Park et al.[3] .119 .913 .202 .889 –
Sun et al.[5] .098 .923 .181 .895 .203 .626

Ours .083 .919 .159 .889 .384 .638
Ours (w. fusion) .066 .932 .141 .898 .191 .722

Table 1: Quantitative comparison on the fixed view set-
ting as proposed in [7]

3. Comparison with Forward Warping
Predicting source view depth and then obtaining the target

view by forward warping is in principle another way to
achieve the task of view synthesis. Many methods for the
prediction of depth from RGB images have been proposed
recently and therefore one may be tempted to leverage such
methods. However, such an approach would produce holes
in the target view as shown In Fig. 4. On the other hand,
our method produces dense and geometrically correct target
views.

4. Flow and Depth
As shown in Table 3 (main paper), the guidance of depth

improves the accuracy of flow predictions and consequently
improves the accuracy of target views. We show a qualitative
example in Fig. 5. Flow-based methods only consider the
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Figure 3: Direct comparison with [5] on fixed view synthe-
sis. Ours produces sharp and geometrically correct views
(see green highlights). In contrast, [5] can produce blurry
results since the method does not reason about geometry (see
red highlights).

Source Target GT Ours Forward warping w. 
GT source depth

Figure 4: Comparison with forward warping. Predicting
flow (or depth) in the source view is an easier task (and used
in many depth from RGB approaches). However, predicting
in source view causes banding artifacts when projecting the
point-cloud into an image as seen from a different viewpoint.
This causes loss of information in the final result.

appearance and hence can warp information from the wrong
region in the input. This is solved in our method by the guid-
ance attained from the depth prediction in target view. We
also show more results for unsupervised depth predictions 6.

Input Ground-truth w/o depth Ours

Figure 5: Comparison of flow maps. Predictions from
our method and flow-based method. Top row: final pixel
prediction. Bottom row: corresponding flow maps.
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Figure 6: More results on unsupervised depth predictions. Our method recovers depth of individual objects and natural
scenes faithfully without any direct depth supervision. Note that the predictions on KITTI are smooth but do contain geometric
detail (see cars parked on the right hand side).

5. Implementation Details

The encoder consists of seven convolutional layers, each
of which downsamples the feature map by 2. Each conv layer
is followed by a batch normalization layer and a leaky ReLU
layer. The output of the encoder is converted to a vector of
length 600 via a fully connected layer, and then reshaped
to a 200x3 matrix. The matrix is then multiplied with the
rotation and the translation is appended. The transformed
code is reshaped to a vector which is fed to the decoder. The
decoder consists of seven layers and each one upsamples the
feature map by 2 via a bilinear upsampling layer followed by
a convolution layer, a batch normalization layer and a leaky
ReLU layer respectively.

The original implementation in Zhou et al. [7] and Sun
et al. [5] does not support continuous viewpoint input for
objects. They represent viewpoint parameters as one hot
encoded vectors of length 18, corresponding to 18 fixed
azimuth values of training views. To allow for continuous
input for comparison, we replace their one hot encoded
representation with cosine and sine values of the viewing
angles. For the sake of fairness, we use the same encoder
and decoder for all compared methods.

6. Additional Qualitative Results

Figure. 7,8,9,10 shows more examples. Figure. 7 and 8
match Figure 3 in the main paper. Figure 9 and 10 match
Figure 5 and 6 in the main paper respectively.
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Figure 7: Qualitative results for granularity and precision of viewpoint control on ShapeNet (Car) In the top four rows,
we generate and overlay 80 continuous views with step size of 1◦ from a single input. Our method exhibits similar spin
pattern as the ground truth, whereas other methods mostly converge to the fixed training views (see wheels of the car and
chair indicated in the box). In the bottom, a close look at a specific view is given, which reveals that previous methods display
distortions or converge to neighboring training views (Zhou et al.[7], Sun et al.[5]). The image generated by Tatarchenko et
al.[6] is heavily blurred. Corresponding error maps are also depicted.
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Figure 8: Qualitative results for granularity and precision of viewpoint control on ShapeNet (Chair) In the top four
rows, we generate and overlay 80 continuous views with step size of 1◦ from a single input. Our method exhibits similar spin
pattern as the ground truth, whereas other methods mostly converge to the fixed training views. The bottom rows, depict
individual view angles, which reveal that previous methods display distortions or converge to neighboring training views
(Zhou et al.[7], Sun et al.[5]). The image generated by Tatarchenko et al.[6] is heavily blurred. Corresponding error maps are
also depicted, consistently showing lower errors for ours.
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Figure 9: Qualitative trajectory following results. Our method produces sharp and correct images while [7, 5] produce
distorted images.
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Figure 10: Additional trajectory recovery results. Setting: given a source view and an input trajectory, a continuous
sequence of views is synthesized along the user defined trajectory (green). Trajectories are estimated via a state-of-the-art
visual odometry system [?] and compared to the desired trajectory. Right: ours. Left: state-of-the-art [7, 5]. The trajectory
estimated from Ours align well with the ground-truth, while [7, 5] mostly produce straight forward or wrong motion regardless
of the input.



                   Source                     GT                 Depth-Channel       Pixel-Channel              Mask          Fusion

Figure 11: More fusion results. In the mask, pixels shown in red indicate high weights for the pixel-channel, whereas pixels
in yellow are taken from the depth branch.


