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In this supplementary material, we provide additional
results that could not be included in the main paper due to
the page limit.

More visual comparisons of the basic attack. We provide
two additional visual comparisons of the basic attack
shown in Section 4.1 of the main paper. Figure 1 shows
additional example low-resolution (LR) and super-resolved
(SR) images obtained from an image of Set14 [7] with
α = 8/255. Undesirable artifacts similar to those observed
in Figure 2 of the main paper can be found. Figure 2 shows
the example images obtained by the EDSR model [4] with
different α values. As α increases, the upscaled images
become more deteriorated, whereas the perturbed input
images still look similar to the original image. The results
support that the deep super-resolution methods are highly
vulnerable against the adversarial attack in various cases.

Visualized results of transferability. In Section 4.1 of the
main paper, we compared the transferability of the deep
super-resolution methods in terms of peak signal-to-noise
ratio (PSNR). According to Figure 4 in the main paper,
EDSR-baseline [4] and CARN [1] show higher transfer-
ability than the other models, whereas RCAN [8] and
ESRGAN [6] show lower transferability. Here, we visually
explain the transferability of these four super-resolution
methods in Figures 3, 4, 5, and 6. In the figures, a LR
image in the BSD100 dataset [5] is attacked with one of
the super-resolution models and inputted to the other super-
resolution models including EDSR [4], EDSR-baseline,
RCAN, 4PP-EUSR [3], ESRGAN, RRDB [6], CARN, and
CARN-M [1]. In Figures 3 and 4, the attacked LR image
successfully deteriorates the SR images obtained from the
other methods, where similar fingerprint-like textures are

observed as in Figure 2 of the main paper. On the other
hand, in Figures 5 and 6, the perturbations found for RCAN
and ESRGAN are not so effective for the other models; the
amounts of deterioration in the SR images produced by the
other models are much smaller than those triggered by the
perturbations for EDSR-baseline and CARN (Figures 3 and
4).

Transferability of the universal attack. We examine
the universal attack across datasets, i.e., the universal
perturbation obtained for the BSD100 dataset [5] is applied
to the images of the Set14 dataset [7]. Figure 7 shows the
super-resolved (SR) images obtained by the RCAN model
[8], where the perturbation shown in Figure 6b of the main
paper is applied. This result verifies that the universal
attack is transferable to unseen images.

Advanced partial attack. The objective of the partial
attack in Section 4.3 of the main paper is to examine how
the perturbation planted in a region propagates spatially
outside the region. Partial attacks with more complex
masks can also be done using the proposed method.
Figure 8 shows the attack results where the perturbation
is applied on the face region of an image in Set5 [2]. It is
observed that strong degradations are introduced around
the face boundaries.

Additional example of the targeted attack. We provide
an additional example of the targeted attack, which is
explained in Section 5.1 of the main paper. Figure 9
shows the result. In the figure, the original number 87
in the original high-resolution image (“HR (original)”) is
changed to 89 in the SR version (“SR (attacked)”). We
conduct a subjective test with 20 human observers, and all
the observers recognized the number in the red box of “SR
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(attacked)” as 89 instead of 87.

Robustness measure. We employed the “robustness index”
in Section 5.2 of the main paper. Here we provide additional
results obtained with different α values (i.e., α = 2/255 and
α = 4/255). Figure 10 depicts the relationship between the
PSNR values for SR images obtained with the basic attack
(Section 4.1 of the main paper) and the robustness indices of
the deep super-resolution models for the BSD100 dataset,
where α = 2/255 and α = 4/255. When these figures
and Figure 10 of the main paper are compared, increasing
α results in decreasing the PSNR values and increasing the
robustness index values, as expected. In addition, as in the
result with α = 1/255 (Figure 10 of the main paper), the
robustness index is strongly correlated to PSNR regardless
of the value of α, which supports the usefulness of the ro-
bustness index for explaining the relative vulnerability of
the different super-resolution methods.
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Figure 1. Visual comparison of the super-resolved outputs for the inputs attacked with α = 8/255. In each case, (top-left) is the original
input in Set14 [7], (top-right) is the adversarial input, and (bottom) is the output obtained from the adversarial input. The input images are
enlarged two times for better visualization.

α = 1/255 α = 2/255 α = 4/255 α = 8/255 α = 16/255

Figure 2. Visual comparison of the super-resolved outputs for the inputs attacked with different α values. In each case, (top-left) is the
original input in Set14 [7], (top-right) is the adversarial input, and (bottom) is the output obtained on EDSR [4]. The input images are
enlarged two times for better visualization.
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Figure 3. Visual examples of the transferred attack where EDSR-baseline [4] is used as the source super-resolution model with α = 8/255.
An image in the BSD100 [5] dataset is used.
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Figure 4. Visual examples of the transferred attack where CARN [1] is used as the source super-resolution model with α = 8/255. An
image in the BSD100 [5] dataset is used.
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Figure 5. Visual examples of the transferred attack where RCAN [8] is used as the source super-resolution model with α = 8/255. An
image in the BSD100 [5] dataset is used.
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Figure 6. Visual examples of the transferred attack where ESRGAN [6] is used as the source super-resolution model with α = 8/255. An
image in the BSD100 [5] dataset is used.



Figure 7. Results of the universal attack applied to the Set14 dataset [7].
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Figure 8. Results of the partial attack on the face region (α = 16/255).
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Figure 9. Targeted attack result using a score card image (Flickr, juggernautco, CC BY 2.0) with α = 16/255 for ESRGAN. The attack
targets to change the number in the red box to 89.
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Figure 10. PSNR vs. the robustness index for the BSD100 dataset [5] when α = 2/255 and α = 4/255. Each point corresponds to each
image in the dataset.


