
Supplementary Material of Unsupervised Domain Adaptation via Regularized
Conditional Alignment

Safa Cicek, Stefano Soatto
UCLA Vision Lab

University of California, Los Angeles, CA 90095
{safacicek,soatto}@ucla.edu

In Section 1, we provide proofs for the results given in Section 4 of the main paper. In Section 2, we describe the
implementation details. In Section 3, we report and discuss the performance of the proposed method when one or more
components in the loss are removed.

1. Analysis
First, we prove a simple lemma that will be handy in the proof of Proposition 1.

Lemma 1.

θ∗ = arg min
θ

K∑
i=1

−α[i] log(θ[i]) s.t. 1 ≥ θ[i] ≥ 0,

K∑
i=1

θ[i] = 1, α[i] > 0, for all i. Then, θ∗[k] =
α[k]∑K
i=1 α[i]

for any k.

Proof. Let us write the Lagrangian form excluding inequality constraints,L(θ, λ) =
∑K
i=1−α[i] log(θ[i])+λ(

∑K
i=1 θ[i]−1).

∇θ[i]L(θ, λ) = −α[i]θ[i] + λ = 0 and θ[i] = α[i]
λ for all i. − log is convex hence sum of them also convex and the stationary

point is global minima. Then, the dual form becomes g(λ) =
∑K
i=1−α[i] log(

α[i]
λ) + λ(

∑K
i=1

α[i]
λ − 1) then ∇λg(λ) = 0

when λ =
∑K
i=1 α[i] and θ[k] = α[k]∑K

i=1 α[i]
. Note that the constraint 1 ≥ θ[i] ≥ 0 does not constrain the solution space as θ[i]

has to be non-negative for log(θ[i]) to be defined and
∑K
i=1 θ[i] = 1 enforces 1 ≥ θ[i].

Proposition 1. The optimal joint predictor hj minimizing Ljsc(hj) + Ljtc(hj) given in the Eq. 6,7 for any feature z with
non-zero measure either on g#P sx(z) or g#P tx(z) is

hj(z)[i] =
g#P s(z, y = ei)

g#P sx(z) + g#P tx(z)
and hj(z)[i+K] =

g#P t(z, y = ei)

g#P sx(z) + g#P tx(z)
for i ∈ {1, ...,K}

Proof.

Ljsc(hj) + Ljtc(hj)

= E(x,y)∼P s`CE(hj(g(x)), [y, 0]) + E(x,y)∼P t`CE(hj(g(x)), [0, y]) (1)

=

∫
(x,y)∼P s

P sx(x)`CE(hj(g(x)), [y, 0])dx+

∫
(x,y)∼P t

P tx(x)`CE(hj(g(x)), [0, y])dx (2)

=

∫
z∼g#P s

x

∫
(x,y)∼P ss.t.z=g(x)

P sx(x)`CE(hj(z), [y, 0])dxdz

+

∫
z∼g#P t

x

∫
(x,y)∼P ts.t.z=g(x)

P tx(x)`CE(hj(z), [0, y])dxdz (3)

=

∫
z∼g#P s

x

∫
(x,y)∼P ss.t.z=g(x)

P sx(x)〈− log hj(z), [y, 0]〉dxdz

+

∫
z∼g#P t

x

∫
(x,y)∼P ts.t.z=g(x)

P tx(x)〈− log hj(z), [0, y]〉dxdz (4)

=

∫
z∼g#P s

x

〈− log hj(z), [

∫
(x,y)∼P ss.t.z=g(x)

P sx(x)ydx, 0]〉dz

+

∫
z∼g#P t

x

〈− log hj(z), [0,

∫
(x,y)∼P ts.t.z=g(x)

P tx(x)ydx]〉dz (5)

=

∫
z∼g#P s

x

K∑
i=1

− log hj(z)[i]g#P
s(z, y = ei)dz +

∫
z∼g#P t

x

K∑
i=1

− log hj(z)[i+K]g#P t(z, y = ei)dz (6)

From Lemma 1, hj(z)[i] =
g#P s(z,y=ei)

Z and hj(z)[i+K] = g#P t(z,y=ei)
Z for i ∈ {1, ...,K}whereZ =

∑K
i=1(g#P

s(z, y =
ei) + g#P t(z, y = ei)) = g#P sx(z) + g#P tx(z) for any z. Note that, we integrated losses over x only; instead of (x, y)
as we are assuming that the ground-truth labeling function is deterministic. Moreover, in Lemma 1, we assumed α[i] > 0
while here g#P s(z, y = ei) and g#P t(z, y = ei) might be zero for some i. But since we are taking α[i] log(θ[i]) as zero
whenever α[i] = 0 for any value of θ[i], the result does not change.

The following Lemma will be used in the proof of Theorem 1.

Lemma 2. minP,Q L(P,Q) = Ex∼P − log Q(x)
P (x)+Q(x) +Ex∼Q− log P (x)

P (x)+Q(x) is achieved only if P (x) = Q(x) for all x.

Proof.

L(P,Q) (7)

=

∫
x

−P (x) log(Q(x)

P (x) +Q(x)
)−Q(x) log(

P (x)

P (x) +Q(x)
)dx (8)

=

∫
x

P (x) log(
P (x) +Q(x)

Q(x)
) +Q(x) log(

P (x) +Q(x)

P (x)
)dx (9)

=

∫
x

P (x) log(1 +
P (x)

Q(x)
) +Q(x) log(1 +

Q(x)

P (x)
)dx (10)

=

∫
x

log(1 +
P (x)

Q(x)
)(1 +

P (x)

Q(x)
)Q(x)− log(1 +

P (x)

Q(x)
)Q(x) +Q(x) log(1 +

Q(x)

P (x)
)dx (11)

=

∫
x

(
log(1 +

P (x)

Q(x)
)(1 +

P (x)

Q(x)
)− log(1 +

P (x)

Q(x)
) + log(1 +

Q(x)

P (x)
)
)
Q(x)dx (12)

=

∫
x

(
log(1 +

P (x)

Q(x)
)(1 +

P (x)

Q(x)
) + log(

Q(x)

P (x)
)
)
Q(x)dx (13)

= log(4)−
∫
x

log(2)
P (x) +Q(x)

Q(x)
Q(x)dx+

∫
x

(
log(1 +

P (x)

Q(x)
)(1 +

P (x)

Q(x)
) + log(

Q(x)

P (x)
)
)
Q(x)dx (14)

= log(4) +

∫
x

(
log(1 +

P (x)

Q(x)
)(1 +

P (x)

Q(x)
)− log(

P (x)

Q(x)
)− log(2)(1 +

P (x)

Q(x)
)
)
Q(x)dx (15)

Let φ(β) := log(1+β)(1+β)− log(β)− log(2)(1+β). Then,∇βφ(β) = 1+ log(1+β)− 1
β − log(2) and∇β∇βφ(β) =

1
1+β + 1

β2 > 0 for β > 0. Hence φ(β) is convex and we can apply Jensen,

L(P,Q) = log(4) +

∫
x

φ(
P (x)

Q(x)
)Q(x)dx ≥ log(4) + φ(

∫
x

P (x)

Q(x)
Q(x)dx) = log(4) + φ(1) = log(4) (16)

Since φ is strictly convex, equality is satisfied only for constant argument i.e. when P (x)
Q(x) = 1 which is also the global minima

of φ(β) as∇βφ(1) = 0.

Theorem 1. The objective Ljsa(g) + Ljta(g) given in the Eq. 8,9 is minimized for the given optimal joint predictor if and
only if g#P s(z|y = ek) = g#P t(z|y = ek) and g#P s(z|y = ek) > 0 ⇒ g#P s(z|y = ei) = 0 for i 6= k for any y = ek
and z.

Proof. The objective for encoder is,

E(x,y)∼P s`CE((hj(g(x)), [0, y]) + E(x,y)∼P t`CE((hj(g(x)), [y, 0]) (17)

For samples with label ek we want to minimize,

E(x,y)∼P s(x,y=ek)`CE((hj(g(x)), [0, y]) + E(x,y)∼P t(x,y=ek)`CE((hj(g(x)), [y, 0]) (18)
= E(x,y)∼P s(x,y=ek) − 〈[0, y], log(hj(g(x))〉+ E(x,y)∼P t(x,y=ek) − 〈[y, 0], log(hj(g(x))〉 (19)

= −E(x,y)∼P s(x,y=ek) log(hj(g(x))[k +K]− E(x,y)∼P t(x,y=ek) log(hj(g(x))[k] (20)

Given the classifier hj is optimal, the above them becomes

−
∫
z∼g#P s(z,y=ek)

g#P s(z, y = ek) log
g#P t(z, y = ek)∑K

i=1(g#P
s(z, y = ei) + g#P t(z, y = ei)

dz

−
∫
z∼g#P t(z,y=ek)

g#P t(z, y = ek) log
g#P s(z, y = ek)∑K

i=1(g#P
s(z, y = ei) + g#P t(z, y = ei))

dz (21)

=

∫
z∼g#P s(z,y=ek)

g#P s(z, y = ek)
(
− log

g#P t(z, y = ek)

g#P s(z, y = ek) + g#P t(z, y = ek)

+ log

∑K
i=1(g#P

s(z, y = ei) + g#P t(z, y = ei))

g#P s(z, y = ek) + g#P t(z, y = ek)

)
dz

+

∫
z∼g#P t(z,y=ek)

g#P t(z, y = ek)
(
− log

g#P s(z, y = ek)

g#P s(z, y = ek) + g#P t(z, y = ek)

+ log

∑K
i=1(g#P

s(z, y = ei) + g#P t(z, y = ei))

g#P s(z, y = ek) + g#P t(z, y = ek)

)
dz (22)

Let us write first and second terms in each integration separately:

L1(g#P
s, g#P t) = −

∫
z∼g#P s(z,y=ek)

g#P s(z, y = ek) log
g#P t(z, y = ek)

g#P s(z, y = ek) + g#P t(z, y = ek)
dz

−
∫
z∼g#P t(z,y=ek)

g#P t(z, y = ek) log
g#P s(z, y = ek)

g#P s(z, y = ek) + g#P t(z, y = ek)
dz (23)

L2(g#P
s, g#P t) =

∫
z∼g#P s(z,y=ek)

g#P s(z, y = ek) log

∑K
i=1(g#P

s(z, y = ei) + g#P t(z, y = ei))

g#P s(z, y = ek) + g#P t(z, y = ek)
dz

+

∫
z∼g#P t(z,y=ek)

g#P t(z, y = ek) log

∑K
i=1(g#P

s(z, y = ei) + g#P t(z, y = ei))

g#P s(z, y = ek) + g#P t(z, y = ek)
dz (24)

If there is a solution which is global minima of bothL1,L2 then it is also the global minima of the overall termL1+L2. L2 has
its minimum at

∑K
i=1s.t.i6=k(g#P

s(z, y = ei)+g#P
t(z, y = ei)) = 0 whenever g#P s(z, y = ek)+g#P

t(z, y = ek) > 0.
From Lemma 2, L1(g#P

s, g#P t) achieves its minimum only when g#P s(z, y = ek) = g#P t(z, y = ek) for any z.
Intersection of two minimas gives the desired solution.

2. Implementation Details
Batchsize of 64 is used for both the source and the target samples during training. Batchsize of 100 is used at inference

time. The networks used in the experiments are given in Table 2. Instance norm is only used in MNIST↔ SVHN experi-
ments. In all experiments, networks are trained for 60, 000 iterations. This is less than 80, 000+80, 000 = 160, 000 iterations
that SOA methods VADA+DIRT-T and Co-DA+DIRT-T are trained for. Weight decay of 10−4 is used. In CIFAR↔ STL
and SYN-DIGITS→ SVHN, as an optimizer we use SGD with the initial learning rate of 0.1. Learning rate is decreased to

Source dataset MNIST SVHN CIFAR STL SYN-DIGITS MNIST
Target dataset SVHN MNIST STL CIFAR SVHN MNIST-M

λt 0.1 0.1 0.1 0.1 0.1 0.1
λtvat 10.0 10.0 10.0 10.0 10.0 10.0
λjtc 10.0 1.0 1.0 1.0 10.0 10.0
λjta 1.0 0.1 0.1 0.1 0.1 1.0
λsvat 0.0 0.0 0.0 0.0 1.0 0.0
λjsc 1.0 1.0 1.0 1.0 1.0 1.0
λjsa 1.0 0.1 1.0 1.0 1.0 1.0
εx 4.0 4.0 2.0 1.0 1.0 0.5

Table 1. Hyperparameters. Hyper-parameters used in the proposed method for each task.

Encoder
3× 3 convolution, 64 lReLU
3× 3 convolution, 64 lReLU
3× 3 convolution, 64 lReLU
2× 2 max-pool, stride 2, dropout with probability 0.5
3× 3 convolution, 64 lReLU
3× 3 convolution, 64 lReLU
3× 3 convolution, 64 lReLU
2× 2 max-pool, stride 2, dropout with probability 0.5

Class predictor
3× 3 convolution, 64 lReLU
1× 1 convolution, 64 lReLU
1× 1 convolution, 64 lReLU
Global average pooling, 6→ 1
Fully connected layer: 128→ K
Softmax
Joint predictor
3× 3 convolution, 64 lReLU
1× 1 convolution, 64 lReLU
1× 1 convolution, 64 lReLU
Global average pooling, 6→ 1
Fully connected layer: 128→ 2K
Softmax

Encoder
3× 3 convolution, 128 lReLU
3× 3 convolution, 128 lReLU
3× 3 convolution, 128 lReLU
2× 2 max-pool, stride 2, dropout with probability 0.5
3× 3 convolution, 256 lReLU
3× 3 convolution, 256 lReLU
3× 3 convolution, 256 lReLU
2× 2 max-pool, stride 2, dropout with probability 0.5
3× 3 convolution, 512 lReLU
1× 1 convolution, 256 lReLU
1× 1 convolution, 128 lReLU
Global average pooling, 6→ 1
Class predictor
Fully connected layer: 128→ K
Softmax
Joint predictor
Fully connected layer: 128→ 2K
Softmax

Table 2. Left. The network used in the tasks involving MNIST dataset (i.e. MNIST ↔ SVHN and MNIST → MNIST-M), small-net from
[3, 2]. Right. The network used in the rest of the classification tasks (i.e. STL ↔ CIFAR, SYN-DIGITS → SVHN), conv-large from [1].
Slope of each leaky RELU (lReLU) layer is 0.1. Each conv is followed by a batch norm layer.

0.01 at iteration 40, 000. Momentum of SGD is 0.9. In MNIST↔ SVHN and MNIST→MNIST-M, Adam optimizer with
the fixed learning rate 0.001 is used. Momentum is chosen to be 0.5.

We fix λt = 0.1 and λjsc = 1.0. We searched rest of the parameters over λtvat ∈ {1.0, 10.0}, λjtc ∈ {1.0, 10.0}, λjta ∈
{0.1, 1.0}, λsvat = {0.0, 1.0}, λjsa ∈ {0.1, 1.0}. We also searched for the upper bound of the adversarial perturbation in
VAT, εx ∈ {0.1, 0.5, 1.0, 2.0, 4.0, 8.0}. Optimal hyperparameters are given in Table 1 for each task. Only for MNIST →
SVHN, class predictor performs poorly in the early epochs. So, we apply curriculum learning within 60, 000 iterations. In the
first 4, 000 iterations, only λjsc and λjsa are non-zero i.e. losses only depending on the labeled-source data are minimized.
After 4, 000 iterations, SSL regularizations are started to be applied: λt, λsvat and λtvat are also set to non-zero. After 8, 000
iterations, losses depending on the pseudo-labels are activated by assigning all hyperparameters to their optimal values given
in Table 1.

Source dataset MNIST SVHN CIFAR STL SYN-DIGITS MNIST
Target dataset SVHN MNIST STL CIFAR SVHN MNIST-M

Without VAT 60.65 98.79 81.59 70.20 93.15 98.45
Without EntMin and VAT 62.95 88.33 80.97 71.62 92.10 97.74
Without source alignment 75.78 88.91 81.11 74.80 95.72 99.25
Without target alignment 71.59 98.89 80.90 74.87 95.48 99.20

Without source and target alignment 60.07 98.83 80.20 73.52 94.94 99.08

Source-only (baseline) 44.21 70.58 79.41 65.44 85.83 70.28
The proposed loss with the class predictor 89.19 99.33 81.65 77.76 96.22 99.47
The proposed loss with the joint predictor 87.88 99.16 81.19 77.62 95.97 99.40

Table 3. Ablations. Performance of the proposed method when one or two terms in the loss function are removed (first five rows). We also
report performance of the source-only baseline (6th row) and model optimizing the original loss (7th row) as a reference. In the last row,
we report the performance of the joint predictor.

3. Ablations
In Table 3, we report the performance of the proposed method by removing one or more components from the original

loss function. We report the results by removing VAT regularizations (λsvat = λtvat = 0), VAT and entropy minimization,
the source-alignment loss (λjsa = 0), the target-alignment loss (λjta = 0) and both alignment losses (λjsa = λjta = 0).
Removing any of these components degraded the performance in all the tasks. All results are still better than the source-only
model.

Removing both entropy-minimization and VAT losses makes the performance worse than only removing VAT losses in
all the tasks except STL→CIFAR and MNIST→SVHN. In these tasks, the entropy-minimization loss only helped when it
combined with VAT losses. This is expected as the entropy minimization without VAT regularizations can easily lead to
trivial, degenerate solutions by encouraging to cluster samples from different classes. Removing the source and the target-
alignment losses together degraded the performance compared to removing either of them except SVHN→MNIST. Applying
the target-alignment loss without the source-alignment loss might have a detrimental effect as former one relies on the noisy
pseudo-labels.

We also report the best performances with the joint-predictor for completeness. The joint predictor achieves very close
performance to the class-predictor but it is slightly worse than the class-predictor. We believe this is because the joint-
predictor is trained for the harder task of domain and class learning while only latter one is needed at the test time. That is
why we choose to use the class-predictor for inference.

References
[1] Geoff French, Michal Mackiewicz, and Mark Fisher. Self-ensembling for visual domain adaptation. 2018. 4
[2] Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid Karlinsky, Rogerio Feris, Bill Freeman, and Gregory Wornell. Co-

regularized alignment for unsupervised domain adaptation. In Advances in Neural Information Processing Systems, pages 9366–9377,
2018. 4

[3] Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to unsupervised domain adaptation. arXiv preprint
arXiv:1802.08735, 2018. 4

