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1. Additional results
We present in this section the prediction results obtained

by additional models on the VideoMem dataset. The pur-
pose is to add some additional comparison with the models
proposed in the main submission. We present all results
(additional and main) in Table. 1.

1.1. Image captioning-based model

The first additional model leverages the use of some
frame-based Image Captioning (IC) system as feature ex-
tractor. The goal was here to get a baseline of how a state-
of-this-art IC model would perform on VideoMem, com-
pared to our advanced fine-tuned IC model. We used the IC
system in [1]. As this model is solely based on image in-
formation, similarly to what was done for the advanced IC
model, for each video we extracted 7 features, one for each
of the 7 frames in the advanced IC model. Each feature
(of dimension 1024) corresponds to the projection in a joint
image-text 2D embedding space of each frame. Instead of
using these features individually as input to a model, and
then averaging the 7 resulting scores as for the advanced
model, we tested a concatenation of the 7 features as in-
put to some MLP in an attempt to add some modelling of
the temporal evolution of each video. The MLP was then
trained to predict the VM score, with the mean square error
(MSE) measure as regression loss. The final result is ob-
tained with the MLP parameters (after some grid search):
one hidden layer with 1500 neurons, optimizer=IBLGS, ac-
tivation=tanh, learning rate (lr)=1e-3. From the results in
table 1, it is clear that the advanced IC model did bring some
substantial increase of performance compared to this base-
line. Compared to the dedicated fine-tuning and new rank-
ing loss used, even the attempt of temporal modeling by
concatenation of the 7 features did not succeed in equalling

the performance of the advanced system.

1.2. Fine-tuned ResNet model

The rational behind this second additional model was
also to have a baseline to compare with our fine-tuned
ResNet3D model as proposed in the main submission. For
this, we also fine-tuned the original frame-based ResNet
model [2] similarly to what we did for ResNet3D. As with
ResNet3D, we replaced the last fully connected layer of
ResNet by a new one dedicated to our considered regres-
sion task. This last layer was first trained alone for 5 epochs
(Adam optimizer, batchsize=32, lr=1e-3), then the whole
network was re-trained for more epochs (same parameters,
but lr=1e-5).

Because this new model is frame-based, input data was
all 7 frames pre-extracted from each video (one per sec-
ond, each frame being assigned the same ground-truth
score as the video) from VideoMem, mixed with images
from LaMem [3], to enlarge the size of the overall train-
ing dataset. For the latter images, we normalized the
ground-truth scores to be in the same range as those of
VideoMem. Some data augmentation was conducted: ran-
dom center cropping of 224x224 after resizing of the orig-
inal images and horizontal flip, followed by a mean nor-
malization computed on ImageNet. These two last settings
i.e., training on additional LaMem data and pursuing some
data augmentation differ to what was done with the fine-
tuned ResNet3D. Note that we also tried another variant
of ResNet: ResNet101. These changes were chosen in an
attempt to challenge the results of the ResNet3D model,
by trying to improve the performance of the frame-based
ResNet version. In the end, to get a memorability score
per video, we simply average the 7 resulting frame-based
scores for all 7 frames of the video. Note that the ResNet101
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Models short-term memorability long-term memorability
validation test test (500) validation test test (500)

MemNet [3] 0.397 0.385 0.426 0.195 0.168 0.213
Squalli et al. [4] 0.401 0.398 0.424 0.201 0.182 0.232

C3D 0.319 0.322 0.331 0.175 0.154 0.158
HMP 0.469 0.314 0.398 0.222 0.129 0.134

ResNet (Sec. 1.2) 0.498 0.46 0.527 0.222 0.218 0.219
ResNet3D 0.508 0.462 0.535 0.23 0.191 0.202

IC-based model (Sec. 1.1) 0.492 0.442 0.514 0.22 0.201 0.188
Semantic embedding model 0.503 0.494 0.565 0.26 0.256 0.275

Table 1: Results in terms of Spearman’s rank correlation between predicted and ground truth memorability scores, on the
validation and test sets, and on the 500 most annotated videos of the dataset (test (500)) that were placed in the test set.

(a) Category #1. Images with one quite large face as main object.

(b) Category #1. Images with rare information in the background.

Figure 1: Visualization of the attention mechanism’s output for frames in category #1. The model focuses either on close
enough faces (a) or main objects when background texture is uniform or blurry.

was fine-tuned only to predict short-term memorability as
LaMem dataset contains only short-term scores. Therefore,
the comparison with the long-term performance is biased as

we reused the model trained on short-term to predict long-
term scores.

As shown in table 1, for short-term prediction, even with



Figure 2: Visualization of the attention mechanism’s output from frames in category #2. The model focuses on details in the
background and not on the main objects.

the increased input data, the frame-based ResNet version
provides slightly lower results than its temporal ResNet3D
version. This tends to show that a real temporal modelling
benefits to the task as we were able to reach slightly bet-
ter results without requiring to additional data and with a
less complicated model. Although not directly comparable,
the results for long-term prediction are in contrary slightly
higher with the frame-based version of ResNet, compared
to ResNet3D. This confirms the finding of the main sub-
mission that, to some extend, both short-term and long-term
memorabilities are correlated, as we were able to predict
long-term scores with a model trained on short-term only.

2. Intra-memorability visualization
We present in Fig. 1 and Fig. 2 additional results for our

model with attention mechanism, together with their origi-
nal frames to provide a better and detailed visualization of
the model’s behavior.

As discussed in the main submission, we could empir-

ically distinguish two main categories of frames and their
associated results.

The first category was characterized by all attention
maps focusing quite classically on the main object in the
image, as it would have been expected intuitively. This mat-
ter of fact tends to happen in two cases, subdividing this first
category in two groups: 1/ images with one rather large vis-
ible face and 2/ images with one main object and rare or no
information in the background. For the former images, the
model focuses on specific face features as a human would
do when trying to remember a person, as it can be seen in
Fig. 1, (a). Some additional quite important objects such
as the music toy in image #2 are even forgotten in favor of
faces. For the latter, as seen in Fig. 1, (b), the model focuses
on the only source of information, because the background
is dark or uniform (e.g., in image #2, a fireplace in front of
a dark background).

In the second category, that groups all other frames, with
several main and secondary objects, cluttered background,



etc., it seems on the contrary that the model focuses on some
details which are out of the main objects/subjects of the im-
ages as it can be seen in Fig. 2. The model seems to be-
have as if it was trying to remember little details that will
help it differentiate the image from another similar one. It
might also be interpreted as a second memorization process,
once the first one – focusing on the main object – is already
achieved. For example, in the second row, in image #2, it
focuses on building details in the background and not on the
main fountain object, or in the fourth row, image #4, it con-
centrates on details of the tree bark and forgets the magpie.
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