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1. Details of Motion Selection

After superpixel relations analysis, we get homogrpahies
H and spatial relations R;. We decompose each homogra-
phy model and generate 2n hypotheses of camera rotation
R, translation ¢, plane norm n and inverse depth d, up to
scale [6].

In this step, we follow [12] to identify camera motion
{Ro,to} and select static superpixels S;. This task can be
considered as a labelling problem on superpixel-level graph
G, while [12] is developed on a pixel-level graph. The
label set £ = {{R,t},ls} consists of motion hypotheses
{R,t} and a discard label [,. Since we mainly focus on
mostly rigid scenes, for fast running speed, we only se-
lect 5 motion hypotheses for motion selection. Firstly, we
transform the rotation matrices R into quaternions. Then
concatenating rotation quaternions and the corresponding
translations, we obtain a 7-dimensional feature vector for
each superpixel. We intuitively select motion hypotheses
by density in the 7-dimensional feature space. The feature
with highest density is selected as the first motion hypoth-
esis. Then removing feature vectors that are similar to the
first selected feature, we select the feature with highest den-
sity in the remaining feature space as the second motion
hypothesis. We repeat this process to select 5 motion hy-
potheses.

The energy function of motion selection is defined to fit
a PEaRL framework,
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where [ is the label field and A, A1, are weighting constants.
The data term D;(1;) is defined as follows,
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Figure 1. Results of the motion selection step. (a) demonstrates

the selected static superpixels Si, which are colored blue. (b) is
the diagram of camera motion { Ro, to}.
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where 75 is a threshold. If the label /; indicates a pure rota-
tion, dj, is defined as the symmetric transfer error (STE) [6]
and the Sampson distance [6] otherwise. We set w;; = 1
in our experiment. Finally, the label term |L;| denotes the
number of selected motion hypotheses. We introduce this
term to force the algorithm to select as few motion hypothe-
ses as possible. After this labeling process, we select the
motion hypothesis that associates with most superpixels as
the camera motion { Ry, to} and the corresponding super-
pixels as static superpixels S;. We demonstrate an example
in Figure 1.

2. Details of propagation based optimization.

The fast propagation method is first proposed and suc-
cessfully used in RicFlow [7]. We briefly summarize the
method in 3 steps,

1. Random initialization. For each superpixel, the model
(affine, homograpy or plane parameters) is initialized
locally.

2. Hypothesis propagation. For each superpixel, its spa-
tially neighboring superpixels that have been pro-
cessed in this iteration propagate their models to the
reference superpixel and help it to figure out the fittest



model.

3. Random test. Pick up several matches randomly to
generate model hypotheses and then the current best
model will be improved by testing the new hypothe-
ses.

However, we cannot directly apply this fast propagation
method to optimize the energy function Eg,, , since Fg.,
has a pairwise term F,,;., while fast propagation only
works with the data term. We slightly improve the fast
propagation method to optimize Es,,. The Random ini-
tialization and Random test are the same. In hypothesis
propagation, we process each superpixel in 2 steps,

1. Updating support neighbors. For superpixel .S;, the en-
ergy function that needs to be optimized in each itera-
tion is defined as:
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where S; has been processed in this iteration. We
can update the support neighbors of S;, then the pair-
wise term can be integrated into the data term. Specif-
ically, if the relation between S; and its neighbor .S is
hinge, then for each pixel px on the shared boundary,
point match (py, H; Py) is added to the set of support
neighbors of S;, denoted as Su(.S;). If the relation is
coplanar, for all pixels in S;, the corresponding point
matches under H; are added to Su(S;). To balance
locality and smoothness, we set the number of added
matches from hinge and coplanar relations should be
less than 2/5 of initial support neighbors of S;. Once
exceeding the limit, we randomly select point matches
to the number of the threshold.

2. Model propagation. With the new set of support neigh-
bors, superpixel S; receives models from its surround-
ing superpixels that have been processed in this itera-
tion and figure out the best model with only the F;,¢,
term.

For the energy function E,. in reconstruction, we also
use a block coordinate descent algorithm to optimize. We
introduce the optimization process in 4 steps,

1. We first initialize the plane parameters 6 and scale s
of each superpixel in S,.. For superpixels in S;, their
scales are fixed to 1. We initialize their plane param-
eters locally with the E;, term. For superpixels in
{S; \ S:}, we initialize their plane parameters and
scales by minimizing Ey;; + Fyep + Eoce. After de-
termining the parameters (6, s) of superpixels in St,
we propagate parameters from S; to {5, \ S;}. Then
we can gradually initialize the parameters (6, s) of su-
perpixels in {5, \ S;} from near S to far from S;.

2. After initialization, we optimize E;; + Epep + Eocc
with the improved fast propagation method. We propa-
gate parameters (6, s) among spatially neighboring su-
perpixels in ;..

3. Next, we determine the parameters of superpixels that
are not in S, by minimizing the Ef; + Epri + Eoce
term. We just check the superpixels in {S'\ S, } that are
adjacent to superpixels in S,.. We change the relations
from crack to hinge between the superpixel pairs that
can minimize the energy term.

4. Finally, all superpixels are optimized together by min-
imizing Ey; + Epep + Eoce + Epyp; With the improved
fast propagation method.

The fast propagation based method is the basis of our
fast reconstruction pipeline. Although it can not guarantee
optimal results, it tends to output reasonable depth map.

3. Details of superpixel relations

We exploit superpixel relations to solve the inherent rel-
ative scale ambiguity (RSA) problem in dynamic recon-
struction. We further explain our motivation in detail. As
demonstrated in Figure 2, in dynamic scenes, foreground
objects are usually supported by the surrounding environ-
ment. In the first row of Figure 2, the girl’s right foot ad-
heres to the ground while running. In the second row of
Figure 2, the girl’s right hand and right foot stick to the
wall while climbing. In the third and fourth row of Figure
2, the girl’s trunk is static and only her arms move freely.
These examples show clearly that surrounding environment
around moving objects usually indicates their spatial posi-
tions. DMDE [11] directly introduces motion segmentation
and an ordering term which captures the assumption that
moving objects occlude surrounding environment. How-
ever, it doesn’t analyze the relations between foreground
objects and the background and thus loses much informa-
tion. Meanwhile, accurately segmenting moving objects is
not easy.

We instead propose a unified method for dynamic recon-
struction, requiring no motion segmentation. We analyze
two kinds of superpixel relations between neighboring su-
perpixels: motion relations R, and spatial relations R,. We
assume R, = R, in most cases. However, since crack re-
lations provide no constraints, we can only determine the
plane parameters of superpixels that are either in S; or con-
nects to S;. As shown in the fifth row of Figure 2, the mo-
tion relations between superpixels on the car and superpix-
els on the surrounding road are crack, while the correspond-
ing real spatial relations are hinge. We resolve this problem
by introducing a complementary term E,,; in reconstruc-
tion, which aims to change sereval crack relations into hinge
relations under the same assumption used in DMDE. Then



Figure 2. Demonstration of different dynamic cases. We propose
our method by analyzing these scenes. For each example, we show
the image pair, optical flow field and the depth map

we can reconstruct the scene with spatial relations. In sum-
mary, for superpixels in S; or connecting to .S; (usually ac-
count for more than 90% of total superpixels), we directly
reconstruct them with the assumption R, = R,. For the
remaining superpixels, we change partial crack relations to
hinge relations and then reconstruct the scene similarly.

4. Training details of learning-based methods

SfMLearner [10] and GeoNet [14] are deep learning-
based methods that require training. The networks learn
to predict the camera motion and depth map in an unsu-
pervised setting, in which the loss is computed based on
the photometric difference between a pair of images. The
pretrained models provided by the authors were trained on
the KITTT dataset [4], which contains sequences of urban
scenes captured by a moving car. The frames in these se-
quences are composed mostly of static scenes (background)
with only relatively small areas of moving objects (other
vehicles). Therefore, depth estimation on these images are
usually more accurate, since the majority of the scene can
be reconstructed based solely on the camera motion. The
MPI Sintel dataset [1], on the other hand, presents much
more challenging dynamic scenes, in which a large part of
the image may contain moving objects, requiring more ro-
bust depth estimation approaches.

In the paper, we compare our method against SfM-
Learner and GeoNet on four datasets. For the datasets con-
taining urban driving scenes (KITTI [5, 3], Virtual KITTI
[2], and SYNTHIA [13]), we report the results obtained di-
rectly from the pretrained model provided by the authors.

For MPI Sintel, we attempt to finetune the models before
collecting the results. We follow the split proposed in [9],
by retaining five sequences from the MPI Sintel training set
as a validation set. We finetune both models by using the
default configurations provided by respective the authors.
We experimented reducing the learning rate by up to two
orders of magnitude during the finetuning. We also tested
two different image size: 416 x 128 (default configuration)
and 512 x 192 which is more similar to the original MPI
Sintel image size. The MRE (see Sec. 5 in the paper) train-
ing and validation plots are shown in Fig. 3.

As it can be seen, both methods fail to generalize well on
the MPI Sintel dataset, presenting poor validation errors af-
ter finetuning. Over several runs, we observe some random
minor improvement in the first iterations, which is always
followed by a sudden increase in the error, corresponding
to the network adapting to the new data. We can see that
StMLearner can improve on the training set, but not on the
validation. GeoNet, on the other hand, shows unstable re-
sults during both stages, indicating that it cannot adapt to
the dynamic scenes in MPI Sintel, at least with the default
settings. Notice that the authors of both methods do not re-
port results on MPI Sintel, which further indicates that they
are not able to properly handle this type of scene.

5. Results on different datasets

We provide reconstruction results on different datasets,
including MPI Sintel, KITTI, Virtual KITTI and SYN-
THIA. Figure 4 and 6 compare the results of our method
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Figure 3. Plot of MRE during training and validation stages.

with competing methods. Figure 5 and 7 demonstrate the
result of Ours+CPM (T). Our method may fail when the
foreground objects do not connect to surrounding environ-
ment. As shown in Figure 7 Row 2, the depth of the flying
duck is estimated incorrectly.
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Figure 4. Our main results on Virtual KITTI dataset. (a)-(e): input image sequence. (f): ground truth depth. (g): result of MVG [6]. (h)
result of SFMLearner [15]. (i): result of Geonet[14]. (j): spatial relations. (k): result of Ours+CPM (T). (1): result of Ours+CPM (M).
(m):selected static superpixels . (n): optical flow estimated by MirrorFlow [8]. (o) result of Ours+MirrorFlow (T).

Figure 5. Demonstration of depth map estimated by Ours+CPM (T) in traffic scenes. From left to right: reference frame I;, next frame
Ii41, ground truth depth map and the result of Ours+CPM (T).
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Figure 7. Demonstration of depth map estimated by Ours+CPM (T) on MPI Sintel dataset. From left to right: reference frame I;, next
frame I;41, ground truth depth map and the result of Ours+CPM (T).



