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1 Parakeet Auklet vs Crested Auklet AUC on CUB dataset (SCS
split)

We hypothesized that our method is better in generalization than standard generative
ZSL approaches at L51-151 in the main paper. We conduct an additional experiment to
verify this claim by plotting the Seen-Unseen curves for only Parakeet Auklet among
the seen classes and Crested Auklet among the unseen classes. We note that the pre-
diction space (T) still includes the 200 CUB species (see Fig 1), but with a focus on
analyzing these two categories. The AUC for the baseline GAZSL is 0.139 and for our
CIZSL (GAZSL + our loss) is 0.271 ≈ 100% relative improvement for discriminating
these two classes. This demonstrates how the confusion between those two classes is
drastically reduced by using our loss, especially for the unseen Crested Auklet (x-axis).

Fig. 1: Seen Unseen Curve for Parakeet Auklet (Seen) on the y-axis versus Crested
Auklet (unseen) on the x-axis for GAZSL and CIZSL (GAZSL+our loss)
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2 Divergence Measures

We generalize the expression of the creativity term to a broader family of divergences,
unlocking new way of enforcing deviation from seen classes.

In [1], Sharma-Mittal divergence was studied, originally introduced [2]. Given two
parameters (α and β), the Sharma-Mittal (SM) divergence SMα,β(p‖q), between two
distributions p and q is defined ∀α > 0, α 6= 1, β 6= 1 as

SM(α, β)(p||q) = 1

β − 1

[∑
i

(p1−αi qi
α)

1−β
1−α − 1

]
(1)

It was shown in [1] that most of the widely used divergence measures are special cases
of SM divergence. For instance, each of the Rényi, Tsallis and Kullback-Leibler (KL)
divergences can be defined as limiting cases of SM divergence as follows:
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In particular, the Bhattacharyya divergence [3], denoted by B(p‖q) is a limit case of
SM and Rényi divergences as follows as β → 1, α→ 0.5
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Since the notion of creativity in our work is grounded to maximizing the deviation
from existing shapes and textures through KL divergence, we can generalize our MCE
creativity loss by minimizing Sharma Mittal (SM) divergence between a uniform dis-
tribution and the softmax output D̂ as follows

LSM = SM(α, β)(D̂||u) = SM(α, β)(D̂||u) = 1
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3 Training Algorithm

To train our model, we consider visual-semantic feature pairs, images and text, as a
joint observation. Visual features are produced either from real data or synthesized by
our generator. We illustrate in algorithm 1 how G and D are alternatively optimized
with an Adam optimizer. The algorithm summarizes the training procedure. In each
iteration, the discriminator is optimized for nd steps (lines 6 − 11), and the generator
is optimized for 1 step (lines 12 − 14). It is important to mention that when Le has
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parameters parameters like γ and β for Sharma-Mittal(SM) divergence, in Eq. 7, that
we update these parameters as well by an Adam optimizer and we perform min-max
normalization for Le within each batch to keep the scale of the loss function the same.
We denote the parameters of the entropy function as θE (lines 15). Also, we perform
min-max normalization at the batch level for the entropy loss in equation 5

Algorithm 1 Training procedure of our approach. We use default values of nd = 5,
α = 0.001, β1 = 0.5, β2 = 0.9
1: Input: the maximal loops Nstep, the batch size m, the iteration number of discriminator in

a loop nd, the balancing parameter λp, Adam hyperparameters α1, β1, β2.
2: for iter = 1, ..., Nstep do
3: Sample random text minibatches ta, tb, noise zh

4: Construct th using Eq.6 with different α for each row in the minibatch
5: x̃h ← G(th, zh)
6: for t = 1, ..., nd do
7: Sample a minibatch of images x, matching texts t, random noise z
8: x̃← G(t, z)
9: Compute the discriminator loss LD using Eq. 4

10: θD ← Adam(5θDLD, θD, α1, β1, β2)
11: end for
12: Sample a minibatch of class labels c, matching texts Tc, random noise z
13: Compute the generator loss LG using Eq. 5
14: θG ← Adam(5θGLG, θ, α1, β1, β2)
15: θE ← Adam(5θELG, θ, α1, β1, β2)
16: end for

4 Zero-Shot Retrieval Qualitative Samples

Figure 2 shows qualitative examples of successful and unsuccessful retrieval in CUB-
SCS(easy). Even when the model fails to retrieve the exact unseen class, it tends to
retrieve visually similar images.

Fig. 2: Qualitative results of zero-shot retrieval on CUB dataset using SCS setting.
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We show several examples of the retrieval on CUB dataset using SCS split setting.
Given a query semantic representation of an unseen class, the task is to retrieve images
from this class. Each row is an unseen class. We show three correct retrievals as well
as one incorrect retrieval, randomly picked. We note that, even when the method fails
to retrieve the correct class, it tends to retrieve visually similar images. For instance,
in the Red bellied Woodpecker example (last row in the first subfigure). Our algorithm
mistakenly retrieves an image of the red headed woodpecker. It is easy to notice the
level of similarity between the two classes, given that both of them are woodpeckers
and contain significant red colors on their bodies.

Fig. 3: Qualitative results of zero-shot retrieval on CUB dataset using SCS setting.
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5 Ablation Study

In this section we perform an ablation study to investigate best distribution for α in
Eq. 6. Unlike our experiments in section 5 of original text where λ is cross validated,
in this ablation we fix λ to examine the effect of changing α distribution on α, we
achieve better performance. We observe that when we introduce more variation. Note
that generalized Seen-Unseen AUC accuracy is very similar to the results reported in
Table 4 of the main paper.

Metric Top-1 Accuracy (%) Seen-Unseen AUC (%)

Dataset CUB NAB CUB NAB
Split-Mode SCS SCE SCS SCE SCS SCE SCS SCE

GAZSL [4]- No creative loss 43.7 10.3 35.6 8.6 35.4 8.7 20.4 5.8

α = 0.5 45.7 13.9 38.6 9.1 39.6 11.2 24.2 6.0
α ∼ U(0, 1) 45.3 13.2 38.4 9.7 39.7 11.4 24.1 7.3

α ∼ U(0.2, 0.8) 45.3 13.7 38.8 9.7 39.7 11.8 24.6 6.7

Table 1: Ablation Study using Zero-Shot recognition on CUB & NAB datasets with
two split settings. We experiment the best α distribution in Eq. 6 of original text.

6 Visual Representation

Zhang et al. [5] showed that fine-grained recognition of bird species can be improved by
detecting objects parts and learning a part-based learning representations on top. More
specifically, ROI pooling is performed on the detected bird parts (e.g., wing, head) then
semantic features are extracted for each part as a representation. They named their net-
work Visual Part Detector/Encoder network (VPDE-net) which has VGG [6] as back-
bone architecture. We use the VPDE-net as our feature extractor of images for all our
experiments on fine-grained bird recognition data sets, so are all the baselines.

Fig. 4: t-SNE visualization of features of randomly selected unseen classes. Compared
to GAZSL[4], our method preserves more inter-class discrimination.
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