
Supplementary materials for
Robust Disentanglement on Real-World Datasets without Pose-Annotations

We provide additional results obtained by our method in Sec. A and implementation details in Sec. B.

A. Synthesis Results

In Fig. 10 we show some qualitative results of the comparison in Fig. 7.

A.1. Object Image Generation

Since our method does not rely on the existence of pose estimates, it is applicable to a wide range of objects. In Fig. 13

we show additional results of our method obtained on a vehicle surveillance dataset [36].

Fig. 14 shows that our method is not limited to a single object category. Indeed, it can learn shared pose representations

across different categories, such as those contained in the norb dataset [34].

A.2. Person Image Generation

In Tab. 3 we provide a qualitative comparison to [13] which highlights the benefits of not requiring keypoint estimates

even for domains where keypoint estimators are available. Our approach does not suffer from pose estimation errors and,

compared to keypoints, our pose representation is better disentangled from appearance.

We show additional results for Person Image Generation in Fig. 11, Fig. 15 and Fig. 16. Note that our method learns

an appearance invariant representation of pose across a wide range of poses and viewpoints (Fig. 11). Fig. 15 shows that it

can handle fine grained pose representations such as those required for hands. Fig. 16 demonstrates the applicability of our

method for general human actions. Fig. 12 shows interpolation along appearance and pose axes.

A.3. Video Generation

Requiring no pose annotations but only multiple images depicting the same object, our method can be directly applied to

video data without additional annotations. Thus, we are also able to perform unsupervised video-to-video translation. We

provide examples for the norb dataset (norb.avi), the bbc dataset (bbc.avi) as well as the ntu dataset (ntu.avi).

B. Implementation Details

In this section we provide additional details on the implementation of our method.

B.1. Network Parameters

We use the following notation to describe the network architectures:

• conv(n): a convolutional layer with 3× 3-kernel and n filters.

• down(n): a convolutional layer with 3× 3-kernel, n filters and stride 2.

• up(n): a convolutional layer with 3 × 3-kernel, 4n filters, followed by a reshuffling of pixels to upsample the feature

map by a factor of 2. Also known as subpixel convolution [51].

• act: a ReLU activation.

• res: a residual block [18]: The input feature map plus the ReLU activated input feature map followed by a convolutional

layer with 3× 3-kernel with as many filters as the input feature map has channels.

Depending on the dataset, the generated images have resolution 64×64 (sprites dataset), 96×96 (norb dataset) or 128×128
(remaining datasets). Both encoders Eπ and Eα have the same architecture:

• Encoders at resolution 64 × 64: conv(16), res, down(32), res, down(64), res, down(128),

res, down(256), res, res, res, res, res, act, conv(16).

• Encoders at resolution 96× 96: conv(32), res, down(64), res, down(128), res, down(128),

res, down(256), res, down(256), res, res, res, res, res, act, conv(16).



• Encoders at resolution 128 × 128: conv(32), res, down(64), res, down(128), res,

down(128), res, down(256), res, down(256), res, down(256), res, res, res, res,

res, act, conv(16).

The decoder D receives both π and α. Each of them is processed seperately by four res blocks and the result is concatenated.

Depending on the resolution, the remaining decoder architecture is described by:

• Decoder at resolution 64 × 64: conv(256), res, up(128), res, up(64), res, up(32), res,

up(16), res, conv(3) .

• Decoder at resolution 96×96: conv(256), res, up(256), res, up(128), res, up(128), res,

up(64), res, up(32), res, conv(3) .

• Decoder at resolution 128 × 128: conv(256), res, up(256), res, up(256), res, up(128),

res, up(128), res, up(64), res, up(32), res, conv(3) .

The classifiers T and T ′ have the same architecture. Both receive π and α, and process them seperately with a conv(512)

layer, followed by four res blocks. The result is activated and processed through a final conv(512) layer before the output

is computed as the inner product of the two resulting feature maps.

B.2. Model Parameters

For all experiments, we use bγ = lγ = 10−2 and µ = 10−1. p(π|x2) and r(π) are both modeled as Gaussian distributions

of unit variance. The latter has a mean of zero and Eπ estimates the mean of the first. We use the reparameterization trick

[29] to obtain low variance estimates of the gradient. Depending on the dataset, we implement the negative log-likelihood

Lrec with a l2 loss (sprites), a perceptual loss [25] (norb) or a perceptual loss together with a discriminator loss as in [11],

weighted by 10−3 (remaining datasets).

B.3. Optimization Parameters

We train our model over batches of size 16 for 100000 steps. We use the Adam optimizer [26] with an initial learning rate

of 2 · 10−4 linearly decayed to zero. We set β1 = 0.5 and β2 = 0.9. IT is calculated with an exponential moving average

with decay parameter 0.99.



Figure 10. Qualitative results for the comparison in Fig. 7.



ours vunet ours vunet ours vunet ours vunet

a)

b)

c)

Table 3. Comparison to vunet [13]. Each matrix shows in the first row the pose target and the additional pose estimate used by vunet,

and in the second row the appearance target followed by the synthesis of our method and vunet. a) vunet relies on existing pose estimators

making it sensitive to estimation errors; our method always uses the direct target image for the pose. b) vunet also relies on pose estimates

to obtain localized appearance representations, which can lead to complete failure at capturing the appearance. c) instead of learning

a pose representation, vunet assumes that keypoints are good pose representations, but subtle information, e.g. shoulder width, still

reveals information about appearances, e.g. gender. Men synthesized in poses estimated from women obtain a feminine look and vice

versa. In contrast, our method is designed to learn completely disentangled representations and, in particular, learns gender-neutral pose

representations.



Figure 11. Retargeting on the DeepFashion dataset [37, 38]. Note how our method is able to retarget appearances to a wide range of poses,

including a change from half-body to full-body views. Similiarly, large appearance changes (e.g. changes in gender) are possible while

retaining the pose. Training requires only pairs of images containing the same appearance.



Figure 12. Interpolating between appearance (vertical direction) and pose (horizontal direction).



Figure 13. Retargeting on the PKU Vehicle ID [36] dataset. Without changes in the architecture, our method handles both rigid objects, as

seen here, as well as deformable and articulated objects such as humans.



Figure 14. Retargeting on the Norb dataset [34]. Our method successfully finds a shared representation for pose, which can be used to

retarget poses across different object categories. An animated version can be found in norb.avi, where the target pose is rotated and

after each full turn, the elevation is increased.



Figure 15. Retargeting on the BBC Pose dataset [6]. No annotations are required. Our method can utilize different frames from a video to

learn the transfer task. An animated version can be found in bbc.avi.



Figure 16. Retargeting on the NTU dataset [50]. Again, our model directly learns to disentangle pose and appearance using only video data

without requiring additional annotations. An animated version can be found in ntu.avi.


