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1. Proof for Lemma 1

Proof. For the first property m(u) = max,cqk(u —
v)m(v) > k(u — u)m(u) = m(u). For the second
property, if k is Lipschitz continuous with constant K,
then |k(u) — k(v')| < Klju — «/|. We whish to bound
|m(u) — m(v)|. Assuming without loss of generality that
m(u) > m(v), we have

Im(u) —m(v)| = m(u) —m(v) =

max k(u—v)m(v) — maxk(u' —v)m(v') <

v’ EQ
max (k(u —v)m(v) — k(u —v")m(v)) <
rileagm(v) k(u—v) — k(u—")] <

maxm(v) - K|ju' —ul| < K|lu' — ull.
vEQN

O

2. Visualizations and Details for Area Con-
straint and Parameteric Family of Smooth
Masks

We have included a few illustrations of our techni-
cal innovations. Figure 1 visualizes our novel area con-
straint loss. Figure 2 demonstrates how we use the max-
convolution in practice to generate smooth masks.

2.1. Differentiability of vecsort

The vecsort function is differentiable for our purposes.
We use the PyTorch sort function, which returns a tensor
of sorted values and a tensor of sorted indices; the sorted
values are differentiable but the indices are not. The back-
ward function for the sorted values tensor simply “unsorts”
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Figure 1: Area constraint. The blue line is the reference
vector r, representing the target area a as a proportion of
“on” versus “off” pixels (here a = 20%). The red dot-
ted lines represent mask values in ascending, sorted order,
vecsort(m), at different points of the optimization, staring
by initializing m to 1/2. Over time, the optimization en-
courages the mask to match the target area. Even in the
limit, there is a slight difference between r, as m as the
latter is forced to be smooth at the boundaries; this has the
further beneficial effect of minimizing the boundary length,
encouraging more compact masks.

A. Low-Res Mask Parameterization

B. Expand to High-Res, Smooth Gaussians

C. Apply Smooth Max Operator

Figure 2: Generating smooth masks. a. We first define
a low resolution parameterization mask, m € [0, 1]7*W
(shown as a binary mask in this illustration). b. We then
represent each location in m as a high resolution, smooth
Gaussian, weighted by the value in m. c. Finally, we apply
the smooth max operator across all locations to get our final
mask.

the gradient being backpropagated. That is, for function
sorted, indices = torch.sort(z), the backward function is as
follows below; we only use the sorted values in our area
constraint (Figure 1a).

def sort_backward(ctx, grad_output):
# Get indices for sorted to unsorted.
_, indices_. = torch.sort(ctx.indices)
return grad_output[indices_], None

3. Comparison Visualizations

3.1. Comparison with other visualization methods

Figure 3 and fig. 4 show comparisons between our
method and other popular visualization methods, such as

gradient [5], guided backprop [6], Grad-CAM [4], and
RISE [3].

3.2. Comparison with [2]

Figure 5 show more examples comparing our method
with [2]. We compare our masks generated using VGG16
trained in PyTorch against their masks generated using
GoogLeNet trained in Caffe, as that is what their method
was optimized for. One can see in fig. 5 that [2]’s masks
consistently are one connected component and are unable
to identify multiple, distinct objects of the same class. One
can also note the instability of [2] in some of their learned
mask, most likely in part due to the tradeoff between their
regularization terms (i.e., L1 sparsity term and total varia-
tion smoothness term).

3.3. Area Growth

The following figures include area growth pro-
gressions for the first 50 validation images in Ima-
geNet: fig. 6, fig. 7, fig. 8, fig. 9. The bar graph visualizes
®(m, © x) as a normalized fraction of &g = ®(x) (i.e.,
class score on original image) and ®,,;, = ®(my O x) (i.e.,
class score on fully perturbed image) and saturates after ex-
ceeding @ by 25% as follows:

O(m, ©x) — Pin

1.2 1
‘I)O - (I)min ’ 5) ( )

v = max(

3.4. Sanity Checks [1]

Adebayo et al. [1] proposed several “sanity checks” for
evaluating the specificity of attribution methods to model
weights. We show qualitative experiments for our method
in fig. 10 and fig. 11 and for other methods in fig. 12
and fig. 13 for [1]’s model parameter randomization test.
Cascading randomization successively randomizes a mod-
els’ learnable weights, from the end of a model (e.g., fc8
in VGG16) to the beginning of a model (e.g., convl_1 in
VGG16), whereas independent randomization randomizes a
single layer’s random weights. When randomizing a layer’s
weights, we draw from same distribution that we used to
initialize the model during training.

Implementation Details. We use the “hybrid” formula-
tion instead of “preservation” formulation used elsewhere
in the paper. The input images were resized to (224, 224).

3.5. Pointing Game Examples

Figure 14 and fig. 15 show a few examples of our masks
being discriminative for different classes on PASCAL and
COCO respectively.



4. Visualizations of Channel Attribution at In-
termediate Layers

Figure 16, fig. 17, and fig. 18 show saliency heatmaps
and feature inversions of our channel attribution masks.
By comparing the difference in feature inversions between
the original and perturbed activations, we can identify the
salient features that our method highlights. To our knowl-
edge, this is the first work that shows side-by-side “diffs” of
feature inversions.
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Figure 3: Comparison with other visualization methods.
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Figure 4: Comparison with other visualization methods (more examples).
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Figure 5: Comparison with [2]. Odd rows: Our masks at the optimal area on the first 60 images in the ImageNet validation
split. Even rows: [2]’s masks. We can see that our masks are able to pick out distinct object instances, whereas [2]’s masks
only highlight one connected component due to their smoothness regularization. We also see qualitatively that our method is
more stable than [2]’s (where sometimes the mask is completely off the object and/or has an unnatural speckled nature).
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Figure 6: Area growth (up to 5%).
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Figure 7: Area growth (up to 10%).
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Figure 8: Area growth (up to 20%



Figure 9: Area growth (up to 40+%).
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Figure 15: Pointing Examples from COCO. The overlaid
visualization is the average mask after Gaussian smoothing
(o = 20).

Figure 14: Pointing Examples from PASCAL. Here we
see a few examples of where our method is able to local-
ize well to different objects in the image. The overlaid vi-
sualization is the average mask after Gaussian smoothing
(o = 20).
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Figure 16: Per-instance channel attribution visualization (1-14). Left: input image overlaid with channel saliency map
(see eq. 13 in main paper). Middle: feature inversion of original activation tensor. Right: feature inversion of activation
tensor perturbed by optimal channel mask m,~. By comparing the difference in feature inversions between un-perturbed
(middle) and perturbed activations (right), we can identify the salient features that our method highlights. Notable examples

are the crib (3rd row, left) and snakes (1st row, left and 3rd row, right). These are visualizations for the ImageNet validation
images 1-14.
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Figure 17: Per-instance channel attribution visualization (15-28). Left: input image overlaid with channel saliency map.
Middle: feature inversion of original activation tensor. Right: feature inversion of activation tensor perturbed by optimal
channel mask m,~. Notable examples are the harvester (1st row, left), porcupines (4th row, left), and the bird (2nd to last
row, left). These are visualizations for the ImageNet validation images 15-28.
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Figure 18: Per-instance channel attribution visualization (29-42). Left: input image overlaid with channel saliency map.
Middle: feature inversion of original activation tensor. Right: feature inversion of activation tensor perturbed by optimal
channel mask m-. Notable examples are the baseball player (3rd row, right), abacus (3rd to last row, right), crib (last row,
left), and rain barrel (last row, right). These are visualizations for the ImageNet validation images 29-42.



