Supplementary Material — End-to-End Learning of Representations for
Asynchronous Event-Based Data

1. Appendix

We cucouragc the reader to watch the supplemc:n—

lary video at ! /www.youtube.com/watch?

QL Sx59GXRY for an 1nlr0ducl10n to lhc: event cam-

era and qualitative results of our approach. In this section,

we provide additional details about the network architecture

used for our experiments, as well as supplementary results
for object recognition and optical flow prediction.

1.1. Network Architecture

For all our classification experiments, we used an off-
the-shelf ResNet-34 [1] architecture for inference with
weights pretrained on RGB image-based ImageNet [5]. We
then substitute the first and last layer of the pre-trained net-
work with new weights (randomly initialized) to accommo-
date the difference in input channels (from the difference
in representation) and output channels (for the difference in
task).

For the optical flow experiments, we use the off-the-shelf
U-Net architecture [4] for inference, adapting its input layer
to the number of channels of each representation.

Learned Kernel Functions As discussed in Sec. 3.3 in
the main manuscript, we used a two-layer multi-layer per-
ceptron (MLP) to learn the kernel function to convolve the
event measurement field, defined in (4). The two hidden
layer have both 30 nodes, with Leaky ReLU as activation
function (leak = 0.1) to encourage better gradient flow. To
give all image locations the same importance, we designed
the kernel to be translation invariant. Thus, for an event
occurring at time ;. the MLP has a one-dimensional input
&t = t; — t, and a single output k(t; — ¢,,) with normal-
ized time t; = % and At denoting the time window of the
events. The conlnbullon of a single event to the sum in (6)
is computed for every grid positiont,, forn = 0,1,..., B—1
where B is the number of temporal discretization bins. The
weights of the MLP were initialized with the trilinear voting
kernel k(z,y,t) = §(x,y) max (0,1 — | x;|) [2], since this
proved to facilitate convergence in our experiments. Fig. 1
shows an illustration of the learned kernels as a function of
time. Interestingly, the learned kernels show some inter-
esting behavior, when compared against the trilinear voting
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Figure 1. Kernel function learned for classification in the N-Cars
dataset (left) and for optical flow prediction (right).

kernel, on which they were initialized. For classification
(Fig. 1, left), the kernel seems to increase the event influ-
ence to the past, in a causual fashion: indeed, enough evi-
dence has to be accumulated to produce a classification la-
bel. In contrast, for optical flow prediction (Fig. 1, right),
the learned kernel increases in magnitude, but not signifi-
cantly in the time range, with respect to the trilinear kernel.
This is probably due to the fact that optical flow is a more
‘local’ task with respect to classification, and therefore less
temporal information is required.

1.2. Ablation Studies and Qualitative Results
1.2.1 Classification

For the classification task, we investigated the relation be-
tween the number of temporal discretization bins, B, i.e.,
channels, of the event spike tensor (EST) and the network
performance. We quantitavively evaluated this effect on the
N-Cars [0] and N-Caltech101 [3] datasets. More specif-
ically, we trained four networks, each using the learned
EST with B = 2,4,9,16 and timestamp measurements,
since this representation achieved the highest classification
scores. The final input representations have 4, 8, 18, and
32 channels since we stack the polarity dimension along
the temporal dimension. The results for this experiment are
summarized in Tab. 1 and example classifications for the N-
Cars and N-Caltech101 dataset are provided in Figs. 2 and
3.

For both datasets, we observe a very similar trend in
the dependency of classification accuracy to temporal dis-
cretization: performance appears to increase with finer dis-
cretization, i.e., with a larger number of channels. However,



Temporal Bins | N-Cars | N-Caltech101
2 0.908 0.792
8 0.912 0.816
9 0.925 0.817
16 0.923 0.837

Table 1. Classification accuracy on N-Cars [6] and N-Caltech101
[3] for input representations based on the event spike tensor (EST).
Four variations of the EST were tested, varying the number of tem-
poral bins between 2,4, 9 and 16. The best representations are
highlighted in bold.

for the N-Cars dataset performance plateaus after B = 9
channels, while for the N-Caltech dataset performance con-
tinues to increase with a larger number of channels. This
difference can be explained by the different qualities of the
datasets. While the N-Cars dataset features samples taken in
an outdoor environment (Fig. 2), the N-Caltech101 samples
were taken in controlled, constant lighting conditions and
with consistent camera motion. This leads to higher qual-
ity samples in the N-Caltech101 dataset (Fig. 3), while the
samples in N-Cars are frequently corrupted by noise (Fig. 2
(a-d)). In low noise conditions (Fig. 2 (a)) classification ac-
curacy is very high (99%). However, as the signal decreases
due to the lack of motions (Fig. 2 (b-d)) the classification ac-
curacy decreases rapidly. Increasing the number of tempo-
ral bins further dilutes the signal present in the event stream,
resulting in noisy channels (Fig. 2 (c)), which impacts per-
formance negatively. In addition, more input channels re-
sults in higher the memory and computational costs of the
network. Therefore to trading-off performance for compu-
tational accuracy, we use B = 9 in all our classification
experiments.

1.2.2 Optical Flow

In this section, we ablate two features of the representations
used for optical flow prediction: (i) the measurement func-
tion f (defined in (5)), and (ii) the number of temporal dis-
cretization bins, B. We use the Multi Vehicle Stereo Event
Camera (MVSEC) dataset [7] for quantitative evaluation.

Tab. 2 shows the performance of our candidate measure-
ment functions, i.e., polarity, event count, and event times-
tamp, for the generation of the representations (see (5)).
While it would be possible to learn the measurement func-
tion together with the kernel, in our experiments we have
considered this function to be fixed. This heuristic proved
to speed-up convergence of our models, while decreasing
the computational costs at training and inference time.

In Tab. 2 it can be observed that the event timestamp
yields the highest accuracy among the measurement func-
tions. This is indeed very intuitive since, while polarity
and event count information is contained in the EST, the
timestamp information is partially lost due to discretization.

Adding it back in the measurements gives the EST the least
amount of information lost with respect to the original event
point set, therefore maximizing the performance of end-to-
end learning.

To understand the role that the number of temporal bins
plays, we choose the best event representation for this task,
the EST with timestamp measurements, and vary the num-
ber of temporal bins from B = 2,4,9,16. The average
endpoint errors and outlier ratios are reported in Tab. 3.

As with the classification task (Sec. 1.2.1), we observe
a trade-off between using too few channels and too many.
Since MVSEC records natural outdoor scenes, event mea-
surements are corrupted by significant noise. As we in-
crease the number of channels, the signal-to-noise ratio in
the individual channels drops, leading to less accurate op-
tical flow estimates. In contrast, decreasing the number of
channels also has adverse effects, as this removes valuable
information from the event stream due to temporal aliasing
effects. Therefore, a compromise must be made between
high and low channel numbers. In the experiments reported
in the paper we chose a channel number of nine, as this
presents a good compromise.

In conclusion, we encourage the reader to watch the sup-
plementary video to see the qualitative results of our method
on optical flow prediction. We have observed that, de-
spite the application environment and illumination condi-
tions, our method generates predictions which are not only
accurate, but also temporally consistent without any post-
processing.



. indoor_flying1 indoor_flying2 indoor_flying3
Representation | Measurement | Kernel 3pp™0"5, lier [ AEE % Outlier | AEE % Outlier |
Event Frame 1.21 4.19 2.04 20.6 1.83 16.6
Two-Channel Image larit il 1.31 4.75 2.05 232 1.83 11.4
Voxel Grid potartty TN 096 147 | 165 146 | 145 114
EST (Ours) 1.01 1.59 1.79 16.7 1.57 13.8
Event Frame 1.25 3.91 2.11 229 1.85 17.1
Two-Channel Image count ilinear 1.21 4.49 2.03 228 1.84 17.7
Voxel Grid 0.97 1.33 1.66 14.7 1.46 12.1
EST (Ours) 1.03 2.00 1.78 16.5 1.56 13.2
Event Frame 1.17 2.44 1.93 18.9 1.74 15.6
Two-Channel Image time stamps wilinear 1.17 1.50 1.97 14.9 1.78 11.7
Voxel Grid ) 0.98 1.20 1.70 14.3 1.50 12.0
EST (Ours) 1.00 1.35 1.71 11.4 1.51 8.29
alpha 1.03 1.34 1.52 11.7 1.41 8.32
EST (Ours) time stamps | exponential | 0.96 1.27 1.58 10.5 1.40 0.44
learnt 0.97 0.91 1.38 8.20 1.43 6.47

Table 2. Average end-point error (AEE) and % of outliers evaluation on the MVSEC datasets. Ablation of different measurement functions
for the event spike tensor. The best candidates are highlighted in bold.

. indoor_flying 1 indoor_flying2 indoor_flving3
Temporal Bins 4 er0 " Gutlier | AEE % Outlier | AEE % Outlier
2 0.97 0.98 1.45 8.86 1.37 6.66
4 0.96 1.13 1.42 8.86 1.35 5.98
9 0.97 0.91 1.38 8.20 1.43 6.47
16 0.95 1.56 1.39 8.58 1.34 6.82

Table 3. Average end-point error (AEE) and % of outliers for optical flow predictions on the MVSEC dataset [ 7]. Four event representations
based on the voxel grid were tested with 2, 4, 9 and 16 temporal bins. The best representation is highlighted in bold.



Correct label: Car Correct label: Car

good example: 99% Car score borderline example: 46% Car score
(a) (b)

Correct label: Car Correct Label: Car

bad example: 5% Car score improvement: 23% Car score

(c) (d)

Figure 2. Visualization of input representations derived from samples from the N-Cars dataset [6] (a and b) show the event spike tensor
(EST) representation with time measurements, which achieved the highest classification score on N-Cars, while (d) shows the two-channel
image of sample (c) for comparison. The EST consists of 18 channels, where the first nine are filled with events of positive polarity and
the last nine are filled with negative polarity. The images show the nine temporal bins of the tensor with positive events in red and negative
events in green. In good conditions (a) the classifier has high confidence in the car prediction. However, when there are less events due to
the lack of motion (b and c) the uncertainty rises leading to predictions close to random (50%). In (b) the classifier sees the headlights of
the car (red dots) but may still be unsure. In (c) the classifier sees only noise due to the high temporal resolution, likely attributing presence
of noise to no motion. When we aggregate the noise (d) into the Two-Channel Image we see a more distinct pattern emerge, leading to
higher classification confidence.
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Figure 3. Visualization of the event spike tensor (EST) representations derived from samples from the N-Caltech101 dataset [3]. The EST
consists of 18 channels, where the first nine are filled with events of positive polarity and the last 9 are filled with negative polarity. The
figures show the nine temporal bins of the tensor with positive events in red and negative events in green. We see that compared to N-
Cars [0] the event stream of this dataset is much cleaner and with much less noise. This is because the dataset was recorded in a controlled
environment, by positioning an event camera toward an image projected on a screen. (a) and (b) correspond to correct predictions and (c)

an incorrect one.
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