
Supplementary Material
Parametric Majorization for Data-Driven Energy Minimization Methods

Jonas Geiping Michael Moeller
Department of Electrical Engineering and Computer Science, University of Siegen

{jonas.geiping, michael.moeller}@uni-siegen.de

This document contains the appendix for the submis-
sion ’Parametric Majorization for Data-Driven Energy Min-
imization Methods’. It contains proofs that were omitted
from the main paper and further details on the experimental
setups. We will occasionally repeat equations from the main
paper, but the equation numbering will always be identical.
For the exact implementation of the proposed experiments,
refer to project’s github page at https://github.com/
JonasGeiping/ParametricMajorization.

1. Convex Analysis in Section 3
1.1. Details for Derivation of Eqs. (11), (12)

Eq. (11) in the main paper describes the application of
Bregman duality:

D0
Eθ

(x∗i , xi(θ)) = D
x∗
i

E∗
θ
(0, qi) qi ∈ ∂E(x∗i , yi, θ), (11)

which is a common application of the following identity [6,
5]:

Lemma 1 (Bregman Identity). Consider a convex lsc. func-
tion E : Rn → R with a subgradient p ∈ ∂E(y). Then, the
following identity holds:

Dp
E(x, y) = Dx

E∗(p, q), q ∈ ∂E(x)

Proof. This property follows from equality (Fenchel’s iden-
tity) in the Fenchel-Young inequality E(x) + E∗(p) =
〈p, x〉 ⇐⇒ p ∈ ∂E(x). To see this we write

Dp
E(x, y) = E(x)− 〈p, x〉 − E(y) + 〈p, y〉

and apply Fenchel’s identity for p, y to find

Dp
E(x, y) = E(x)− 〈p, x〉+ E∗(p)

We then introduce any q ∈ ∂E(x) by writing 〈p, x〉 = 〈p−
q + q, x〉 and apply Fenchel’s identity again:

Dp
E(x, y) = E∗(p)− E∗(q)− 〈x, p− q〉 = Dx

E∗(p, q)

The step from Eq. (11) to Eq.(12) is simply the first step
of this derivation:

DEθ (x
∗
i , xi(θ)) = E(x∗i , yi, θ)− 〈0, x∗i 〉+ E∗(0, yi, θ)

=D
x∗
i

E∗
θ
(0, qi) = E(x∗i , yi, θ) + E∗(0, yi, θ) (12)

as pi = 0 is a subgradient of E at xi(θ) and qi at x∗i .

1.2. Details for Derivation of Eq. (14) -> (15)

A crucial subtlety of Lemma 1 is that this identity holds
for any q ∈ ∂E(x) and the choice of subgradients is irrel-
evant, the Bregman distance is equal for all choices. This
motivates the introduction of the W -function WE(p, x) =
E∗(p) + E(x) − 〈p, x〉. This function is convex in either
p or x and always non-negative. It can be understood as
measuring the deviation of p from subgradients of x as a
direct implementation of the Fenchel-Young inequality. As
such it is 0 exactly if p ∈ ∂E(x). Previous usage of this
function can be found for example in [7, 18]. For Legen-
dre functions [1], i.e. functions where both E and E∗ are
(essentially) smooth, the connection to Bregman distances
is immediate:

WE(p, x) = Dp
E(x,∇E

∗(p)),

for non-smooth functions this is also a part of the proof of
Lemma 1, replacing ∇E∗(p) by y ∈ ∂E∗(p). As such, we
can write Eq. (12) as

D
x∗
i

E∗(0, qi) =WEθ (0, x
∗
i ). (12)

The introduction of this function then allows us to show that

WE(0, x
∗
i ) = min

z
WE1,θ(−z, x∗i ) +WE2,θ(z, x

∗
i ) (15)

under the assumption in Eq.(13), that E can be written as
E1 + E2, with both functions convex. We recognize this
as the clear extension of the infimal convolution property
E∗(0) = minz E

∗
1 (−z) + E∗2 (z) (which itself can be un-

derstood as Fenchel’s duality theorem applied to E1, E2) to
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these functions, in the smooth setting this could be written
via

D
x∗
i

E∗(0,∇E(x∗i )) = min
z

DE∗
1
(−z,∇E1(x

∗
i ))

+DE∗
2
(z,∇E∗2 (x∗i )).

We arrive at Eq. (15) from Eq. (14) by rewriting E in
Eq.(14):

min
z
E1(x

∗
i , yi, θ) + E2(x

∗
i , yi, θ)

+ E∗1 (−z, yi, θ) + E∗2 (z, yi, θ)
(14)

=min
z
E1(x

∗
i , yi, θ) + E2(x

∗
i , yi, θ) + 〈z, x∗i 〉

+ E∗1 (−z, yi, θ) + E∗2 (z, yi, θ)− 〈z, x∗i 〉
=min

z
WE1,θ(−z, x∗i ) +WE2,θ(z, x

∗
i ). (15)

1.3. Proof of Proposition 2

Proposition 2 (Ordering of parametric majorizers). Assum-
ing the condition l(x, z) ≤ DEθ (x, z) from Eq. (8), we find
that the presented parametric majorizers can be ordered in
the following way:

l(x∗i , x(θ)) ≤ D0
Eθ

(x∗i , xi(θ)) = D
x∗
i

E∗
θ
(0, qi)

≤ min
z∈∂E2(x∗

i )
WE1

(−z, x∗i )

≤ 1

m(θ, y)
||qi||2 s.t. qi ∈ ∂E(x∗i , y, θ).

The Bregman surrogate (10) majorizes the original loss
function and is in turn majorized by the partial surrogate
(16) which is majorized by the gradient penalty (17) under
the assumption of m(θ, y) - strong convexity of E1.

Proof. The first inequality follows directly by the assump-
tion l(x, z) ≤ DEθ (x, z). The second inequality is the ap-
plication of Bregman Duality discussed in Lemma 1. From
Eq.(15) we now see that Dx∗

i

Eθ
(0, qi), qi ∈ ∂E(x∗i , yi, θ)

can be written as a minimum over z. Clearly choosing a
non-optimal z yields an upper bound to this minimal value.
Without loss of generality, we choose z ∈ ∂E2(x

∗
i ) so that

WE2,θ(z, x
∗
i ) is equal to zero.

Now we assume that E is m(θ, y)-strongly convex. We
subsume this strong convexity term inE1 again without loss
of generality so that E1 is strongly convex. By convex du-
ality [2], this implies that E∗1 is m(θ, y) strongly smooth,
i.e. Dx

E∗
1
(p, q) ≤ 1

2m(θ,y) ||p − q||
2. Following Eq.(12), we

write

WE∗
1
(−z, x∗i ) = D

x∗
i

E∗
1
(−z, r) z ∈ ∂E2(x

∗
i , yi, θ),

r ∈ ∂E1(x
∗
i , yi, θ)

≤ 1

2m(θ, y)
|| − z − r||2

=
1

2m(θ, y)
||qi||2 qi ∈ ∂E(x∗i , yi, θ),

under mild assumptions on the additivity of subgradients of
E1 and E2.

1.4. Derivation of the surrogate functions for the
example in subsection 3.3

Section 3.3 discusses the non-smooth bi-level problem
given in Eqs. (18) and (19):

min
θ∈R

1

2
|x∗ − x(θ)|2, (18)

subject to x(θ) = argmin
x

1

2
|x− y|2 + θ|x|. (19)

for both x∗, y ∈ R. In this setting, the ’primal’ formulation
of the Bregman surrogate is given by

min
θ

max
x

1

2
|x∗−y|2− 1

2
|x−y|2+θ (|x∗| − |x|) (10 ex.)

whereas the ’dual’ formulation is given by

min
θ

min
|z|≤θ

1

2
|x∗ − y|2 + θ|x∗|+ 1

2
|z − y|2. (12 ex.)

Note that this problem is convex in z, θ as the epigraph con-
straint |z| ≤ θ is convex. Both (equivalent!) variants are
visualized in Figure 1. We see that the saddle-point of the
primal formulation and the minimizer of the dual formula-
tion correctly coincide with the optimal θ.

Moving forward, we set E1(x, y) = 1
2 |x − y|2 and

E2(x, θ) = θ|x| to compute the two partial surrogates.
Firstly WE1,θ(−z, x∗), z ∈ ∂E2(x

∗) leads to

min
θ

1

2
|x∗ − y + q|2, q ∈ ∂|x∗|, (16 ex.1)

where we take q = sign(x∗) as x∗ 6= 0 in our example.
As E1 is a quadratic function, this is also equivalent to the
gradient penalty in Eq. (17). The second partial surrogate,
WE2,θ(z, x

∗), z ∈ ∂E1(x
∗) can be written as

min
θ
θ|x∗|+ I|·|≤θ(x

∗ − y)− 〈x∗, x∗ − y〉 (16 ex.2)

= min
|x∗−y|≤θ

θ|x∗|+ C.

Figure 1 here and Figure 1 in the main paper both arise from
the data point x∗ = 0.3, y = 1.5.

To give some more details on the fact that the Bregman
surrogate is exactly identical with the original loss func-
tion in the vicinity of the optimal value, note that this is
caused by the special structure of the Bregman distance of
the absolute value,D|·|(x, y) asDEθ (x, y) decomposes into
1
2 |x−y|

2+θD|·|(x, y). This function is equal to the higher-
level loss function as soon as the signs of x∗ and x(θ) co-
incide and as such the majorizer is exact, even if it is much
easier to compute.
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Figure 1. Visualization of the Bregman surrogate problem in primal formulation (left) and dual formulation (right). The problem in
visualized over all (x, θ), respectively (z, θ). The admissible x(θ) are marked in orange in the left contour plot and the optimal z(θ) one
the right. The optimal value in θ is marked in green in both plots.

1.5. Proof of Proposition 4

Section 3.4 describes an iterative procedure for repeated
application of the majorization strategies discussed in sec-
tion 3.2. This scheme was based on the result of Proposition
3:

l(x, y) ≤ l(x, z) + 〈∇zl(x, z), y − z〉+DE(z, y), (20)

inserting x = x∗i , y = xi(θ), z = xi(θ
k) leads to

l(x∗i , xi(θ)) ≤ l(x∗i , xi(θk)) +DEθ (xi(θ
k), xi(θ))

+〈∇l(x∗i , xi(θk)), xi(θ)− xi(θk)〉.
(20b)

Eq.(20), respectively (20b), lead to a monotone descent
of the higher-level loss, as shown in Proposition 4:

Proposition 4 (Descent Lemma). The iterative procedure
given by

θk+1 = argmin
θ

N∑
i=1

l(x∗i , xi(θ
k))

+ 〈∇l(x∗i , xi(θk)), xi(θ)− xi(θk)〉
+D0

Eθ
(xi(θ

k), xi(θ))

is guaranteed to be stable, i.e. not to increase the bi-level
loss:

N∑
i=1

l
(
x∗i , xi(θ

k+1)
)
≤

N∑
i=1

l
(
x∗i , xi(θ

k)
)

(23)

Proof of Proposition 4. θk+1 is a minimizer of the iterative
scheme. Therefore, evaluating the iteration at θk+1 leads to

a lower value than evaluating at θk:

N∑
i=1

l(x∗i , xi(θ
k)) + 〈∇l(x∗i , xi(θk)), xi(θk+1)− xi(θk)〉

+D0
E
θk+1

(xi(θ
k), xi(θ

k+1))

≤
N∑
i=1

l(x∗i , xi(θ
k)) + 〈∇l(x∗i , xi(θk)), xi(θk)− xi(θk)〉

+D0
E
θk
(xi(θ

k), xi(θ
k))

=

N∑
i=1

l(x∗i , xi(θ
k))

Now the left-hand-side is also equivalent to Eq. (20b) eval-
uated at θk+1. Applying the inequality in (20b) for all
i = 1, . . . , N we find

N∑
i=1

l(x∗i , xi(θ
k+1)) ≤

N∑
i=1

l(x∗i , xi(θ
k)).

Remark. The iterative scheme given in Eq.(22), i.e.

θk+1 = argmin
θ

N∑
i=1

E∗
(
∇l(x∗i , xi(θk)), yi, θ

)
+E

(
x(θk), yi, θ

)
.

(22)

is an over-approximation of the iterative scheme discussed
in Proposition 4. As such we expect the results of Propo-
sition 4 to hold only approximately as stated in the main
paper.
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Figure 2. Illustrate our results for learning a linear correction term for a Huber-reguralized CT reconstruction problem. In reference to
Figure 2 in the main paper we also visualize input data and the learned linear correction map. The predicted linear correction term can be
visualized and inspected, and its influence can easily be quantified or explicitly scaled via a parameter.

2. Experimental Setup
This section will add additional details to the experi-

ments presented in the paper1.

2.1. CT - Additional Details

The implementation of the CT example in section 4.1 is
straightforward. We generate pairs (y∗i , x

∗
i ) of noisy sino-

grams and ground truth images and optimize

min
θ∈Rp

n∑
i=1

‖A∗Ax∗i −A∗yi + β∇R(x∗i ) +N (θ, yi)‖22.

We test our model on the widely-used Shepp-Logan phan-
tom, comparing the learned model with a pure Huber-TV
solution, for which we found the optimal parameter β by
grid search. This setup was implemented in Matlab. To
visualize the linear correction term, we repeat an extended
version of Figure 2.

2.2. Segmentation - Additional Details

The segmentation experiment shown in Figure 3 of the
main paper shows the results of training the variational
model in Eq.(25), which corresponds to an augmented
cross-entropy term, as discussed in section 4.2.

The partial surrogate implemented in Figure 3 is a direct
application of Eq.(16) to the segmentation setting, giving

min
θ

N∑
i=1

min
pi∈∂||Dx∗

i ||
Dh

(
x∗i ,∇h∗

(
N (θ, yi)−DT pi

))
,

where the computation of the auxiliary variable pi is sim-
plified. Note further that the gradient penalty cannot be ap-
plied in this setting, as the segmentation energy E is not
strongly convex. Similarly, the iterative approach can be
computed to be

min
θ

N∑
i=1

min
||pi||≤1

h∗
(

x∗i
xi(θk)

+N (θ, yi)−DT pi

)
−
〈
N (θ, yi), xi(θ

k)
〉

1Refer also to the implementations hosted on https://github.
com/JonasGeiping/ParametricMajorization

which is still convex in N (θ, y), but the input arguments
now take previous solutions into account.

To emphasize the convexity of the setup, we choose
N (θ, yi) as a linear convolutional network of 3x3x3 filters
for each target class. We accordingly optimize the resulting
convex minimization problems by an optimal convex op-
timization method, namely FISTA [4]. To solve the infer-
ence problem in Eq. (25) we apply usual strategies and opti-
mize via a primal-dual algorithm [8] - to increase the speed
we adapt a recent variant [9] and consider the Bregman-
Proximal operator in the primal sub-problem for which we
use the entropy function h described in the paper, parallel-
ing [3, 16].

We draw four images and their corresponding segmenta-
tions from the cityscapes data set [12] and implement
the proposed procedures in PyTorch [17]. For Figure 3 we
drew the first four images, which we resized to 128x256
pixels. To visualize the improvement over the iterations, we
initialize the subsequent iterations of the iterative scheme
again with the initial value of θ, so that the training accu-
racy curves in Figure 3 are comparable. This is of course
not strictly necessary and θ could be initialized with the cur-
rent estimate in every iteration. We also point out that we
visualize the actual training accuracy in Figure 3, meaning
the percentage of successfully segmented pixels after hard
argmax of the results of the algorithms.

2.3. Analysis Operators - Additional Details

For this experiment we considered the task of learning
an ’analysis operator’ D(θ), i.e. a set of convolutional fil-
ters θk so that D(θ) =

∑K
k=1 θk ∗ x for a set of K filters.

Due to anisotropy, we can write the resulting minimization
problem as

x(θ) = argmin
x

1

2
||x− y||2 +

K∑
k=1

||θk ∗ x||1.

We repeat the experimental setup of [11] and train this
model on image pairs x∗, y of noise-free and noisy image
patches, to learn filters that result in a convex denoising
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model [10, 11]. To do so we draw a batch of 200 64x64 im-
age patches from the training set of the Berkeley Segmenta-
tion data set [15], convert the images to gray-scale and add
Gaussian noise. To compare with [11] and [20] we do not
clip the noisy images and use Matlab’s rgb2gray routine
to generate this data. Further, as in [11], we do not optimize
directly for the convolutional filters, but instead decompose
each filter into a DCT-II basis, where we learn the weight of
each basis function, excluding the constant basis function
[13]. Before training we initialize these weights by orthog-
onal initialization [19] with a factor of 0.01, respectively
0.001 for the larger 9x9 filters.

To solve the training problem we minimize Eq. (33) in
the paper jointly in θ, {pi}Ni=1. We do this efficiently by
taking steps toward the optimal weights with the ’Adam’
optimization procedure [14] with a step size τ = 0.1 (al-
though gradient descent with momentum or FISTA [4] are
also valid options). We use a standard accelerated primal-
dual algorithm [8] to solve the convex inference problem.
For the iterative procedure we repeat this process, comput-
ing x(θk) after every minimization of Eq.(33), inserting it
as a factor into E∗ and repeating the optimization. If the
iterative procedure increases the loss value, we reduce the
step size τ of the majorizing problem and repeat the step.
If reducing the step size does not successfully improve the
result for several iterations, we terminate the algorithm.

We implement this setup in PyTorch [17] and refer to our
reference implementation for further details.

For total variation denoising, which corresponds to
choosing D(θ) as the gradient operator with appropriate
scaling, α∇, we use grid search to find the optimal scaling
parameter α.

We report execution times for a single minimization of
Eq.(33) for different filter sizes in Table 1 in the paper as
well as total time for an iterative procedure. These timings
are reported for a single GeForce RTX 2080Ti graphics card.
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